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Abstract: Our previous article has proposed a simulation model to explore the nonlinear relationship between the 

nonlinear regime of the fiber, laser intensity and the error probability of the optical link. This paper extends the 

model to include the effective area of the fiber. In order to handle the extended parameter, time series feed forward 

neural network based prediction model is proposed. The reliability of the model is substantiated by extensive 

experimental analysis through which the relationship exhibiting between the laser intensity and the corresponding 

nonlinear regime and effective area of the fiber can be observed. The observed results demonstrate the performance 

of the prediction model in estimating the launch power to meet the desired error probability under varying nonlinear 

regime and effective of the fiber. 
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1. Introduction 

Coherent optical fiber systems, which 

incorporate analog-to-digital converters (ADCs), 

digital-to-analog converters (DACs) and digital 

signal processors that operate with extreme speed [1] 

[2]. Nevertheless, the optical communication link is 

posed with the problem of optical fiber non-linearity 

[3]. Moreover, the fiber non-linearity could cause 

more restrictions on the limits of the fundamental 

Shannon capacity [4-6]. Compensation of the 

nonlinear distortion may be probably accomplished, 

if nonlinear pre-distortion as well as OPC transmitter 

are utilized [7]. 

There are plenty of factors, which help in 

defining the nonlinearity effects that are causes in the 

optical fibers [8]. Yet, only a small number of 

researches have been conducted to examine the 

optical fiber nonlinearity, in association with the 

factor s. In [8], it has been stated that the radiation 

effects related with the optical source are of major 

concern in describing the optical fiber nonlinearity. 

This implies that the definition of the optical fiber 

nonlinearity has a massive linkage with the optical 

source's radiation effects.  The high coherent nature 

of the lasers has caused the magnitude of the optical 

fiber nonlinearity to be large. The characterization of 

the fiber nonlinearity depending on the intensity of 

the laser is more vital, whenever the nonlinearities 

are supposed to be compensated or decreased.  To 

the best of our knowledge, no research contributions 

have been reported in the literature to characterize 

the fiber nonlinearities using systematic analysis and 

mathematical models. 

This paper performs an extensive analysis on the 

fiber properties that leads for fiber nonlinearity. The 

analysis is extended from our previous work in 

which the launch power has been determined based 

on the nonlinear regime of the fiber to accomplish 

the minimum bit error rate for the system. Here, we 

study the impact of the effective area of the fiber 

along with the nonlinear regime. The impact of an 

effective area of fiber and its nonlinearity also vary 

with the optical power intensity in the fiber. Besides, 

the nonlinear regime specifically pulses that can 

efficiently and selectively stimulate two-photon 

transitions in order to attain an arbitrarily phase, 
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amplitude, and polarization-shaped pulses after 

propagation through a step-index fiber. Hence, the 

proposed neural model can effectively represent the 

characteristics of the fiber link, which is not reported 

in the literature so far. The rest of the paper is 

organized as follows. Section 2 reviews the literature 

and defines the need of our research work. Section 3 

explains the system model, the analysis procedure 

and the proposed mathematical model. Section 4 

details the ON model and Section 5 discusses the 

model performance. Section 6 concludes the paper.  

2. Procedure 

This paper insists the study on the degree to 

which the optical link nonlinearity gets impacted 

from the laser intensity. The system model is 

referred from [9]. Hence the input variables that are 

considered here include, the effective area (Aeff), 

the nonlinear regime of the transmitting fiber (N1) 

and the launch power (Pl (in dB)).  The output 

variable under consideration is the bitwise error 

probability (BER), through which the effect of the 

input variables is studied.   A system owning the 

configuration of Table 1 is employed and the BER 

versus the varying Optical Signal-to-Noise Ratio 

(OSNR) is yielded through different combinations 

of N1,Aeff and Pl. The range within which the values 

of Pl, Aeff and N1 get changed are, [-20 to 20 dBm], 

[60 to 100 µm2] and [4.7x10-20-to 0.7x10-20], in 

order. A no cost optical communication toolbox, 

called as Optilux 0.1, is made available from 

http://optilux.sourceforge.net/ to facilitate the 

simulation as well as to achieve further required 

analysis. From Fig. 1, we can observe that varying 

effective areas show very minute variation in the 

response of error probability with respect to the 

launch power. However, the variation in the 

nonlinear regime shows significant variations. When 

the nonlinear regime is minimum (7x10-21), a 

gradual decrease and increase in the error 

probability have been observed for varying launch 

power. The steep increase or decrease in the error 

probability has been observed for increasing 

nonlinear regime of the fiber. While performing the 

analysis, the actual (transmitted data pattern) and the 

received pattern (before thresholding) is observed to 

understand the nature of deviation with respect to 

the nonlinear regime. According to our previous 

results, the launch power has to be varied with 

respect to the nonlinear regime of the fiber to 

accomplish a desired error probability. 

2.1 Effective area from Schrodinger equation 

The existence of non-linearity in the optical 

fibers, the non-linear Schrodinger equation (NSE) 

has special importance in the propagation of light. 

However, from Maxwell’s equation, the NSE 

equation has been derived. The name has been 

allotted to the equation because of the existence of 

the nonlinearity. Moreover, the energy packet 

illustrates that the particle kind of behavior. The 

amplitude encircles of the wave varies slowly in 

terms of the carrier (i.e.) the electric field is quasi-

monochromatic meaning fractional bandwidth of the 

wave is minimum. Moreover, this assumption is 

applicable for the majority of the communication 

signals since the modulation frequency of the order 

of 109 – 1010 Hz and the carrier frequency is of the 

order of 1010 Hz. 

The non-linearity is a small perturbation to the 

linear term. 

 Throughout the propagation the polarization of 

the wave remains similar.  

 Due to the non-linearity the transverse 

distribution of the modal fields is unaffected. 

The electric field can be illustrated as 

)()(),( ztjezAsME                              (1) 

In Eq. (1) the cycle coordinate system is assumed 

and the model field distribution is M(s, ϕ) and the A 

(z) denotes the slow varying encircle function of z. 

The model field distribution satisfies the linear wave 

by the Eq. (2) 
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In Eq. (2) the phase constant of the carrier in the 

optical fiber is δ0 and the model propagation constant 

is  and π represents the angular frequency. 

Moreover, the Eq. (2) is same as the solved module 

on wave propagation inside an optical fiber. 

Assuming that the encircle function deviates slowly 

as a function of distance, the terms like 
2
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neglected and then the encircle function satisfies the 

Eq. (3) 
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From two special effects the propagation 

constant δ get contributes. First one occurs due to 

the dispersion (i.e.) it dependence on the frequency 

next because of the loss and non linear effects. 

Hence, it can be illustrated as Eq. (4) 
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In Eq. (6) the χ represents the attenuation 

constant of the fiber. Since,  00  .This can 

approximate as  22
0

    002  and the Eq. (7) 

illustrates the encircle. Let us consider the Fourier 

transform of the Eq. (7) over time by the eq. (8) 

where, A
~

 is the Fourier transform of A and it 

represented as Eq. (9)  
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Then the inverse Fourier transform can be 

illustrated as Eq. (10) and the expansion of δ (ω) in 

Taylor series around δ0 is defined in Eq. (11). In the 

envelop equation substitute the δ(π) and retaining the 

second derivatives terms of δ is given in the Eq.(13) 

and the Eq. (14) represents the encircle while taking 

inverse transform. In Non-Linear Schrodinger 

Equation (NSE) (14) the Δ δ can be replace as Eq. 

(15).Then, the non linearity coefficient γ can be 

represented as Eq.(16).Finally, the parameter Aeff is 

represented as the effective area and it is illustrated 

as Eq. (17). 
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3. Optical–neural model based on time 

series forecasting 

The simulation of the optical link is accomplished 

with the help of the optical neural model, which 

utilizes BER, Aeff, Pl and N1. This implies that the 

suggested optical – neural model effectively 

performs the estimation of the probable Pl, once it is 

provided with the desired BER, Aeff and N1. It 

monitors the previous investigation results for 

adapting on its own and to make a response in 

accordance. Our earlier model has been inspired 

from feed forward neural network by Levenberg - 

Marquardt algorithm [10,11]. However, the 

algorithm is not robust against considering more 

number of optical link inputs. Hence this paper 

adopts nonlinear autoregressive model with 

exogenous input, often termed as NARX neural 

network. 

NARX model constitute the chief class, which 

comes under the category of discrete-time nonlinear 

systems [12-16], y(t)=f[u(t-Du),...,u(t-1).u(t).y(t-

Dy),….y(t-1)]where, u(t) denotes the network’s input 

and y(t) specifies the network’s output, when the 

time is t. The input order and the output order are 

orderly represented as Du and Dy. Here, f stands for 

the nonlinear function. This nonlinear function (f) 

when subjected to approximation using a Multilayer 

Perceptron (MLP), would cause the emergence of a 

system, termed as, NARX recurrent neural network 

[12, 17]. 

This paper deals with a complete examination of 

the NARX networks, which own an input order of 

zero and the output dimension as one. This implies 

the networks, wherein the output alone gives rise to 

feedback.   Yet, the reason for the inability to extend 

our results using networks of higher input orders 

could not precisely stated. Hence, the expression 

that defines the functioning of the NARX networks 

with an input order of zero is y (t) = Ψ [u (t), y (t-

1)...y (t-D)], where, the function Ψ denotes the 

mapping that is established through the MLP as 

shown in Fig. 2. The weight links that are portrayed 

in Fig. 2 may be subjected to changes or maintained 

constant. It is the application that sets those weight 

links as constant or adaptable. 
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Figure. 1 Impact of nonlinear regime and launch power on the error probability of the optical link for effective area of 60 

m2 

 
Figure. 2 The architecture of NARX used to simulate the optical link 

 

Representing the equations in the state-space 

form is more suitable in view point of the system 

[18]. This representation form allows the 

examination as well as the derivation of the Jacobian 

[19]. Usually, when realizing the discrete-time 

dynamical system, unit-delay elements have linkage 

to the states of the system always. Therefore, the 

state-space representation of that sort of systems can 

be specified as: 
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The NARX networks do not exhibit a high level 

of resistance against the long-term dependency issue. 

For the given state-space map, the Jacobian matrix is 

given as, 
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The complete Eigen values of the Jacobian that 

were obtained at every single time step, when found 

to lie within a circle of unit radius, indicate that the 

network’s states would  belong to the reduced 

attracting set of any one of the hyperbolic attractors. 

This, in turn, denotes the latching of the system at 

that moment with increased robustness. This again 

specifies   0lim ,  ntXn J , which is similar to all 

the remaining recurrent neural networks. However, 

for the sake of simplicity, this paper exploits the 

Levenberg - Marquardt training [11] explained in 

our previous paper [9]. 

4. Results and discussion 

4.1 Experimental setup 

The proposed optical model is simulated in 

MATLAB R2014a and experimented in a 64-bit 

computing machine with i5 processor, 8GB RAM 

and windows OS. The performance investigation is 

carried out by defining the desired BER as 10-7 and 

the nonlinear regime and the effective area are varied 

from [5x10-20, 1x10-20] and 75 m2 and 85 m2, 

respectively. For such different input variations, the 

launch power is estimated and it is subjected to the 

optical link of Optilux tool. Hence obtained BER is 

compared with the desired BER for the deviation and 

so the error absolute has been calculated. Based on 

the obtained error absolute for different experimental 

scenario, the further performance investigations are 

carried out. 

4.2 Impact of model architecture 

The architecture of neural model plays crucial 

role in determining the precision of the proposed 

modeling technique. The architecture/ configuration 

of the neural model have been varied by changing 

the number of hidden neurons. The analysis includes 

experimenting on two variants of network 

architectures, single layer and double layer. In the 

single layer network architecture, there is only one 

hidden layer, which has been varied from 10 neurons 

to 90 neurons with an increasing rate of 10 neurons. 

Hence, nine degree of experiments has been obtained 

to observe the impact of the configuration of the 

network. Similarly, the double layer network, which 

has two hidden layers, has also obtained nine 

variants of configuration, but here, each hidden layer 

has a variety of 10, 20 and 30 neurons and hence the 

configuration gets their combination as mentioned in 

Fig. 3 and Fig. 4.   

According to Fig. 3 and 4, the single layer neural 

model has to be constructed simple enough, i.e. with 

10 or 20 hidden neurons, to ensure fair performance, 

because they exhibit relatively minimum error 

compared with the model with more number of 

neurons. The similar results can be observed from 

Fig. 4 and 5. In the case of double layer neural 

model, a more interesting outcome has been 

observed. The Fig. 4 and Fig. 5 demonstrate that the 

minimum absolute error can be achieved only if 

both the hidden neurons are balanced, i.e. the 

number of hidden neurons in both the layers must be 

closer to each other, especially in the configuration 

(30, 20). Moreover, they do not prefer high degree 

of configuration such as (50, 50), which shows that 

the optical link prefers less complex architecture for 

its characteristics. 

Table 1 and 2 compare the proposed method 

with the three existing methods under the single and 

multi layer neural models. The methods adopted for 

comparison are adaptive Levenberg-Marquardt 

algorithm (aLM) [20], hybrid Genetic Algorithm 

(hGA) [21] and GbLN PSO algorithm (GPSO) [22]. 

As is seen in Table 1, the single layer the proposed 

method gives the first best result while comparing 

with the existing algorithms. In Table 2, the 

proposed algorithm achieves second best result after 

the Evolutionary method but in N1= 4x10-20 and N1= 

3x10-20, the proposed algorithm achieves first best 

result than the existing algorithm. From the tables; it 

is clearly evident that the proposed algorithm 

achieves better performance than the existing 

algorithms. 

4.3 Impact of nonlinear regime of the fiber 

The impact of nonlinear regime on the fiber has 

been demonstrated through Fig. 3. It plays a major 

role in producing systematic performance from 

single layer network architecture. According to Fig. 

3 (a) and (b) the network architecture with minimum 

configuration can produce least absolute error for all 

the nonlinear regimes. The absolute error has been 

gradually increasing with respect to increasing the 

complexity of the network architecture. Though such 

proportional relationship can be seen in the early 

network architectures, the higher stages of network 

complexity such as network with 40, 50, 60, 70, 80 

and 90 neurons could not exhibit such relationships. 

Moreover, such high complex single layer 

architectures produce poor error minimization 

performance. Hence, the single layer network with 

more number of hidden neurons is not viable for the 

proposed optical - neural model. 

On the other hand, Fig. 3 (c) and (d) exhibits the 

impact of nonlinear regime of the fiber through 

double layer network architecture. In contrast to the 
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single layer architecture, the double layer 

architecture neural network does not exhibit 

relationship with the nonlinear regime of the fiber. In 

other words, nonlinear regime of the fiber is not 

sensitive to the architecture of the neural network. 

The simulated optical link correlates well for lesser 

nonlinear regime out of the five nonlinear regime 

variations, when experimenting for both the effective 

areas. 

4.4 Impact of effective area of the fiber 

The impact of effective area of the simulated 

model of the optical link is demonstrated in Fig. 4 

and 5. The effective area has good correlation with 

the optical link, because it exhibits minimal absolute 

error for simple network configuration, though the 

nonlinear regime of the fiber has been varied. Such 

metric association could be found in Fig. 4, where 

single layer network architecture has been 

considered. In addition with the information, the Fig. 

4 demonstrates that the maximum absolute error that 

has been attained for both the effective area remains 

lesser than 0.4. The similar kind of error absolution 

can be experienced from Fig. 5, where the double 

layer network has been used for the model. The 

contextual difference between Fig. 4 and Fig. 5 is 

that the single layer architecture produces systematic 

absolute error accomplishment, whereas the double 

layer architecture is random in accomplishing the 

said performance. The impact of the network 

architecture has been already discussed in this 

Section. 
 

  
(a) (b) 

  
(c) (d) 

Figure. 3 Error absolute with respect to varying nonlinear regime, when (a) single layer NARX model is experimented on 

effective area of 75 m2 and (b) 85 m2 and (c) and (d) are for double layer NARX model experimented on the same two 

effective areas, respectively 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure. 4 Error absolute obtained from single layer NARX model for varying number of hidden neurons and effective 

area, when the nonlinear regime is set as (a) 5×10-20, (b) 4×10-20, (c) 3×10-20, (d) 2×10-20 and (e) 1×10-20. 
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure. 5 Error absolute obtained from double layer NARX model for varying number of hidden neurons and effective 

area, when the nonlinear regime is set as (a) 5×10-20, (b) 4×10-20, (c) 3×10-20, (d) 2×10-20 and (e) 1×10-20
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Table 1. Comparison of error absolute obtained from Single layer between the existing and proposed method 

Degree of the layer 10 20 30 40 50 60 70 80 90 
Average Error 

Absolute 

Final 

Rank 

N1= 

5x10-20 

Proposed 0.00(1) 0.16(1) 0.20(2) 0.28(1) 0.25(1) 0.38(4) 0.35(2) 0.34(3) 0.25(1) 1.78 1 

aLM [20] 0.09(2) 0.32(3) 0.17(1) 0.35(3) 0.37(4) 0.21(1) 0.38(4) 0.39(4) 0.39(4) 2.89 4 

hGA [21] 0.32(4) 0.36(4) 0.37(4) 0.36(4) 0.31(2) 0.35(3) 0.09(1) 0.33(1) 0.29(2) 2.78 3 

GPSO [22] 0.31(3) 0.25(2) 0.33(3) 0.33(2) 0.33(3) 0.32(2) 0.37(3) 0.33(2) 0.34(3) 2.56 2 

N1= 

4x10-20 

Proposed 0.00(1) 0.11(1) 0.16(2) 0.37(4) 0.26(2) 0.32(4) 0.31(2) 0.30(1) 0.19(1) 2 1 

aLM   [20] 0.04(2) 0.38(4) 0.13(1) 0.36(3) 0.35(4) 0.19(1) 0.39(4) 0.39(4) 0.38(3) 2.89 4 

hGA   [21] 0.29(3) 0.33(3) 0.35(4) 0.32(2) 0.25(1) 0.32(3) 0.04(1) 0.37(3) 0.39(4) 2.67 3 

GPSO [22] 0.34(4) 0.24(2) 0.31(3) 0.29(1) 0.32(3) 0.30(2) 0.31(3) 0.35(2) 0.25(2) 2.44 2 

N1= 

3x10-20 

Proposed 0.08(1) 0.04(1) 0.09(2) 0.28(2) 0.31(3) 0.30(2) 0.32(2) 0.29(1) 0.04(1) 1.67 1 

aLM   [20] 0.01(2) 0.36(4) 0.05(1) 0.38(4) 0.39(4) 0.14(1) 0.38(3) 0.34(3) 0.38(4) 2.89 4 

hGA  [21] 0.31(4) 0.32(3) 0.35(4) 0.25(1) 0.23(1) 0.40(4) 0.00(1) 0.35(4) 0.28(3) 2.78 3 

GPSO [22] 0.28(3) 0.19(2) 0.29(3) 0.32(3) 0.25(2) 0.32(3) 0.38(4) 0.30(2) 0.23(2) 2.67 2 

N1= 

2x10-20 

Proposed 0.00(1) 0.00(1) 0.01(2) 0.30(3) 0.23(2) 0.35(4) 0.31(2) 0.32(2) 0.00(1) 2 1 

aLM   [20] 0.02(2) 0.31(3) 0.07(1) 0.36(4) 0.38(4) 0.04(1) 0.40(4) 0.36(4) 0.34(4) 3 4 

hGA  [21] 0.24(3) 0.31(4) 0.38(4) 0.23(1) 0.16(1) 0.31(3) 0.00(1) 0.32(3) 0.24(2) 2.44 2 

G PSO[22] 0.34(4) 0.11(2) 0.25(3) 0.26(2) 0.35(3) 0.28(2) 0.34(3) 0.31(1) 0.24(3) 2.56 3 

N1= 

1x10-20 

Proposed 5.9E05(1) 0.00(1) 0.02(2) 0.24(2) 0.11(2) 0.36(4) 0.33(3) 0.19(1) 2.0E05(1) 1.89 1 

aLM   [20] 0.08(2) 0.30(4) 0.02(1) 0.31(4) 0.37(4) 0.00(1) 0.39(4) 0.32(4) 0.37(4) 3.11 4 

hGA   [21] 0.05(3) 0.24(3) 0.35(4) 0.31(3) 0.02(1) 0.32(2) 0.07(1) 0.24(3) 0.19(3) 2.56 3 

GPSO [22] 0.32(4) 0.06(2) 0.24(3) 0.17(1) 0.25(3) 0.32(3) 0.26(2) 0.19(2) 0.15(2) 2.44 2 

Table 2. Comparison of error absolute obtained from Double layer between the existing and proposed method 
Degree 

of the 

layer 

(10,10) (10,20) (10,30) (20,10) (20,20) (20,30) (30,10) (30,20) (30,30) 

Average 

Error 

Absolute 

Average 

Rank 

(FinalRank) 

N1= 

5x10-20 

Proposed 0.09(3) 0.24(1) 0.21(1) 0.21(1) 0.26(2) 0.21(1) 0.26(3) 0.11(2) 0.38 (4) 2 

aLM [20] 0.38(4) 0.33(4) 0.39(4) 0.38(4) 0.32(4) 0.35(4) 0.40(4) 0.35(4) 0.36(3) 4 

hGA [21] 0.01(1) 0.32(3) 0.21(2) 0.29(2) 0.07(1) 0.38(2) 0.01(2) 4.0e05(1) 0.29(1) 1 

GPSO[22] 0.01(2) 0.30(2) 0.31(3) 0.331(3) 0.32(3) 0.34(3) 0.03(1) 0.31(3) 0.31(2) 2 

N1= 

4x10-20 

Proposed 0.03(3) 0.25(1) 0.18(1) 0.172(1) 0.25(3) 0.18(1) 0.32(3) 0.06(2) 0.32(2) 1 

aLM [20] 0.38(4) 0.32(2) 0.31(4) 0.39(4) 0.33(4) 0.32(4) 0.35(4) 0.37(4) 0.39(4) 4 

(hGA)[21] 0.006(1) 0.38(4) 0.28(3) 0.36(3) 0.04(1) 0.32(3) 0.05(2) 3.1E05(1) 0.37(3) 2 

GPSO[22] 0.04(2) 0.33(3) 0.24(2) 0.32(2) 0.23(2) 0.24(2) 0.01(1) 0.33(3) 0.25(1) 2 

N1= 

3x10-20 

Proposed 0.08(3) 0.20(1) 0.13(1) 0.11(1) 0.22(2) 0.12(1) 0.24(3) 0.02(2) 0.31(3) 1 

aLM [20] 0.37(4) 0.355(4) 0.32(4) 0.39(4) 0.30(4) 0.31(2) 0.36(4) 0.35(4) 0.34(4) 4 

hGA [21] 0.003(1) 0.31(2) 0.31(3) 0.35(3) 0.02(1) 0.35(4) 0.02(2) 2.405(1) 0.25(2) 2 

GPSO[22] 0.02(2) 0.35(3) 0.24(2) 0.33(2) 0.26(3) 0.33(3) 0.01(1) 0.31(3) 0.23 (1) 2 

N1= 

2x10-20 

Proposed 0.03(3) 0.14(1) 0.03(1) 0.02(1) 0.16(2) 0.03(1) 0.19(3) 0.04(2) 0.37(4) 2 

aLM [20] 0.36(4) 0.22(2) 0.26(4) 0.33(3) 0.34(4) 0.28(2) 0.32(4) 0.32(3) 0.33(3) 4 

hGA [21] 0.001(1) 0.23(3) 0.24(2) 0.37(4) 8.9E-05(1) 0.32(3) 0.01(2) 1.8E-05(1) 0.28(2) 2 

GPSO[22] 0.01(2) 0.37(4) 0.24(3) 0.31(2) 0.21(3) 0.33(4) 0.004(1) 0.36(4) 0.16(1) 3 

N1= 

1x10-20 

Proposed 0.07(3) 0.09(1) 0.00(1) 0.02(1) 0.01(2) 0.03(2) 0.03(3) 0.01(2) 0.23(3) 2 

aLM [20] 0.31(4) 0.24(4) 0.17(4) 0.36(4) 0.23(4) 0.35(4) 0.28(4) 0.35(4) 0.39(4) 4 

hGA [21] 4.3E-05(1) 0.02(2) 0.13(2) 0.24(2) 3.4E-05(1) 8.1E-05(1) 0.02(2) 1.4E-05(1) 0.09(2) 1 

GPSO[22] 0.02(2) 0.24(3) 0.16(3) 0.28(3) 0.08(3) 0.20(3) 9.9E-05(1) 0.24(3) 0.02(1) 2 
 

5. Conclusion 

This paper extended our previous analysis and 

modeling method for optical link to estimate the 

required launch power under varying nonlinear 

regime of the fiber to meet the desired BER. The 

improvement our previous work has been 

accomplished through extending the nonlinear 

analysis by varying the effective area of the fiber. 

Though the nonlinear impact exhibited by the 

effective area is small on the estimation process, it 

should be considered because of the significance of 

every minor variation in the error probability. In 

order to handle multiple nonlinear parameters, we 

exploit the NARX neural model to simulate optical 

link. The modeling performance has been observed 

under varying experimental scenarios from which 

the precision of the proposed model has been 

ensured. The experimental results show that the 

proposed model is efficient and it achieves the first 

rank for four times in single layer neural network. 

However, in double layer neural network, the 

proposed model achieves the first rank twice. Hence, 

the overall performance of the proposed model is 

found to be better than the existing method, through 

the absolute error evaluation on the nonlinear 
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regime of the fiber properties. Since the model 

outcome highly correlate with the characteristics of 

the optical link, an intelligent toolbox will be 

derived based on the proposed neural models. The 

neural model substantially reduces the 

experimentation cost and so better communication 

link can be established for improved system 

performance. 
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