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Abstract: In this paper, a Fractional Adaptive Fuzzy Logic Control (FAFLC) strategy based on active fractional 

sliding mode (FSM) theory is considered to synchronize chaotic fractional-order systems. Takagi-Sugeno fuzzy 

systems are used to estimate the plant dynamics represented by unknown fractional order functions.  

One of the main contributions in this work is to combine an adaptive fractional order PIλ control law with the 

fractional-order adaptive sliding mode controller in order to eliminate the chattering action in the control signal. 

Based on Lyapunov theory, the stability analysis of the proposed control strategy is performed for an acceptable 

synchronization error level. Numerical simulations illustrate the efficiency of the proposed fractional fuzzy adaptive 

control scheme through the synchronization of two different fractional order chaotic Duffing systems. We show that 

the introduction of the additional fractional adaptive PIλ control action is able to eliminate the chattering phenomena 

in the control signal. 

Keywords: Nonlinear fractional systems, Fractional sliding mode control, Adaptive fuzzy control, Fractional 
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1. Introduction 

Since more than three centuries, a great number 

of researchers focused on the mathematical topic of 

Fractional calculus, dealing with derivatives and 

integrations of non-integer order. When compared to 

the classical theory, fractional differential equations 

describe more accurately many systems in 

interdisciplinary fields, such as viscoelastic systems, 

dielectric polarization, electrode-electrolyte 

polarization, the nonlinear oscillation of earthquakes, 

mechanics, some finance systems, and 

electromagnetic wave systems [1, 2]. 

Fractional order systems have shown very 

attractive performances and properties, and there for 

many Applications of such systems have been 

reported in different areas such as signal processing, 

image processing [3], automatic control [4], robotics 

[5], and renewable energy. 

In the last decade, a great number of research 

works focused on fractional systems that display 

chaotic behavior like: Chua circuit [6], Duffing 

system [7], Chen dynamic [8], characterization [9], 

Rössler system and Newton-Leipnik formulation 

[10]. Synchronization or control of these systems is 

a difficult task because a main characteristic of 

chaotic systems is their high sensitivity to initial 

conditions, but it is gathering more and more 

research effort due to several potential applications 

especially in cryptography [11]. 

For the particular case of fractional order chaotic 

systems, many approaches have been proposed to 

achieve chaos synchronization, such as PC control 

[12], nonlinear state observer method [13], adaptive 

control [14, 15] and sliding mode control [16]. 

In this paper we are interested by the problem of 

uncertain fractional order chaotic systems 

synchronization by mean of adaptive fuzzy sliding 

mode control. Sliding mode control is a very 
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suitable method for handling such nonlinear systems 

because of low sensitivity to disturbances and plant 

parameter variations and its order reduction property, 

which relaxes the burden of the necessity of exact 

modeling. In the proposed control configuration, a 

fuzzy logic approximation method is used to 

modelize the uncertain fractional order system [17] 

[18]. 

Based on the Lyapunov stability theorem, an 

efficient adaptive control algorithm by means of 

fuzzy logic models is proposed that guarantees the 

feedback control system stability and that is able to 

attenuate the effects of additive noises and 

estimation errors on the tracking performance to any 

prescribed error level via the sliding mode robust 

tracking design technique. 

However, the important problem of sliding mode 

techniques from the control perspective is the 

discontinuity of the control signal required to obtain 

robustness. This destructive phenomenon, so-called 

chattering, may affect control accuracy or incur an 

unwanted wear of a mechanical component. Various 

solutions to reduce the chattering have been studied 

in the literature [19, 20]. Comparing with a similar 

previous work [21], an improved synchronization 

technique is proposed here for a robust sliding mode 

control of nonlinear systems with fractional order 

dynamics that is able to eliminate the chattering 

phenomena for uncertain systems with unknown 

parameters' variation. 

The main contribution of this work consists in 

combining an adaptive fractional PIλ control law 

with the sliding mode controller in order to improve 

the control signal quality by eliminating the 

undesirable chattering. The Grünwald-Letnikov 

numerical approximation method is used for 

fractional order differential equation resolution with 

improved performance result. 

This paper is organized as follows. Section 2 

presents an introduction to fractional calculus with 

some numerical approximation methods. A 

description of the Takagi-Sugeno is given in section 

3. Section 4 presents the proposed adaptive sliding 

mode fuzzy synchronization technique of uncertain 

fractional order systems. The stability analysis is 

performed in section 5. In section 6, application of 

the obtained control scheme on a Duffing fractional 

order system is investigated. Finally, concluding 

remarks with future works are presented in section 7. 

2. Basics of Fractional Order Systems 

2.1 Fractional derivatives and integrals 

 

There exists many formulations for the fractional 

order derivative definition; the most popular are 

those of Grünwald-Letnikov (GL), Riemann-

Liouville (RL) and Caputo [22, 23]. 

Riemann-Liouville (RL) fractional order integral 

is expressed as:  
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The fractional order derivative is defined as: 
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Г(·) is the Gamma function, a, t and α are real 

numbers, and alpha verifies 0<α<1. In we assume 

that a=0 without loss of generality. Also we use 

a tD D
 

 . 

2.2. Numerical approximation method 

The specialized literature proposes different 

ways and techniques for approaching non-integer 

order operators. They result in various algorithms 

for the numerical simulation of these systems. The 

most common approach used in the fractional order 

chaotic systems literature is a modified version of 

the Adams-Bashforth-Moulton method based on 

predictor-correctors [24]. However, we will use in 

this work a simpler approach consist on the 

fractional order operator discretization following the 

Grünwald-Letnikov definition [25]. 

The Grünwald-Letnikov fractional order 

derivative definition is expressed as [26]: 
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where t

h

 
 
 

 indicates the integer part and ( 1) j

j

 
  

 
 

are binomial coefficients Cj
(α) (j=0,1,…). 

The calculation of these coefficients is done by the 

formula of following recurrence: 
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now, if we consider the fractional order differential 

equation : 
0

( ) ( ( ), )GL
t tD y t f y t t   

then, the numerical solution is expressed as: 

 

( )( ) ( ( ), ) ( )
k

k k k k jjj v
y t f y t t h c y t 




           (5) 

 

This approximation of the fractional derivative 

within the meaning of Grünwald-Letnikov is on the 

one hand equivalent to the definition of Riemman-

Liouville for a broad class of functions [27], on the 

other hand, it is well adapted to the definition of 

Caputo (Adams method) because it requires only the 

initial conditions and has a physical direction clearly. 

3. T-S fuzzy systems 

The uncertain fractional order chaotic system 

may be directly addressed by fuzzy logic systems by 

using the linguistic models (e.g., small, medium and 

large) [17, 28]. The Takagi-Sugeno (T-S) 

configuration of the system includes a fuzzy rule 

base, represented by a number of fuzzy IFTHEN 

rules in the form: 

 
( )

1 1: IF is , and ..., is THENl l l
n nR x F x F

 

0 1 1 ... [1 ]l l l T T T
l n n ly x x x                      (6) 

 

where 1( ,..., ,..., )l l l
i nF F F   are input fuzzy sets and 

0 1[ ... ]T l l l
l n       represents the adjustable 

factors of the consequence part. ly  is a crisp value, 

and a fuzzy inference engine to combine the fuzzy 

IF-THEN rules in the fuzzy rule base into a mapping 

from an input linguistic vector 

1 2[ , ,..., ]T n
nx x x x  to an output variable 

y  . The output of the fuzzy logic systems with 

central average defuzzifier, product inference and 

singleton fuzzifier can be expressed as 
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where M is the number of rules, 
( )

1

l
i i

n
l

F x
i

v 


  is 

the true value of the lth implication and 
( )lF x ii

 is the 

membership function value of the ix [29]. Equation 

(7) can be rewritten as 

 

( ) ( )T
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Where 1 2[ , ,..., ]T T T T
l M     is the parameter vector 

and 
1 2( ) [ ( ), ( ), ... , ( )]l Mx x x   x  a fuzzy basis 

function vector defined as: 
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The output (7) is pumped out by the mean of the 

common defuzzification strategy. 

The above fuzzy logic system is able to provide 

a uniform approximation of any well-defined 

nonlinear function over a compact set cU to any 

degree of accuracy, as proved in the universal 

approximation theorem [18, 20]. 

4. Fractional fuzzy adaptive sliding mode 

algorithm 

Let us now present the proposed adaptive fuzzy 

control strategy that will allow the control of 

nonlinear fractional order systems. 

Consider the fractional order nonlinear system 

given as follows [29], 
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This system is called commensurate if  

1 2 ... nq q q q    and can be rewritten as, 

 
( )

1

( , ) ( , ) ( )nqx f t g t u d t

y x
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

x x
                        (10) 

 

where 
( ) (( 1) )

1 2[ , ,..., ] [ , , ... , ]T q n q T
nx x x x x x  x . 

( , )and ( , )f t g tx x are unknown but bounded 

nonlinear functions, ( )d t is the external bounded 

disturbance, assuming that the upper bound of the 
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disturbance  ( )d t is D, that is ( )d t D , and ( )u t  

is the control input.  

The nonlinear system (10) is assumed to be 

controllable and the input gain ( , ) 0g t x  has to be 

non-zero. Consequently, without loss of generality, 

we assume that ( , ) 0g t x . 

The control objective is to force the system output 

y  to follow a given bounded reference signal dy , 

under the constraint that all signals involved must be 

bounded.  

Let us now define the reference signal vector 

dy  and the tracking error vector e  as follows: 

 

   ( ) (( 1) ), , ... ,
T

q n q n
d d d dy y y    y              (11) 
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where 0 1q  . Let 1 2[ , , ... , ]T n
nk k k k  to 

be chosen in a way that 

( 1)

1
( ) , 1

n i q
i ni

h p k p k


   is Hurwitz 

polynomial. 

The sliding surface is defined as: 
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when (0) 0e  , the tracking problem dx y  

implies that the sliding surface ( ) 0, 0s t  e . 

Correspondingly, the sliding mode control will be 

designed in two phases: 

1. The reaching phase when ( , ) 0s t x , and 

2. The sliding phase by ( , ) 0s t x , for initial error 

(0) 0e  . 

with the following sliding condition : 

 

( , ) ( , ) ( , ) , 0s x t s x t s x t                    (14) 

 

must be satisfied. 

In absence of uncertainty and external disturbance, 

the corresponding equivalent control force ( )equ t , 

can be obtained by ( , ) 0s t x . This later classic 

derivative can be decomposed into a fractional type, 
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If the functions ( , )f tx  and  ( , )g tx  are known and 

the system is free of external disturbance i.e., d(t)=0. 

The control signal in the following equation drives 

the dynamic to reach to the sliding surface: 
1
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Therefore, the equivalent control law is given by :  
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Substituting Eq. (17) into Eq. (10), we have 
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which is the main objective of control lim ( ) 0
t

e t


 . 

In the reaching phase we get ( , ) 0s t x , and a 

switching-type control swu  must be added in order 

satisfy the sufficient condition (14) which implies 

that the global control will be written as: 
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with                

  
1

sgn( )
( , )

sw pu s
g t


x

                           (20) 
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s s
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Therefore the global sliding mode control law is 

given by: 
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We can show by taking a Lyapunov function 

candidate defined as 

 

21
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And differentiating (23) with respect to time to the 

fractional order q , 
( ) ( )qV t along the system 

trajectory, we obtain 
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Hence, the sliding mode control 
*u  guarantees the 

sliding condition of Eq. (14). 

However, as mentioned in [30], the functions f and 

g are usually unknown in practice and it is difficult 

to apply the control law (22) for an unknown 

nonlinear plant. Moreover, the chattering problem 

appears when adding the switching control term 

.swu  

To deal with these problems, we consider the 

adaptive sliding mode control scheme using a fuzzy 

logic system and the fractional order PIλ control 

law to avoid chattering problem.  

The input and output of the continuous time 

fractional order PIλ controller, where λ=q, are in 

the form: 

 

 
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where  
1

( )
1 2, ,q

pz s z s   and 
2p are control gains 

to be designed. Equation (25) can be rewritten as : 
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where 
( ) 2( ) [ , ]T qs s  s  and 

2
1 2[ , ]Tp p p    is an adjustable parameter 

vector. 

The resulting control law, which includes a 

fuzzy system to approximate the unknown functions 

f(x) and g(x) and a fractional adaptive PIq controller 

that attenuates the chattering and improve 

performance, is as follows: 
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The switching control usw is replaced by the action 

of the fractional adaptive PIq controller to avoid the 

problem of chattering when the state is within a 

limited layer ( , )s x t  ; the control action is 

maintained in the saturated state when the value is 

outside the boundary layer. 

Hence, we set max( )p pp D    s when 

( , )s tx  is outside of the boundary layer, i.e., 

( , )s x t  , where  is the thickness of the 

boundary layer. 

Note that the control law (22) is realizable only 

while ( , )f tx  and ( , )g tx  are well known. 

However, ( , )f tx  and ( , )g tx  are unknown and 

external disturbance ( ) 0d t  , the ideal control 

effort (22) cannot be implemented. We replace 

( , ), ( , )f t g tx x  and PIu by the fuzzy logic system 

( )ff x , ( )gg x  and ( )pp s  in a specified form 

as Eq. (9), i.e., 
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Here the fuzzy basis function ( )T x and ( )T s

depends on the fuzzy membership functions and is 

supposed to be fixed, while θf, θg and θp are adjusted 

by adaptive laws based on a Lyapunov stability 

criterion [31, 32]. 

The optimal parameter estimations θf
 *, θg

 * and 

θp
 * are defined as  
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where , ,f g p   and x are constraint sets of 

suitable bounds on θf, θg, θp and x respectively and 

they are defined as  f f f fM    , 

 g g g gM    ,  p p p pM     and 

 x xx x M    where , ,f g pM M M  and xM  

are positive constants. 

Assuming that the fuzzy parameters θf, θg and θp  

never reach the boundaries. 

Let us define the minimum approximation error, 
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and define the errors:  * *,f f f g g g          

and *
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Then, the equation of the sliding surface (16) 

can be rewritten as 
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( ) ( ) (31)

q
f f g g i

p p p

T T T
p f g i

p

s f f g g u

p p p d t

u

p d t

    

  

      



          

   

   

 

x x x x

s s s

s x x

s

 

5. Stability analysis 

The following theorem establishes the 

asymptotic stability of the proposed control system. 

Theorem 1. Consider the fractional order SISO 

nonlinear system (10) with the control input (27), if 

the fuzzy-based adaptive laws are chosen as 

 
( )

1

( )
2

( )
3

( )

( )

( )

q
f

q
g i

q
p

r s

r s u

r s

 

 

 







x

x

s

                               (32) 

Where r1, r2 and r3 are positive constants, then, the 

overall adaptation scheme ensures the overall 

stability of the closed-loop system resulting in the 

sense that the tracking error converges to zero 

asymptotically and all the variables of the closed-

loop system are bounded. 

Proof – Let us choose the Lyapunov function 

candidate as: 

 

2

1 2 3

1 1 1 1

2 2 2 2

T T T
f f g g p pV s

r r r
                (33) 

 

The derivative of (33) with respect to time using the 

Caputo derivative Lemma [15] [31-33], gives  

 

( ) ( ) ( ) ( )

1 2

( )

3

1 1

1

q q T q T q
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T q
p p

V ss
r r
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          (36) 

 

By considering the fractional robust compensator 

(27) and the fractional fuzzy adaptations laws (32), 

we get after a simple manipulation  

 
( ) sgn( ) 0q

p pV sw s s s s               (37) 

 

Since   it the minimum approximation error, (37) 

is the best result that we can obtain. Therefore, all 

signals in the system are bounded. Obviously, if 

(0)e  is bounded, then ( )e t is also bounded for all t . 
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Since the reference signal dy  is bounded, then the 

system states x  is bounded as well.  

To complete the proof and establish asymptotic 

convergence of the tracking error, we need proving 

that 0s   as t  . Besides, assume that ss  , 

then Eq. (37) can be rewritten as : 

 
( )q

s pV s                                   (38) 

 

The integral of Eq. (38) provides,  

 

 
0 0

1
(0) ( )

T T

s

p p

s d V V T d


  
 

            (39) 

 

then we have 1s L . Form Eq. (37), we know that 

s  is bounded and every term in Eq. (37) is bounded. 

The uniform continuity of the fractional order 

derivative (2), and its roundedness from Eq. (31) 

allow to apply Barbalat’s Lemma [26] and the 

fractional extensions of Barbalat Lemma [34]. 

Hence, 
( )( , )qs s L . We have ( ) 0s t   as t  , 

and from Eq. (13) the tracking error ( )e t  will 

converge to zero, which proves the system stability. 

6. Simulation results 

Let us apply the proposed controller to 

synchronize two different fractional order chaotic 

Duffing systems [29].  

Consider two fractional order chaotic Duffing 

systems (see similar examples in [11, 21, 23]): 

The drive (master) system given by: 

 

1 2

3
2 1 2 10.25 0.3cos( )

q

q

D y y

D y y y y t



   
          (40) 

 

The response (slave) system given by: 

 

1 2

3
2 1 2 10.3 0.35cos( )

( ) ( )

q

q

D x x

D x x x x t

u t d t



   

 

           (41) 

 

where ( ) 0.1sin( )d t t  is an external disturbance. In 

this study we consider the case 0.98q  .  The main 

objective is to control the trajectories of the response 

system to track the reference trajectories obtained 

from the drive system.  

 

 
Figure.1 Phase portrait of Duffing master and slave 

systems (Without control action). 

 

The initial conditions of the drive and response 

systems are chosen as:    1 2(0) (0) 0 0
T T

y y   

and     1 2(0) (0) 1 1
T T

x x    respectively. 

The membership functions of ix , for  ff x  and 

 gg x  are selected as [26]: 

 
2

( ) exp 0.5
0.8

l
i

i
iF

x x
x

  
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   

                  (42) 

 

where i = 1 : 2  and  1, ,7l  , and x  is selected 

from the interval  1, 2 . 

From Eq. (32) and Eq. (26), the control law (27) 

can be obtained as: 

 


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1 ( )

1

( )

1
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n iq
i ii

g

nq
f d p
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g

f y p



 





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x
x

x s

          (43) 

 

Specifying the simulation parameters as :  1; 1k , 

1 2200, 40r r   and 3 10r   , the simulation time 

window 30secT  and the sampling period 

0.001sec  ; the simulations results are illustrated 

as follows: 

Fig. 1 shows the 3-D phase portrait of the drive 

and response systems before the application of the 

proposed control scheme. The synchronization 

performance is very bad at this initial stage. 
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6.1 Step 1: Fractional sliding mode control 

Fig. 2 shows the synchronization trajectory after 

the introduction of the proposed control law: we can 

notice a fast and perfect synchronization of the 

fractional chaotic systems (drive and response). 

 

 
Figure.2 Synchronization performance of Duffing  

chaotic systems. 

 
(a) 

 
(b) 

Figure.3 Synchronization of the state trajectories for the 

FSMC controller-(a):States 1x and 1y ,(b): States 2x and 2y  

 

Fig. 3 show the trajectories of the states x1, y1 

and x2, y2. The sliding surface is shown in Fig. 4(a) 

and the control effort trajectory is given in Fig. 

4(b). 

Fig. 5 illustrate the fast convergence of response 

system output to that of the drive one. However, the 

chattering phenomena appears like a big 

inconvenient for this control strategy, as illustrated 

in the sliding surface and the control effort 

trajectories in Fig. 4. 

6.2 Step 2: Introduction of the fractional adaptive 

PIλ controller  

Let us consider now the problem of eliminating 

the chattering that appeared in the above results, and 

introduce the complementary fractional adaptive PIλ 

controller. The simulation results are given in Fig. 6 

for the synchronization performance of the Duffing 

chaotic master and slave systems, Fig. 7 for the 

states trajectories. 

 

 
(a) 

 
(b) 

Figure.4 FSMC controller - (a): Sliding surface ( )s t ,  

(b): Control signal ( )u t  
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(a) 

 
(b) 

Figure.5 Synchronization errors - (a) : Error signal 1( )e t , 

(b): Error signal 2 ( )e t  

 

 
Figure.6 Synchronization performance 

 

We see that the synchronization performance is 

enhanced even in presence of disturbance d(t) and 

the chattering phenomena is eliminated in the 

sliding surface trajectory and the control signal u(t) 

as illustrated from Fig. 8. 

 

Remarks 

The main objective of this work is to improve 

the adaptive fuzzy sliding mode control performance 

by eliminating chattering and steady-state error with 

the use of a fractional adaptive PIλ control. As a 

result, the closed-loop system performance is 

obviously better. 

We can remark a certain improvement in 

synchronization and tracking performance as shown 

from simulation results of Fig. 2-3 and Fig. 6-8, in 

comparison with similar results from literature [21, 

29]. 

One reason for this improvement may be also the 

use of the Grünwald-Letnikov approximation 

method instead of Adams-Bashforth-Moulton 

method. 

7. Conclusion 

In this paper an improved fractional adaptive 

fuzzy sliding mode control strategy is proposed to 

deal with chaos synchronization of different 

uncertain fractional order chaotic systems. The main 

contribution of this work is introducing of an 

adaptive fractional PIλ controller to eliminate the 

chattering phenomena in the fractional sliding mode 

controller. Thus, the well-known disadvantage of 

sliding mode techniques from the control 

perspective, i.e. the discontinuity of the control 

signal necessary to achieve robustness, is no longer 

pertinent in this context. 

Based on the Lyapunov stability theorem, free 

parameters of the adaptive fuzzy controller can be 

tuned on line by the output feedback control law and 

adaptive laws to achieve fractional order chaotic 

systems synchronization. 

B   the asymptotic stability of the overall control 

system is established and an illustrative simulation 

example, chaos synchronization of two fractional 

order Duffing systems, is realized with the 

Grünwald-Letnikov numerical approximation 

approach to demonstrate the effectiveness of the 

proposed methodology. 

Further researches will concern the application 

of the proposed methodology to discrete fractional 

order systems, and the investigation of other 

techniques for chattering elimination such as high-

gain control laws and Type-2 fuzzy sets. 
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(a) 

 
(b) 

Figure.7 Synchronization of the state trajectories for the 

FSMC with the fractional order adaptive PI  controller 

(a): States 1x  and 1y , (b): States 2x and 2y  
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(b) 

Figure.8 FSMC with the fractional order adaptive PIλ 

controller-(a):Sliding surface ( )s t ,(b):Control signal ( )u t  

 

 
(a) 

 
(b) 

Figure.9 Synchronization errors with the fractional order 

adaptive PIλ controller - (a): Error signal 1( )e t , (b): 

Error signal 2 ( )e t  
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