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Abstract: Control of the helicopter includes nonlinearities, uncertainties and external perturbations that should be 

considered in the design of control laws. This paper presents a control strategy for 6 DOF octorotor aircraft, based on 

the coupling of the interval type-2 fuzzy logic control with the so-called sliding mode control (SMC) using a 

proportional-integral-derivative (PID) sliding surface. The main purpose is to eliminate the chattering phenomenon. 

For this proposed we have used an interval type-2 fuzzy logic control to generate the switching control signal. 

Moreover the output gain of the type-2 fuzzy sliding is tuned on-line by supervisory type-2 fuzzy system (adaptive 

interval type-2 fuzzy sliding mode control), so the chattering is avoided, the simulation results that are compared of 

conventional SMC with PID sliding surface indicate that the control performance of the 6 DOF octorotor aircraft is 

satisfactory and the proposed adaptive interval type-2 fuzzy sliding mode control (AIT2FSMC) can achieve 

favorable tracking performance.           

Keywords: Type-2 Fuzzy logic system, Adaptive control, Robust control, Coaxial octorotor, Sliding mode control.  

 

 

1. Introduction 

In these last years, a growing interest has been 

shown in robotics. In fact, several industries 

(automotive, medical, manufacturing, space, . . .), 

require robots to replace men in dangerous, boring 

or onerous situations. A wide area of this research is 

dedicated to aerial platform. The multi rotors aerial 

platform are an underactuated systems and the states 

are highly coupled. Great efforts have been made to 

control multi rotors helicopter and some strategies 

have been developed to solve the path following 

problems for this type of system. In [1] presents a 

PID controller for a stabilization of a quadrotor 

UAV. This research successfully demonstrated 

through experiments that a simple PID control is 

sufficient for stable flight. In [2] introduces a 

particle swarm optimization (PSO) method to adjust 

the PID parameters. PID and linear quadratic 

regulator (LQR) trajectory tracking control are 

designed in [3] for an unmanned quadrotor 

helicopter. On the other hand, the inconvenient of 

this method is suit for the linear system and it is not 

convenient for nonlinear systems except making 

some hypothesis.  

The sliding mode control has been tested 

extensively to control quadrotors. The advantage of 

this approach is its insensitivity to the model errors 

and parametric uncertainties, as well as the ability to 

globally stabilize the system in the presence of other 

disturbances [4]. In [5, 6-7] a sliding mode control 

has been used to control a quadrotor helicopter. In 

[8] the authors present a continuous sliding mode 

control method based on feedback linearization 

applied to the quadrotor. A controller based on 

backstepping and sliding mode techniques for 

miniature quadrotor helicopter is presented in [9, 10- 

11]. The major drawback is the phenomenon of 

chattering that existing in the control signals caused 

by the discontinuous control in the proposed method. 

In [12, 13] a second order sliding mode control is 

proposed to control the autonomous helicopter this 

control technique is able to eliminate the chattering, 

but it is very sensitive to noise and needs the 
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information about the sliding variable and its 

derivatives, which are not always available. The 

proposed method not needs to know the derivatives 

of the sliding variable.  

In this paper, a control algorithm is developed 

by combining the interval type-2 fuzzy approach 

with the PID sliding mode control method. This 

contribution bases on the combination of the 

adaptive interval type-2 fuzzy algorithm and robust 

control technique in order to eliminate the chattering 

phenomenon for uncertain aeronautic system. We 

present a control technique based on the 

development and the synthesis of a control 

algorithm which bases upon sliding mode by using 

the PID sliding surfaces and ensures the locally 

asymptotic stability and desired tracking trajectories 

expressed in term of the centre of mass coordinates 

along (x, y, z) axis and yaw angle, while the desired 

roll and pitch angles are deduced unlike to [14]. 

Finally all synthesized control laws are highlighted 

by simulations providing satisfactory results. A 

quantitative comparison confirmed that the 

performance of proposed adaptive type-2 fuzzy 

sliding mode control with PID sliding surfaces is 

better than a conventional sliding mode controller 

with PID-sliding surfaces. 

The rest of the paper is organized as follows. 

Section 2 focuses on the nonlinear dynamic model 

of the coaxial octorotor. In section 3, problem 

formulation is presented. Interval type-2 fuzzy 

sliding mode controller (IT2FSMC) design is 

presented in section 4. Section 5 presents the 

adaptive type-2 fuzzy sliding mode controller 

(AIT2FSMC). Simulation results and related 

discussions are given in section 6. Finally some 

conclusions are drawn in section 7. 

2. Dynamical Modeling of the coaxial 

octorotor 

The configuration of the octorotor is represented 

in Fig. 1. It is similar to a quadrotor with two 

coaxial counter-rotating motors at the ends of each 

arm. This configuration has several advantages 

compared to the star configuration used in the 

literature [15, 16] in terms of stability and size. A 

classical star octorotor needs more arms, and each 

arm needs to be longer to guarantee adequate 

spacing among the rotors. We have adopted this 

configuration for its higher thrust to weight ratio.  

Consider first a body-fixed reference frame RB 

with the X, Y, Z axis originating at the center of 

mass of the vehicle. 

 

 

 

 

 

 

Figure.1 Coaxial octorotor configuration. 

 

The X axis points to the front direction, the Y 

axis to the left direction and the Z axis upwards. 

Consider second an inertial frame RI fixed to the 

earth {o, x, y, z}. The equations governing the 

motion of the system are obtained using the Euler-

Lagrange approach and give the commonly used 

model [17] 
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Where m denotes the total mass, g represents the 

acceleration of gravity, l denotes the distance from 

the center of each rotor to the center of gravity, 

K1,…,K6 denote the drag coefficients and positive 

constants, d1,…,d6 are the effect of external 

disturbances that affect the movement of the 

octorotor helicopter are produced by unknown wind 

gust.   
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Ix, Iy, Iz represent the inertias of the coaxial 

octorotor; JH denotes the inertia of the propeller; u1 

denotes the total thrust on the body in the z-axis; u4 

and u5 represent the roll and pitch inputs, 

respectively; u6 denotes a yawing moment. 
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Where Fi = b Ω2
i with i = i1,…,i8 denote the 

thrust generated by eight rotors and are considered 

as the real control inputs to the dynamical system, b  

denotes the lift coefficient; d denotes the force to 

moment scaling factor. 

The input vector is given by: 
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The output vector is given by:  
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The lumped disturbance vectors acting on the 

aircraft is given by:    
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Assumption 1:  

The roll, the pitch and the yaw angles (φ,θ,ψ) are 

bounded as follows: roll angle by -π/2<φ<π/2; pitch 

angle, -π/2<θ<π/2; and yaw angle, -π<ψ<π. 

The model (1) developed in the first part of this 

paper can be rewritten in the following form: 
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If some uncertainties representing parameter 

variations, ΔA, ΔE and ΔF(X) are assumed to be 

present on the system, Eq. (7) can be rearranged as:  

 

       X A A X E E g X D t     
 

              F X F X u t     (8)  

 

Assumption 2 [18]:  

The uncertainties are bounded such that ΔAl ≤| 

ΔA |≤ ΔAh , ΔEl ≤| ΔE |≤ ΔEh , ΔFl (X)≤| ΔF(X) |≤ 

ΔFh(X) and the subscripts l and h denote lower and 

upper uncertainty values. 
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3. Problem formulation 

To achieve a robust path following for the 

octorotor helicopter, two techniques, capable of 

controlling the helicopter in presence of sustained 

external disturbances, parametric uncertainties and 

unmodelled dynamics, are combined. The proposed 

control strategy is based on the decentralized 

structure of the octorotor helicopter system, which is 

composed of the dynamic equation (1).  

The translational motion control is performed in 

two stages. In the first one, the helicopter height, z, 

is controlled and the total thrust, u1, is the 

manipulated signal. In the second stage, the 

reference of pitch and roll angles (θd and φd 

respectively) are generated through the two virtual 

inputs u2 and u3, computed to follow the desired xy 

movement. Finally the rotation controller is used to 

stabilize the octorotor under near quasi-stationary 

conditions with control inputs u4, u5, u6.  

The desired roll and pitch angles in terms of 

errors between actual and desired speeds are, thus, 

separately given by: 
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Fig. 2 shows the actuated octorotor helicopter 

with six inputs u1,…,u6  and six outputs (z,x,y,φ,θ,ψ).  

The main objective of the control design is to 

develop an adaptive type-2 fuzzy sliding mode 

tracking controller able to force the system output 

(x(t), y(t), z(t), ψ(t)) to follow the given reference 

signal, 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure.2 Block diagram of the control structure of the 

octorotor helicopter. 

(xd(t), yd(t), zd(t), ψd(t)) under plant uncertainties, 

external disturbances, while ensuring that all 

involved signals in the closed-loop system remain 

bounded. 

4. Type-2 fuzzy sliding mode controller 

design  

It is known that the crucial and the most 

important step of sliding mode control (SMC) 

design is the construction of the sliding surface s(t) 

which is expected to response desired control 

specifications and performance [18]. The trajectories 

are enforced to lie on the sliding surfaces. The PID 

sliding surface in the space of tracking error can be 

defined as [18]: 
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Where Kp is n*n positive proportional gain 

matrix, Ki is n*n positive integral gain matrix, and 

Kd is n*n positive derivative gain matrix parameters 

to be selected. For 6 DOF octorotor aircraft, n=6 

and  , Kp=diag{kp1, kp2, kp3, kp5, kp6}, Kd =diag{kd1, 

kd2, kd3, kd5, kd6} and Ki =diag{ki1, ki2, ki3, ki5, ki6} and 

e(t)=Yd(t)-Y(t) is the tracking position error, in which 

Yd (t)=[zd  xd  yd  φd  θd  ψd]
T  is  the  desired 

trajectory. In the case of present work; in order to 

eliminate chattering phenomenon, a continuous 

type-2 fuzzy logic control is used to approximate the 

switching control. The configuration of the proposed 

interval type-2 sliding mode control (IT2FSMC) 

scheme is shown in Fig. 3; it contains an equivalent 

control part and a two inputs single output interval 

type-2 fuzzy logic. 

 

 

 

 

 

 

 

 

 

 

Figure.3 Block diagram of the IT2FSMC with PID 

sliding surface. 
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The discontinuous control is computed by:  

 

   r f fu t K u t                              (12) 

 

With:  

 

 fu t  IT2FSMC  ,s s      

 

Where Kf is the normalization factor of the 

output variable, and uf(t) is the output of the 

IT2FSMC, which is obtained by the normalized s(t) 

and its derivative. The fuzzy type-2 membership 

functions of the input linguistic variables s(t) and its 

derivative, and the output switching control uf (t) are 

presented by Fig. 4. The fuzzy control surface of the 

output uf(t) is shown in Fig. 5. The simulation model 

of different membership functions such as triangular, 

trapezoidal, gaussian and bell shaped functions in 

IT2FSMC of the coaxial octorotor is implemented in 

Matlab/simulink the results of the simulated 

performances are compared. The triangular 

membership function shows better performance 

compared to other membership functions. 

In order to attenuate the chattering effect and 

handle the uncertainty of the eight rotors helicopter, 

a type-2 fuzzy controller has been used with two 

inputs and single output for each subsystem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure.4 Membership functions of the inputs s (t) and 

ṡ(t) and output uf (t). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.5 Control surface of uf (t). 

 

Table 1. Rule matrix of IT2FSMC [18] 

uf(t) s(t) 

ṡ(t) NB NM NS ZE PS PM PB 

NB NB NB NB NB NM NS NB 

NM NB NB NB NM NS ZE PS 

NS NB NB NM NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PM PB PB 

PM NS ZE PS PM PB PB PB 

PB ZE PS PM PB PB PB PB 

 

Then, the inputs of the controllers are the sliding 

surface and its derivative and the output is the 

switching control. uf(t) All the membership 

functions of the fuzzy inputs variable are chosen to 

be triangular for all upper and lower membership 

functions. The used labels of the fuzzy variable s(t) 

and its derivative are: {negative big (NB), negative 

medium (NM), negative small (NS), zero (ZE), 

positive big (PB), positive medium (PM), positive 

small (PS)}. The switching control is decomposed 

into seven levels represented by a set of linguistic 

variables: {negative big (NB), negative medium 

(NM), negative small (NS), zero (ZE), positive big 

(PB), positive medium (PM), positive small (PS)}. 

Table 1 presents the rules base which contains 49 

rules; 

The control law is computed by: 
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       X AX E g X F X u t L t                    (16)  

 

Where:  
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The time derivative of the sliding surface 

determined by (11) is obtained by:  
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The control law being derived as the solution of 

ṡ(t)=0 without considering uncertainty (L(t)=0) is to 

achieve the desired performance under nominal 

model, and it is referred to as equivalent control  law 

[18, 19-20], represented by ueq (t). 
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The time derivative of Lyapunov function in Eq. 

(15), is obtained by: 
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 Substituting the Eq. (16) in the Eq. (55), yields  
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Substituting the equivalent control from Eq. (18), 

Eq. (20) becomes: 
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 Substituting the Eq. (12) in the Eq. (21), yields 

   

       2 , ( )T

d f dV t s K F X K IT FSMC s s K L t  
 
(22) 

 

The output type-2 fuzzy sets are normalized in 

the interval (-1, 1), then:  

 

 ,2 1fu IT FSM sC s 
  

&    2 ,T

f IT FSMCs u t s s s s                    (23)    

Therefore, Eq. (22) becomes:  

 

     ( )d f dV t K F X K s K L t s 
  

           ( )d f dK F X K K L t s                       (24) 

 

If we select (Kd F(X)) Kf + Kd |L(t)| > 0 , we can 

conclude that the sliding condition sT(t) ṡ(t) < 0 is 

satisfied. Thus the closed loop system is 

asymptotically stable and the error state trajectory 

converges to the sliding surface s(t) = 0.  

5. Adaptive type-2 fuzzy sliding mode 

controller  

The supervisory type-2 fuzzy of the proposed 

tuning method contains operators knowledge in the 

form IF-THEN rules decide the control gains Kf 

according to the current operating condition of the 

controlled system. Here, the control rules of the 

supervisory fuzzy system are developed with the 

error e and derivative of error e  as the premise. And 

Kf =diag{kf1, kf2, kf3, kf5, kf6} as a consequent of each 

rules [18]. The general structure of the proposed 

controller is given in Fig. 6. The membership 

functions for the inputs and outputs as shown in Fig. 

7, Fig. 8 shows the type-2 fuzzy control surface of 

Kf. This surface has been used to adaptively tune Kf 

=diag{kf1, kf2, kf3, kf5, kf6} on line. The physical 

domain of the inputs (e, ė) is in the range{-0.01, 

0.01} and that of the output Kf  is in the range {-0.2, 

2}, respectively,  selected based on trial and error 

approach. The fuzzy variables are defined for the 

rule base as, (e, ė) ={NB (Negative Big),  NM 

(Negative  Medium), NS (Negative Small), ZE 

(Zero), PS (Positive Small), PM (Positive Medium),  

PB (Positive Big)}; Kf = {VVS (Very Very Small), 

VS (Very Small), S (Small),  M (Medium),  B (Big), 

VB (Very Big) and VVB (Very Very Big). the 

linguistic fuzzy rules of the supervisory type-2 fuzzy 

system are given in Table 2. 

 
Table 2. Rule matrix of supervisory type-2 fuzzy  

control [18] 

Kf e(t) 

ė(t) NB NM NS ZE PS PM PB 

NB M S VS VVS VS S M 

NM B M S VS S M B 

NS VB B M S M B VB 

ZE VVB VB B M B VB VVB 

PS VB B M S M B VB 

PM B M S VS S M B 

PB M S VS VVS VS S M 
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Figure.6 Block diagram of the adaptive fuzzy sliding 

mode control with PID sliding surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.7 Membership functions of the inputs (e(t) , ė (t))
 

 and output Kf.  

 

 

 

 

 

 
 

 

Figure.8 Type-2 fuzzy control surfaces of Kf. 

6. Simulation results 

The proposed control strategy has been tested by 

simulation in order to check the effectiveness and 

the performance attained for the path following 

problem. The parameters of octorotor system are 

given as [14]:  

m=1.6 kg, l=0.23 m, the nominal values of J are J0= 

(Ix, Iy, Iz)=diag(4.2×10-2, 4.2×10-2, 7.5×10-2) Kg.m2, 

b=3×10-5 Ns2, d=7×10-7  Nms2, JH = 2.8385×10-5 

Kg.m2, K1 = K2 = 5.5670 × 10-4 N/m/s, 

K3=6.3540×10-4 N/m/s, K4 = K5 = 5. 5670×10-4 

N/rad/s, K6=6.3540×10-4  N/rad/s,  g=9.8 m/s2.  

The dynamical model of coaxial octorotor with 

the proposed control techniques is simulated on 

Matlab/Simulink by using Euler method with step 

h=0.01. The initial position and angle values of the 

octorotor for simulation tests are: [φ(0)=0, θ(0)=0, 

ψ(0)=0] and [x(0)=0, y(0)=0, z(0)=0].  

The parameters of the PID sliding surface are set 

as: Kp=diag{1.5, 1.5, 1.5, 1.5, 1.5}, Ki = diag{2, 2, 2, 

2, 2} and Kd =diag{1, 1, 1, 1, 1}. For the IT2FSMC, 

the hitting control gain Kf is set as: Kf =diag{0.8, 0.8, 

0.8, 0.8, 0.8} For the AIT2FSMC, the range of the 

output gain Kf =diag{kf1, kf2, kf3, kf5, kf6} is (0.2, 2). 

Fig. 9 shows the absolute position of the octorotor in 

3D, Fig. 10 shows the three positions (x, y, and z) 

and the three angles (yaw, roll, and pitch).  

The values of different errors for the positions 

and angles are tabulated in Table 3. From the 

simulation results, it is concluded that our proposed 

AIT2FSMC showed superior performance for each 

of the three positions and three angles For the 

AIT2FSMC, it is observed that both (IAE) and 

(ITAE), for the three positions and three angles are 

considerably reduced in magnitude than the other 

conventional method dealt with in this paper. 

Simulation results show that the proposed 

AIT2FSMC has faster tracking with smaller error 

values than both conventional SMC and IT2FSMC. 

It is observed that the proposed AIT2FSMC has the 

smallest IAE and ITAE performance indices among 

the other controllers, which proves the efficiency of 

the proposed controller.  

On the other hand, it can be seen from the 

control curvature presented in Fig. 11 the 

conventional SMC and IT2FSMC produces a 

serious chattering phenomenon, On the contrary the 

charting phenomenon of the controlled system was 

suppressed in the proposed IT2FSMC controller.  
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Figure.9 Absolute position of the octorotor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.10 Trajectory of the output variables: (a) 

Trajectory of the yaw angle, (b) Trajectory of the z 

position, (c) Trajectory of the x position, (d) Trajectory of 

the y position, (e) Trajectory of the roll angle and (f) 

Trajectory of the pitch angle. 
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Figure.11 Control inputs: (a) Control input F1, (b) Control 

input F2, (c) Control input F3, (d) Control input F4, (e) 

Control input F5, (f) Control input F6, (g) Control input 

F7, (h) Control input F8. 
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Table 3. Performance comparison of the controllers 

Algorithm 
IAE 

x y z φ θ ψ 

Conventional 

SMC 
3.96 4.74 0.36 0.56 0.66 0.45 

IT2FSMC 2.61 3.12 0.24 0.37 0.44 0.3 

AIT2FSMC 1.62 1.84 0.012 0.21 0.23 0.01 

Algorithm 
ITAE 

x y z φ θ ψ 

Conventional 

SMC 
5.66 6.77 0.51 0.8 0.94 0.64 

IT2FSMC 0.77 0.92 0.07 0.11 0.13 0.08 

AIT2FSMC 0.53 0.60 0.003 0.06 0.05 0.002 

 

 
 

 

 

 

 

 

 

 

 

 

Figure.12 Comparison between the proposed controller 

and second order sliding mode control proposed in [12]. 

 

The efficiency of the proposed control method is 

illustrated in Fig. 12 via the comparison between the 

absolute position obtained using the proposed 

controller and the second order sliding mode 

controller presented in [12] in the presence of 

inertias and masse variations. For the comparison 

with the second order sliding mode controller 

presented by En-Hui Zheng et al. in [12]. The 

simulation results shown in Fig. 12 clearly 

demonstrate better performances: faster convergence, 

high-precision tracking and robustness with respect 

to the second order sliding mode controller 

presented in [12]. 

7. Conclusions 

In this paper, the robust adaptive controller that 

is based on type-2 fuzzy inference systems and 

sliding mode control has been investigated. In this 

controller, the control law ensures the convergence 

of tracking errors and all signal plants in presence 

the parametric variations. This law incorporates 

adaptive parameters to compensate the parametric 

variations. The application of the developed method 

is carried out for a coaxial octorotor. The obtained 

simulation results show that this robust adaptive 

interval type-2 fuzzy sliding mode controller law 

maintains the tracking errors in an acceptable 

interval in the presence of extreme or significant 

parameter variations. In addition the chattering 

phenomenon that frequently appears in the 

conventional SMC is also eliminated without 

deteriorating the system robustness. In addition the 

comparative study performed with other works 

developed in the literature, has shown the 

effectiveness of the proposed control approach. In 

the future work the experimental implementation of 

the proposed control scheme will be addressed.    
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