
Received: March 20, 2017 371

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

Fuzzy Resource Pre-processing and Compress and Join Gang Polling Evaluation

Scheduling in Cloud Computing

Surendran Sharon Priya1* Wahab Aisha Banu2

1Department of Computer Science and Engineering, B.S. Abdur Rahman University, Chennai, Tamil Nadu, India

* Corresponding author’s Email: sharonpriyaphd@gmail.com

Abstract: Throughout the numerous processing in cloud computing, an essential concern is to scheduling jobs in

parallel to cloud data centers. An aim of this paper is to design a Fuzzy logic system. Gang forming with scheduling

policy improves the performance of computation cost and time of different cloud workloads. In this work a novel

framework for cloud workload management is modelled. In which clustering of cloud workload is done based on

Manhattan distance based fuzzy clustering and scheduling of workload is done based on Compress & Join Gang

Polling Evaluation scheduling algorithm (C&JGPESA). In order to provide effective utilization of resources, Gang

scheduling algorithm is used based on their performance to fit the same number of applications in less time slots.

Finally proposed work comparison is compared with computation cost, make span and response time and it achieves

around 60%, 97% and 80% greater performance than both existing works.

Keywords: Cloud computing, Dynamic scheduling, Polling evaluation algorithm, Gang scheduling, Manhattan

fuzzy clustering, Compress & Join.

1. Introduction

Cloud computing is one of the creative

Information System (IS) design envisioned as what

might be the outcome of computing. A main

motivation is re-arrange the comprehension of

working frameworks and client–server models. [1,

2]. Cloud computing is used for accomplishing the

task scheduling and it has some particular features

like computing power. The job administration

capacity into various sub-tasks and it is possible

when a distributed computing job arrives [3].

Cloud is an arrangement of empowered

administration and it gives adaptable QOS for the

systems [4]. In industry these capacities are referred

to as Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS)

individually [5, 6]. Distributed computing

environment is exceptionally troublesome from the

scheduling environment [7, 8].

For the most part, enthusiastic information

accumulation and pre-processing are acknowledged

in the cloudlet, and here acknowledgment and

administration are carried out in the remote cloud [9,

10]. To access some pre-handling, for example,

image resizing and Gaussian separating to dispense

with the noise and improve the image quality. At

that point the pre-prepared information are

conveying to the remote cloud [11 - 13].

Scheduling of gang is one of the strategy in

distributed computing that is depends on time space

sharing [14]. In this Gang scheduling, the

calculation limit of a node is for sharing jobs. The

task scheduling calculation handles every features of

a job so one process won't be in rest state when

another procedure requires processing with it [15 -

17].

Security issues in distributed computing are

difficult in reliable associations [18]. Investigative

pre-handling of the information might be conveyed

through the portable cloud services for the reasons

of protection and security [19]. Scheduling is the

practice is to group the tasks of an identical job, [20].

Principle issue in this strategy is number of tasks in

a group can't surpass the quantity of accessible

assets.

Received: March 20, 2017 372

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

In order to overcome the complexities of the

previous work, our proposed method introduces the

Manhattan distance based fuzzy clustering. Here

scheduling of workload will be done based on

Compress & Join Gang League championship

scheduling algorithm. This planned technique

comprise of three stages.

1. In this first stage resource pre-processing is

performed based on Manhattan distance based

Fuzzy Clustering (MFC) method.

2. Second stage demonstrates the Gang Polling

Evaluation algorithm (GPE), this algorithm

evaluates the scheduling priority of the Gangs. Thus

based on the priority of the resource gang with the

individual task gang and parallel scheduling is

carried out in to the ousterhout matrix.

3. Third stage exhibits the Compress & Join

Gang Scheduling algorithm, in which task is

scheduled parallel to all the virtual machines and

hence the number of time slots is also reduced. So

the complexity of the process will be reduced. So

this process may be used for the system with the

non-parallel task scheduling.

The remaining section of this manuscript is

given below. Section 2 exhibits the works related to

the dynamic task scheduling. Section 3 explains the

proposed methodology. Section 4 demonstrates the

experimental results and. At last conclusion of this

work is explained in the section 6.

2. Related work

Some of the recent related works associated to

dynamic scheduling in cloud computing is given

below:

Fan Zhang et al [21] proposed a technique which

was producing more effective arrangements from a

worldwide point of view over quite a while. They

demonstrated through overhead investigation and

the points of interest in time and space proficiency

for utilizing the technique. Because of noise

intrusion, the performance of scheduling was

degraded. Wei Wang et al [22] outlined a multi-

asset assignment instrument, called DRFH that sums

up the idea of Dominant Resource Fairness (DRF)

from a one server to numerous heterogeneous

servers. DRFH gave various much craved properties.

Compared to our work responsible time for 100th

task is very low. RizwanaIrfan et al [23] suggested

Mobi computing, a hybrid cloud-based Bi-Objective

Recommendation Framework (BORF) for versatile

informal communities. The Mobil Context uses

multi target enhancement methods to create

customized proposals. To deliver the issues

identified with information meagre condition, the

BORF accomplish information pre-preparing by

using the Hub-Average (HA) induction demonstrate.

To measure time complexity of this work takes more

steps and since computation cost is high. Sun Yuan

Hsieh et al [24] proposed a job scheduler called the

job portion scheduler, organized to adjust task usage.

The JASL built up the utilization of hubs and the

execution of Hadoop in heterogeneous computing

situations. In conclusion, two parameters were

added to the JASL to distinguish wrong space

settings and make a dynamic job assignment

scheduler with region (DJASL). This system is not

suitable for large amount of extraneous network

transformation.

Yongsheng Hao et al [25] arranged standard

nonlinear relating jobs in Cloud. It incorporates a

particular equality that may exclusively compose at

the beginning of the execution. They show the

adequacy and intensity of our arranging task through

re-enactments using WRF (Weather examination

and predicting model) that is wide utilized in logical

computing. Our investigation come 100%

diminishment at execution time. This technique is

not suitable for parallel scheduling

3. Proposed methodology

The issue identified with the multi resource task

scheduling executes task at once. This procedure is

not satisfactory for synchronizing dynamic

scheduling. A substitute way to deal with scheduling

is to execute multiple tasks at a unit time. Despite

the fact that it will execute one job at once, our

proposed strategies give scheduling of parallel task

to all the resources.

Volume of integrities building as polling gangs

participates in an artificial league for more than a

few weeks (iterations). As per the outcome,

overhead commenced through the context switch

among slots must be proficiently condensed.

The main objective of this method is to schedule

the task to all the resource with dynamical manner.

In order to schedule task in parallel, the planned

methodology introduces Compress & Join Gang

Polling Evaluation scheduling algorithm

(C&JGPESA) in which resources are grouped

founded on Manhattan based Fuzzy clustering

(MFC). The Gang Polling Evaluation (GPE)

algorithm is a novel algorithm premeditated depends

on the polling gangs. GPE can be emblematically

enlightened as follows:

Received: March 20, 2017 373

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

Processing

unit
Stantardization

Manhattan

distance

estimation

Resultant

clusters

Gang

formation

Maximum

Winning

eligibility

estimation Gang

scheduling in

ousterhout

matrix

Time slots

reduction by

Compress & Join

algorithm

Winning

party

Similarity

estimation for

the task with

processor

Figure.1 schematic representation of proposed pre-processing and Gang Polling Evaluation scheduling

Figure 1 shows the schematic representation of

proposed method in which pre-processing

epitomizes the clustering process based on

Manhattan distance. Gang Polling Evaluation

algorithm sufficiently identifies the gang with higher

priority and the scheduling is initially processed for

gang (party) with most precedence. So the task is

allocated in the Ousterhout matrix in alternative

with the priority scheduling. Objective function of

this work is given by the below equation:

(𝐸𝑠𝑜𝑟𝑡 => 𝑅𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦)𝜖𝜉𝑚𝑎𝑡𝑟𝑖𝑥 (1)

Equation (1) describes the scheduling capacity of

the Ousterhout matrix. In which sorted task (Esort)

will be scheduled to resource with higher priority

(Rpriority). In this it should be lies between

dimensions of the Ousterhout matrix (ξmatrix).

The design objective of this paper is to minimize

makespan.

 Scheduling resources to all the virtual

machines in parallel manner and also

reducing number of time slots.

 To attain minimum computation cost and

time.

3.1 Resource pre-processing using MFC

In order to achieve the enhanced resource

scheduling enactment in cloud computing, this paper

presents a novel Manhattan distance based Fuzzy

Clustering (MDFC). Sorting out all resources into a

number of clusters this is done by the resources with

the related computing ability is assembled into one

cluster.

Initially the mathematical modelling starts with

the resource pre-processing. The processing units

are clustered based on the minimum Manhattan

distance. The ith characteristic value of kth process

unit is denoted by gki and ckin set C= {C1, C2, Ck}

has pattern vector C’= {Ck1, Ck2… Cni} then the ith

value should be lies between (1 ≤ i≤ m).

The clustering of target cloud systems is based

on their properties and it can be improve by

resources scheduling performance. By using

qualitative characteristics, the corresponding

properties or qualities of cloud computing.

By using mean and standard deviation with the

data C in target system only we can achieve

standardization data C’. The standardized value of

Cik
is given by Eq. (2).

 𝐶𝑖𝑘
′ =

(𝐶𝑖𝑘−𝜇𝑖𝑘)

𝜎𝑖𝑘
 (2)

 𝜇𝑖𝑘 =
1

𝑚
∑ 𝐶𝑖𝑘 𝑚

𝑖=1 (3)

Where µik denotes the kth eigenvector of original

data and µik is the mean value of cik then cik is the

kth eigenvector of original data.

 𝜎𝑖𝑘 = √
1

𝑚
∑ (𝐶𝑖𝑘 − 𝜇𝑖𝑘)𝑚

𝑖=1
2

 (4)

Received: March 20, 2017 374

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

σik is the standard deviation of Cik. Normalization

factor depends on the extreme standardized method.

Since the resulting standardized data Cik’ is not yet

necessarily in [0, 1]. The extreme standardized

procedure is given by Eq. (5) and Ukmin’
is the

minimum value in U1k’, U2k’, UNk’
and Ukmax’ is the

maximum value in U1k’, U2k’, UNk’.

 𝑈𝑖𝑘
 ′′ =

(𝐶𝑖𝑘
 ′−𝐶𝑘𝑚𝑖𝑛

 ′)

(𝐶𝑘𝑚𝑎𝑥
 ′−𝐶𝑘𝑚𝑖𝑛

 ′)
 (5)

Wherever, Ckmin’
is the smallest rate in C1k’, C2k’…

Cmk’ and Ckmax’ is the greatest value in C1k’, C2k’…

Cmk’. This standardization is for make the data as

fuzzifier output.

The Manhattan distance can be calculated by the

sum of difference among the two items. So Eq. (6)

represents the distance formula of centre point and

standardized data.

 𝐷 = (𝑚𝑖𝑛{𝑑𝑡}) (6)

 𝑑𝑡 = ∑ 𝐹𝑖𝑗
𝑚
𝑖=1 ‖𝐶𝑖𝑘

 ′ − 𝑃𝑡‖ (7)

 𝐹𝑖𝑗 =
1

∑ (
‖𝑋𝑖−𝑃𝑡‖

‖𝑋𝑖−𝑃𝑘‖
)𝑐

𝑘=1

2
𝑙−1

 (8)

Where 𝑃𝑡 = ∑
𝐹𝑖𝑗.𝐶𝑖𝑘

 ′′

𝑚
𝑚
𝑖=1 (9)

In the fuzzification (Fij) formula pt represents the

middle point of the characteristic value and l

represents the fuzziness index then its value varies

from 0 to ∞. It converts the data with in zero to one

limit.

Next to the gang formation we have to select

which gang will execute the task. After forming the

Gang we've got to make your mind up that gang can

execute the task. Therefore we've got to separate

characteristics of every gang and kind it within the

declivitous order. Based upon the arrangement we

are able to decide that which gang will execute the

task.

3.2 The compress & join gang polling evaluation

scheduling algorithm (C&JGPESA)

To achieve dynamic task scheduling in cloud

computing, the susceptible (C&JGPESA) is

introduced and hence overhead introduced by the

context switch between the slots is actively reduced.

Polling Evaluation based scheduling algorithm

mainly used for find out the winning team among

the number of teams. At first, resource size and the

number of gang will be initialized. Then the winning

eligibility will be calculated for the number of gang.

Based on the winning eligibility, the winning team

will be calculated for every task with the related

resources. From that only, the task will be

scheduled to the identical resources.

Job organisation: Ousterhout matrix

In order to make an effective scheduling, gang

formation is performed on the task in the cloud

computing. The number of task assigned in this

process is, T= {t1, t2...tk} and it has the pattern vector

of T’= {tk1, tk2…tki}. The value of i should be within

the range of [1, m].

In our process, the number of task will be

scheduled on an Ousterhout matrix. So the task will

be scheduled on parallel manner to the

corresponding resources. Gang Scheduling oversees

a two dimensional matrix wherever individual

aspect embodies the processors and the other is time

(this arrangement remains recognized as the

Ousterhout matrix). Among the resources and the

slots time sharing is performed. So the number of

time slots must be equal or lesser than the amount of

processors. Every single feature is a time slot,

poised through a gradient of more than numerous

teams.

Gang Polling Evaluation

Gang Polling Evaluation algorithm is a priority

estimation algorithm in which the party with

majority vote is selected as the winning party. In this

process, ‘gang’ is mentioned as the ‘party’ and

fitness is mentioned as the ‘winning eligibility’. For

the number of task winning eligibility is calculated

to estimate the priority of the party.

Figure 2 deliberate the process flow of GPE

algorithm in which scheduling of the task to the

corresponding resource is carried out based on

winning eligibility of the task in accordance with the

resource. Then the compress & Join algorithm

reduces the number of time slots by find out the

efficiency of the each task.

Let us consider initial party assignment and the

party size for evaluating gang from the random

number of task. Gang formation on the task is

performed by Eq. (10).

 𝑡 ≥ √𝐴𝑖𝑘 × (𝐿 − 1) (10)

In this equation t represents the number of party and

Aik
represents the ith value of kth attribute.

Received: March 20, 2017 375

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

Initialize number of

party size and number

of gang

Gang formation for

number of task

Winning

eligibility estimation

for each gang task

If

(pi>pj)

Scheduling to the first

processor

Check it for

another

processor

Yes

No

Figure.2 Process flow of Gang Polling Evaluation

Scheduling algorithm

The condition which is satisfied Eq. (10) means that

form as one gang and the else it form as another one

gang. Since the complexity of the algorithm can be

reduced by forming gang. In case of Polling

Evaluation scheduling algorithm, each team should

have equal number of task. Hence, the sorting

operation is performed for the task gang to make the

task in equal number.

This process makes the task gang as equal with

precedential manner. After the Gang formation the

next step is to scheduling the task to the

corresponding resource. Winning eligibility

calculation is given in the below Eq. (11). For that

the winning eligibility will be calculated for

determining the similarity among the number of

resource and the number of task.

(𝐸𝑖)−(𝑣)

(𝐸𝑗)−(𝑣)
=

𝑃𝑗

𝑃𝑖
 (11)

 𝑃𝑖 + 𝑃𝑗 = 1 (12)

From Eq. (11)

(𝐸𝑖)−(𝑣)

(𝐸𝑗)−(𝑣)
=

1(1−𝑃𝑖)

𝑃𝑖
 (13)

(𝐸𝑖)−(𝑣)

(𝐸𝑗)−(𝑣)
+ 1 =

1

𝑃𝑖
 (14)

 𝑃𝑖 =
(𝐸𝑗)−𝑓(𝑣)

(𝐸𝑗)+(𝐸𝑖)−𝑓(𝑣)
 (15)

Equation (15) comprises the fitness evaluation of

various tasks with the interrelated resources. Where

(Ej) and (Ei) are the average value of the task

attributes.

 (𝐸𝑖) = (𝐸𝑗) = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 (16)

 (𝑣) =
𝑡3

𝑛
 (17)

 (𝐸𝑠𝑜𝑟𝑡 ⇒ 𝑅𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦) ∈ 𝜉𝑚𝑎𝑡𝑟𝑖𝑥 (18)

Fitness evaluation in this Eq. (15) deliberates the

number of task present in the nth gang. In the same

way f (v) is the fitness evaluation of the number of

resources. Equation (18) describes the scheduling

capacity of the Ousterhout matrix. In which sorted

task (Esort) will be scheduled to resource with higher

priority (Rpriority). In this it should be lies between

dimensions of the Ousterhout matrix (ξmatrix). So the

similarity is estimated based on the above equation.

Then the job will be allocated to the ousterhout

matrix depend on the winning eligibility priority.

At last, compress & Join algorithm compresses the

number of time slots by efficiency estimation.

Hence the time slot finally reduces the number of

time slots, complexity and the time consumption of

the process will be reduced.

Similarity estimation

Case 1:

For equal number of tasks in the gang, the

similarity estimation is carried out to the cluster of

resources. So there is there is no need for individual

resource priority estimation. The major step in the

Gang Polling Evaluation algorithm is to estimate the

priority for each task which is given in Fig. 3. In

which every task in the gang is compared its

characteristics with the processor characteristics in

order to evaluate the priority of the task. So, higher

priority task is given to the corresponding resource.

Hence this process is repeated for the number of

processor for estimating priority for the tasks.

Processor

Task 1

Task 2

Priority

estimation

Figure.3 Schematic representation of similarity estimation

of the task with resource gang

Received: March 20, 2017 376

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

.

.

.

Processor

T1

T2

T1

T2

Tn

Tn+1

Priority

estimation

Priority

estimation

Priority

estimation

Figure.4 Schematic representation of similarity estimation

of the task with individual resource

Case 2:

In this type of analysis the priority estimation is

processed for the individual resources which are

given in figure 4. Since intended for each resource,

the priority is computed in the basis of every task in

the ascending order manner.

An individual resource with task priority

estimation may incorporate with the dynamical

scheduling. Consequently, avoiding complexity of

the parallel scheduling process, Compress & Join

gang scheduling is used. Thus the number of time

slots and the will reduce.

Compress & Join Gang scheduling algorithm

The major goal of Compress& Join algorithm is

to fill the free space in the ousterhout matrix and

reducing time slots.

Ousterhout

matrix job

allocation

If (efficiency

>threshold)

Number of time

slots will be

reduced

Compression

is neglegted

Efficiency (ƞt)

calculation

Compression is

acceptable

Yes

No

Figure.5 Flow chart for Compress & Join algorithm

The above Fig. 5 shows the flow chart for the

Compress and Join algorithm. Initial process of the

compress & Join algorithm is to clear the complete

ousterhout matrix. By reducing the number of time

slots, an amount of delay will be reduced.

Predominantly, the time slots allotment is set to zero.
Then the job will be compressed based on the

efficiency, if the efficiency should be greater than

the threshold. If the efficiency is less than the

threshold means the compression is not acceptable.

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝜂𝑡) =
𝑇𝑠𝑝×100

𝑚
 (19)

 𝑇𝑠𝑝 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

𝐴𝑣𝑔 𝑐𝑜𝑚𝑚𝑛 𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
 (20)

In Eq. (19) speed up time (Tsp) is calculated for n

number of task with m number of processors. Since

for each processors efficiency is compared with the

threshold to ensure the compression with in the time

slots.

4. Experimental results and discussions

The performance analysis is compared with the

metrics such as makespan, idle time, energy

consumption and average computation cost. The

simulation for the projected technique is process on

JAVA. The simulation results illustrate that our

proposed method provides satisfied performance

than the existing method.

In this work, the data set consist of (i) Arrival

time: It is the time to arrive the task for further

processing, (ii) Execution time: It is the time when

the execution of the task is to be complete, (iii)

Memory size: It is the memory size of the message

that is to be displayed. So totally m number of task

is to be scheduled on to the n number of processor

which is shown in the below figure.

Case 1:

In this case the tasks are dynamically scheduled

based on gang similarity. Since, it has an equal

number of tasks in each gang. So parallel scheduling

is possible in this case. Based on the pre-processing

two kinds of resource clusters are formed. They are

(P0, P2, P6, P7, P9, P10, P11 and P12) and (P1, P3,

P4, P5 and P8). So the tasks are scheduled

separately on those gang depend on the priority

estimation criteria. Table 1 represents the task

scheduling model to the C1 Ousterhout matrix and

table 2 demonstrate the task scheduling model to the

C2 Ousterhout matrix.

Result for Polling Evaluation algorithm:

Received: March 20, 2017 377

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

Table 1. Task scheduling in to the C1Ousterhout matrix
P0 P2 P6 P7 P9 P10 P11 P12

T3 T11 T12 T7 T18 T16 T5 T8

T19 T14 T3 T11 T12 T7 T18 T16

T5 T8 T19 T14 T3 T11 T12 T7

T18 T16 T5 T8 T19 T14 T3 T11

T12 T7 T18 T16 T5 T8 T19 T14

T3 T11 T12 T7 T18 T16 T5 T8

T19 T14 T3 T11 T12 T7 T18 T16

T5 T8 T19 T14 T3 T11 T12 T7

Table 2. Task scheduling in to the C2 Ousterhout matrix

P1 P3 P4 P5 P8

T1 T1 T1 T1 T1

T2 T2 T2 T2 T2

T4 T4 T4 T4 T4

T6 T6 T6 T6 T6

T9 T9 T9 T9 T9

Table 3. Compress & Join Gang scheduling

P0 P2 P6 P7 P9 P10 P11 P12

T2 T16 T19 T11 T12 T14 T12 T16

T18 T7 T5 T14 T3 T8 T3 T7

T12 T11 T18 T8 T12 T16 T19 T11

T3 T14 T12 T16 T3 T7 T5 T14

T11 T8 T3 T7 T16 T11 T18 T8

Table 4. Characteristics for the simulation
Characteristics value

Number of processors 13

Number of tasks 20

Processor frequency 200HZ

Cycles per instruction 0.9997105

Message size 16 Kbytes

Figure.6 Make span comparison analysis

Case 2:

In case of non-parallel scheduling Compress &

Join algorithm efficiently reduces the time slots and

hence the gap between the slots also meritoriously

compressed. Since for non-similar task gang this

process will be effectively utilized to produce 100%

utilization.

Result after Compress & Join:

Table 3 deliberates the compress & Join output.

From the result the time slot would compressed and

the complexity will be reduced. In case of C2

Ousterhout matrix there is no need for the compress

& Join algorithm. Since the speed up time and

efficiency of the C2 based processor is low.

4.1 Simulation environment

The simulation is performed on the platform of

JAVA and the below table shows the parameter

needed for the simulation.

4.2 Performance evaluation

Performance of the proposed Gang Polling

Evaluation algorithm (GPES) is compared with the

existing methods. This evaluation is carried out to

show the performance enhancement of the proposed

method.

Makespan analysis

It is the maximum completion time of the recent

job.

 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max
𝑗∈𝑚

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 (𝑖) (21)

Completion (i) designates the interval while the

resource concluded the assigned job.
The result demonstrates that the GPES algorithm

is 60.27% better than the GFCFS (Gang First Come

First Serve) and 62.58% better than LJFS (Largest

Job First Served) technique. From the figure for

varying number of task, the proposed method yields

better performance than existing algorithms.

Response time

Response time is demarcated as the

dissimilarity between task execution time ti
f and

the task arrival time ti
a.

 𝑡𝑖
 𝑦

= 𝑡𝑖
 𝑓

− 𝑡𝑖
 𝑎 (22)

If the number of task will vary means the

response time comparison of the proposed method

contributes enhanced enactment.

Received: March 20, 2017 378

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

Figure.7 Responsibility comparison analysis

Figure.8 Computation cost analysis

The above figure deliberates the proposed

method is 97.4% better than the LJFS (Largest Job

First Served) and 97.5% better than the GFCFS

(Gang First Come First Serve) technique.

Average computation cost analysis

It is the ratio of predictable execution time to

accomplish the task ti
on resource pj

to the amount

of resource.

 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = ∑
𝑒𝑡

𝑞

𝑞
𝑗=1 (23)

et designates the predictable execution time to

fulfilled task ti on processor pj and q is the number

of processors.
Average computation cost of the suggested

technique is 83.65% better than GFCFS (Gang First

Come First Serve) and 87.95% better than Genetic

Algorithm (GA).

5. Conclusion

Efficient scheduling algorithm in cloud

computing system works vigorous role for sharing

the resources. For that a scheduling optimization

tactic centred on Manhattan distance based fuzzy

clustering and the scheduling of workload will be

done based on Polling Evaluation scheduling

algorithm. In which we dynamically distribute

resources to satisfy the necessities of corresponding

virtual machines. In this paper, initially resource

pre-processing is processed based on Manhattan

fuzzy clustering (MFC) for gang forming and the

Compress & Join Gang Polling Evaluation

scheduling algorithm (C&JGPESA) efficiently find

out the priority of the gang and hence dynamic task

scheduling is performed based on the priority

scheduling strategy for discovering most priority

task to allocate in to the Ousterhout matrix. The

experimental result shows 60%, 97% and 80% better

result than the previous techniques in terms of make

span, response time and average computation cost

analysis. Thus effective utilization of resources with

the parallel task scheduling is done within the same

number of applications in less time slots.

For advance studies, the preemptive Virtual

machine scheduler working through self-sufficient

and heterogeneous tasks on Cloud computing will

be focused. Future studies also focused on minimum

energy consumption systems on cloud computing.

References

[1] D. Zissis, and D. Lekkas, “Addressing cloud

computing security issues”, Future Generation

computer systems, Vol.28, No.3, pp.583-592,

2012.

[2] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang,

and A. Ghalsasi, “Cloud computing-The

business perspective”, Decision support

systems, Vol.51, No.1, pp.176-189, 2011.

[3] J. Ma, W. Li, T. Fu, L.Yan, and G. Hu, “A

Novel Dynamic Task Scheduling Algorithm

Based on Improved Genetic Algorithm in

Cloud Computing”, In: Wireless

Communications, Networking and Applications,

Vol.1, No.1, pp.829-835, 2016.

[4] L. Wang, G. V. Laszewski, A. Younge, X. He,

M. Kunze, J. Tao, and C. Fu, “Cloud

computing: a perspective study”, New

Generation Computing, Vol.28, No.2, pp.137-

146, 2010.

[5] A. Beloglazov, J. Abawajy, and R. Buyya,

“Energy-aware resource allocation heuristics

for efficient management of data centers for

cloud computing”, Future generation computer

systems, Vol.28, No.5, pp.755-768, 2012.

Received: March 20, 2017 379

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

[6] Q.Wang, C. Wang, K. Ren, W. Lou, and J. Li,

“Enabling public auditability and data

dynamics for storage security in cloud

computing”, IEEE transactions on parallel and

distributed systems, Vol.22, No.5, pp.847-859,

2011.

[7] A. losup, S. Ostermann, M. N. Yigitbasi, R.

Prodan, T.Fahringer, and D.Epema,

“Performance analysis of cloud computing

services for many-tasks scientific computing“,

IEEE Transactions on Parallel and Distributed

systems, Vol.22, No.6, pp.931-945, 2011.

[8] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S.

Tucker, “Green cloud computing: Balancing

energy in processing, storage, and transport“,

Proc. of the IEEE, Vol.99, No.1, pp.149-167,

2011.

[9] M. Husain, J. MCGlothlin, M. M. Masud, L.

Khan, and B. M. Thuraisingham, “Heuristics-

based query processing for large RDF graphs

using cloud computing”, IEEE Transactions on

Knowledge and Data Engineering, Vol.23,

No.9, pp.1312-1327, 2011.

[10] M. Chen, Y. Zhang, Y.Li, S. Mao, and V. C. M.

Leung, “EMC: emotion-aware mobile cloud

computing in 5G”, IEEE Network, Vol.29, No.2,

pp.32-38, 2015.

[11] M. Chen, Y. Zhang, Y. Li, M. M. Hassan, and

A. Alamri, “AIWAC: affective interaction

through wearable computing and cloud

technology”, IEEE Wireless Communications,

Vol.22, No.1, pp.20-27, 2015.

[12] C. Wang, S. S. M. Chow, Q. Wang, K. Ren,

and W. Lou, “Privacy-preserving public

auditing for secure cloud storage”, IEEE

Transactions on computers, Vol.62, No.2,

pp.362-375, 2013.

[13] B-R. Huang, C.H. Lin, and C-H. Lee, “Mobile

augmented reality based on cloud computing”,

IEEE, Anti-counterfeiting, Security, and

Identification, Vol.1, No.1, pp.1-5, 2012.

[14] Z. C. Papazachos, and H. D. Karatza, “The

impact of task service time variability on gang

scheduling performance in a two-cluster

system”, Simulation Modelling Practice and

Theory, Vol.17, No.7, pp.1276-1289, 2009.

[15] X. Liu, C.Wang, B.B. Zhou, J. Chen, T. Yang,

and A. Y. Zomaya, “Priority-based

consolidation of parallel workloads in the

cloud”, IEEE Transactions on Parallel and

Distributed Systems, Vol.24, No.9, pp.1874-

1883, 2013.

[16] Y. Chen, and H. Hu, “Internet of intelligent

things and robot as a service”, Simulation

Modelling Practice and Theory, Vol.34, No.1,

pp.159-171, 2013.

[17] L. Grandinetti, O. Pisacane, and M.

Sheikhalishahi, ”An approximate ϵ-constraint

method for a multi-objective job scheduling in

the cloud”, Future Generation Computer

Systems, Vol.29, No.8, pp.1901-1908, 2013.

[18] N. Kshetri, “Privacy and security issues in

cloud computing: The role of institutions and

institutional evolution”, Elsevier,

Telecommunications Policy, Vol.37, No.4,

pp.372-386, 2013.

[19] P. Sharma, S. K. Sood, and S. Kaur, “Security

issues in cloud computing”, High Performance

Architecture and Grid Computing, Vol.1, No.1,

pp.36-45, 2011.

[20] M. Gerla, “Vehicular cloud computing”, Ad

Hoc Networking Workshop (Med-Hoc-Net),

IEEE,The 11th Annual Mediterranean, Vol.1,

No.1, pp. 152-155, 2012.

[21] F. Zhang, J. Cao, K. Hwang, K. Li, and S. U.

Khan, “Adaptive Workflow Scheduling on

Cloud Computing Platforms with Iterative

Ordinal Optimization”, IEEE Transactions on

Cloud Computing, Vol.3, No.2, pp.156-168,

2015.

[22] W. Wang, B. Liang, and B. Li, “Multi-resource

fair allocation in heterogeneous cloud

computing systems”, IEEE Transactions on

Parallel and Distributed Systems, Vol.26,

No.10, pp.2822-2835, 2015.

[23] R. Irfan, O. Khalid, M.U. Khan, C. Chira, R.

Ranjan, F. Zhang, S. Khan, B. Veeravalli, K. Li,

and A. Zomaya, “MobiContext: A Context-

aware Cloud-based Recommendation

Framework”, IEEE Transactions on Cloud

Computing, Vol.99, No.1, pp.1, 2015.

[24] S. Y. Hsieh, C. T. Chen, C. H. Chen, T. H. Yen,

H. C. Hsiao, and R. Buyya, “Novel Scheduling

Algorithms for Efficient Deployment of Map

Reduce Applications in Heterogeneous

Computing Environments”, IEEE Transactions

on Cloud Computing, Vol.1, No,1, pp.1, 2016.

[25] Y.Hao, L.Wang, and M.Zheng, “An adaptive

algorithm for scheduling parallel jobs in

meteorological Cloud”, Elsevier, Knowledge-

Based Systems, Vol.1, No.98, pp.226-240, 2016.

[26] V. Kumar, C. P. Katti, and P. C. Saxena, “A

Novel Task Scheduling Algorithm for

Heterogeneous Computing”, International

Journal of Computer Applications. Vol.85,

No.18, 2014 Jan 1.

[27] B. Kruekaew and W. Kimpan, “Virtual

machine scheduling management on cloud

computing using artificial bee colony”, In:

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Latifur%20Khan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Latifur%20Khan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bhavani%20M.%20Thuraisingham.QT.&newsearch=true

Received: March 20, 2017 380

International Journal of Intelligent Engineering and Systems, Vol.10, No.3, 2017 DOI: 10.22266/ijies2017.0630.42

Proceedings of the International Multi

Conference of Engineers and Computer

Scientists, Vol.1, No.1, pp.12-14, 2014.

