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BACKGROUND: Low back pain (LBP) mostly 
caused by disc degeneration, reflects to a 
tremendous of health care system and economy. 

More knowledge about these underlying pathologies 
will improve the opportunities that may represent critical 
therapeutic targets.

CONTeNT: Basic research is advancing the understanding 
of the pathogenesis and management of LBP  at the 
molecular and genetic levels. Cytokines such as matrix 
metalloproteinases, phospholipase A2, nitric oxide, and 
tumor necrosis factor-α are thought to contribute to the 
development of LBP. Mesenchymal stem cells (MSCs) 
transplant to cartilage-like cells and secrete extracellular 
matrix and encourage nucleus pulposus (NP) cell activity 

Abstract

R E V I E W  A R T I C L E

inhibiting NP cell apoptosis, together with some chemical 
mediators such as cytokines and growth factors become 
a safe and effective new strategy for intervertebral disc 
degeneration (IDD) treatment and regeneration.

SUMMARy:  IDD occurs where there is a loss of homeostatic 
balance with a predominantly catabolic metabolic profile. A 
basic understanding of the molecular changes occurring in 
the degenerating disc is important for practicing clinicians 
to help them to inform patients to alter lifestyle choices, 
identify beneficial or harmful supplements, or offer new 
biologic, genetic, or stem cell therapies.
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Introduction

The lumbar intervertebral discs (IVDs) play important roles 
for the support and mobility of spine.(1-3) These remarkable 
tissues is able to maintain stability under a large variety of 
loading conditions, while still permitting intersegmental 
motion.(1,4) Disc herniation and IVD degeneration (IDD) 
are two of the most common causes of low back pain (LBP) 
which is targeted for intervention.(5) Disc degeneration 
(DD) is a multifactorial process characterized by cellular 
and biochemical alternations in disc tissue which result 
in structural failure.(6) While DD is a part of normal 

aging, a significant number of people with indications of 
DD on magnetic resonance imaging (MRI) are actually 
asymptomatic, with no history of pain or disability.(7,8) 
The risk of back pain is increasing with the severity of 
DD.(9,10) Biological changes like proteoglycan and water 
loss is not really related with back pain, but back pain is 
more related to structural alternations, such as endplate 
defects and annulus height loss.(11-15) Most closely linked 
to pain are radial fissures in the annulus, whether or not they 
cause disc herniation.(14-17)
 Another feature of discogenic back pain is the 
ingrowth of nerves and blood vessels.(18-20) Within 
some degenerated discs, nerves become sensitized by 
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inflammatory-like reactions, so that they can signal pain 
after minimal mechanical stimulation in animal experiments 
and in pain-provocation studies on humans.(21,22) The 
different knowledge of pain-sensitization processes may 
explain why some degenerated discs are painful, whereas 
the others are not.(23) More insights into the pathogenesis 
of DD may establish new paradigms for early or differential 
diagnostics of degeneration using new techniques such as 
systemic biomarkers. Research on the mechanobiology of 
disease also enriches the development of therapeutics for 
disc repair, with potential to reduce pain and disability 
associated with DD.(24) More recently, some studies 
about the application of mesenchymal stem cells (MSC) 
from many  source  for  example  bone  marrow,  synovial 
membrane and adipose tissues showed a promosing results 
for IDD.(25-27)

The Lumbar IVD, Structure and 
Functions

The healthy IVD is composed of some concentrically 
arranged layers of fibrocartilage which surround and restrain 
an amorphous, well-hydrated, inner core of proteoglycan 
gel.(1-3) Strongly bound to the vertebral bodies and 
cartilaginous vertebral endplates, the composite make-up 
of the IVD creates a hydraulic system that can absorb and 
transmit various combinations of compression, shear, and 
tensile forces.(6,28,29) The healthy disc creates a “spacer 
effect” which maintains sufficient vertical distance between 
the vertebrae (disc height) to provide ligamentous tension, 
alignment of the facet joints, and adequate space for the 
passage of neurovascular structures within the vertebral 
foramina.(1) The IVDs lie between the vertebral bodies, 
linking them together (Figure 1). They are the main joints of 
the spinal column and occupy one-third of its height.
 The foremost function of the IVD is mechanical: 
it transfers loads, dissipates energy and facilitates joint 
mobility. The IVDs are complex structures that consist of 
a thick outer ring of fibrous cartilage termed the annulus 
fibrosus (AF), which surrounds a more gelatinous core 
known  as  the  nucleus  pulposus (NP).  The NP  is 
sandwiched inferiorly and superiorly by cartilage endplates.
(30) The NP and the AF structures act synergistically to 
distribute and transmit loads between the vertebral bodies 
(Figure 2).(31,32) The central NP containing collagen fibers 
and elastin fibers (Figure 3).(30) The vertebral endplate 
containing hyaline cartilage bonded to the perforated 

cortical bone of the vertebral body and collagen fibers of 
the annulus and the nucleus (Figure 4).(30) When the disc 
is compressed, hydrostatic pressure is generated within the 
NP, which is constrained peripherally by the AF, generating 
tensile circumferential stresses within the lamellar structure.
(31,32) Compressive loads are also supported directly by the 
inner AF, which is rich in proteoglycans.(33,34) The angle-
ply structure and nonlinear properties of the AF facilitate 
both joint mobility and stability in multiple modalities, 
including bending and rotation, and combinations thereof.
(35-38) They provide flexibility to this, allowing bending, 
flexion, and torsion.(39,40)
 Cells in the anulus are elongated parallel to the 
collagen fibers, rather like fibroblasts. Cells in the nucleus 
are initially notochordal but are gradually replaced during 

Figure 1. A line drawing of the spinal segment consisting of two 
vertebral bodies and a normal IVD  sandwiched between them.
(30) (Adapted with permission from John Wiley & Sons).

Figure 2. A cut out portion of a normal disc. Note the location 
of the NP, the vertebral end plate and the architecture of AF.(30) 
(Adapted with permission from John Wiley & Sons).
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Figure 3. The central NP containing collagen fibers and elastin 
fibers. The solidified portion of the NP is surrounded by gel-like 
NP.(30) (Adapted with permission from John Wiley & Sons).

Figure 4. The organization of the vertebral endplate containing 
hyaline cartilage bonded to the perforated cortical bone of 
the vertebral body and collagen fibers of the annulus and the 
nucleus. Arrows indicate routes for nutrient transport from blood 
vessels into the central portion of the disc.(30) (Adapted with 
permission from John Wiley & Sons).

childhood by rounded cells resembling the chondrocytes of 
articular cartilage. Anulus cells synthesize mostly collagen 
type I in response to deformation, whereas nucleus cells 
respond to hydrostatic pressure by synthesizing mostly 
proteoglycans and fine collagen type II fibrils. Cell density 
declines during growth (41), and in the adult is extremely 
low, especially in the nucleus (42,43). In adult discs, blood 

vessels are normally restricted to the outmost layers of 
the anulus. Metabolite transport is done by both diffusion, 
which is important for small molecules, and by bulk fluid 
flow, which is important for large molecules.(42,44) 
Low oxygen tension in the center of a disc could causes 
anaerobic metabolism, which results in a high concentration 
of lactic acid and low pH.(42) In vitro experiments indicate 
that a chronic lack of oxygen causes nucleus cells to 
become quiescent, meanwhile a chronic lack of glucose 
can kill them.(45) Deficiencies in metabolite transport are 
known to limit both the density and metabolic activity of 
disc cells.(42) As a result, discs have limited capability to 
recover from any metabolic or mechanical injury. During 
growth and the process of aging, it is normal for endplate 
permeability and also disc metabolite transport to decrease, 
but it increase in the presence of DD and following endplate 
damage.(46)
 Degradative enzymes, such as matrix 
metalloproteinases (MMPs) and a disintegrin and 
metalloproteinase (ADAM), are produced by disc cells to 
synthesize their matrix and break down the existing matrix.
(47-53) Molecular markers of matrix turnover are naturally 
found most abundant during growth, but usually decline 
thereafter.(54) The major structural alternations to the disc 
occur during fetal and juvenile growth, when the nucleus 
changes in consistency from a translucent fluid to a soft 
amorphous tissue, caused mainly by an increase in collagen 
content.(6,55) Collagen turnover time in articular cartilage 
is approximately 100 years (56) and could be even longer 
in the disc. Meanwhile the proteoglycan turnover is faster, 
possibly around 20 years (57), and some regeneration of 
NP is possible in young animals (58). Injuries that affect 
the inner annulus or endplate decompress the nucleus and 
healing processes are then overtaken by severe degenerative 
changes.(59,60)

Molecular Mechanisms of IDD

Many evidence show that the aging of the disc is related to 
damage from oxidative stress. Oxidative stress is known to be 
a driver of cellular senescence and apoptosis. Higher levels 
of oxidized proteins and transcription factors activated by 
oxidative stresses have been found in older discs compared 
with young discs.(61) Presence of glycalation end products, 
which are molecules made by non-enzymatic glycosylation 
and oxidation of proteins and lipids, are another prove 
of of age-related oxidative damage in the disc.(62,63) 
The most common advanced glycalation end products 
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Figure 5. The classification of internal disc disruption from 
grade 0 to grade 5, based on the Modified Dallas Classification.
(30) (Adapted with permission from John Wiley & Sons, Inc).

in the disc are pentosidine and carboxymethyl-lysine. 
Pentosidine crosslinks collagen molecules and increases 
collagen stiffness as well as decreasing the synthesis of 
matrix proteins and proteoglycans.(62,64) Additionally, 
notochordal cells, the cells that persist in the NP, which 
are of notochordal origin, are greatly affected by oxidative 
stressors and activate both intrinsic and extrinsic pathways 
of apoptosis.(65) Without aging, there is reduced catabolic 
activity of NP cells and decreased NP cell number.(66)
 Structural disruption of the IVD is manifested by a 
loss of the hydrostatic capacity of the nucleus that occurs 
when its surrounding connective tissues cannot provide 
adequate restraint.(6) This may occur following an injury 
to, or disruption of, the vertebral endplate and/or annulus.
(67,68) Structural changes often initially occur in small 
and localized regions of the IVD.(69) Figure 5 shows the 
classification of internal disc disruption from grade 0 to 
grade 5, based on the Modified Dallas Classification.
 Over time, tissue disruption can spread diffusely 
throughout the disc and cause a reduction in stiffness and 

loss of fluid pressure, also some various combinations of 
bulging, herniation, and decreased disc height.(6,70,71) 
The most significant biochemical change to occur in DD is 
loss of proteoglycan.(72) The aggrecan molecules become 
degraded, with smaller fragments being able to leach 
from the  tissue  more  readily  than  larger  portions.(30) 
Decreasing aggrecan content in the NP leads to reduced 
hydration (73), leading in turn to impaired mechanical 
function (74,75). A less hydrated, more fibrous NP is unable 
to evenly distribute compressive forces between the vertebral 
bodies. The forces are  instead  transferred  non-uniformly 
to the surrounding AF (28), which can result in altered AF 
mechanical properties (76,77) and progressive structural 
deterioration, including  the  formation  of circumferential  
and  radial  tears (78). On occasion, radial tears can progress 
to a posterior radial bulge or herniation of NP material (78), 
resulting in painful symptoms. Decreased disc height is also 
commonly associated with advanced DD (12) and results in 
painful compression of surrounding structures.
 The vertebral endplate is believed to play a critical 
role in the transport of nutrients into the IVD and in the 
removal of waste products.(42,79,80) One of the main 
cause of DD is thought to be failure of the nutrient supply 
to the disc cells.(81) Just like all cell types, the cells of the 
disc need nutrients, such as glucose and oxygen, to remain 
alive and active. The activity of disc cells is very sensitive 
to extracellular oxygen and pH in in vitro experiment, with 
matrix synthesis rates falling steeply at acidic pH and at low 
oxygen concentrations and the cells do not survive prolonged 
exposure to low pH or glucose concentrations.(45,82,83) 
Decrease in nutrient supply that leads to a lowering of 
oxygen tension or of pH, which arising from raised lactic 
acid concentrations, thus could cause the ability of disc cells 
to synthesize and maintain the disc’s extracellular matrix 
and could ultimately lead to DD. Thus, endplate disruption 
can lead to impaired diffusion (46), disruption in nutrient 
supply (45), and/or cell death within the IVD, resulting from 
excessive tissue loading.(29,84,85)
 Abnormal mechanical loads are also thought to provide 
a pathway to DD. For many decades, it was suggested 
that a major cause of back problems is injury, often work-
related, that causes structural damage. It is believed that 
such an injury initiates a pathway that leads to DD and 
finally to clinical symptoms and back pain.(86) Although 
intense exercise does not appear to affect discs adversely 
(87) and discs are reported to respond to some long-term 
loading regimens by increasing proteoglycan content (88), 
experimental overloading (89) or injury to the disc (90,91) 
can induce degenerative changes.
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LBP Pathophysiology 

 Significant numbers of recent works assume that 
the factors that lead to DD may have important genetic 
components. Several studies have reported a strong familial 
predisposition for DD and herniation.(92-94) Findings from 
two different twin studies conducted during the past decade 
showed heritability exceeding 60%.(95,96) MRI in identical 
twins were very similar with respect to the spinal columns 
and the patterns of DD.(97) Genes associated with DD have 
been identified. Individuals with a polymorphism in the 
aggrecan gene were found to be at risk for early DD. Studies 
of transgenic mice have demonstrated that mutations in 
structural matrix molecules such as aggrecan (98), collagen 
II (99) and collagen IX (100) can lead to DD. Mutations in 
genes other than those of structural matrix macromolecules 
have also been associated with DD.(101-103)
 There is increasing evidence supporting the role of the 
inflammatory cytokine interleukin (IL)-1 in the processes 
which leads to degeneration.(104-110) During this process, 
there is an increase in the production of the IL-1 agonists 
(IL-1α and IL-1β) and their active receptor IL-1 receptor 
I (IL-1RI), without a concordant increase in the natural 
inhibitor, IL-1 receptor antagonist (IL-1Ra) or the decoy 
receptor IL-1RII within the cells of the NP and inner AF. IL-1 
induces the expression of a number of MMPs and ADAM 
with thrombospondin motifs (ADAMTS) family members 
(109,111), and reduces the expression of normal matrix 
genes.(109) Neurotrophic factor expression is modulated by 
IL-1 (110), and has been linked to induction of senescence 
in articular chondrocytes (112-113) and fibroblasts (114), all 
of which are features associated with IDD.(115-118)
 The aforementioned evidence shows that many 
different influences are at work in old and DD, including 
genetic inheritance, impaired metabolite transport, altered 
levels of enzyme activity, cell senescence and death, changes 
in matrix macromolecules and water content, structural 
failure, and neurovascular ingrowth.(6)

LBP is related to ageing, mechanical stresses (119) and 
genetic predisposition (120), and it is attributed to DD 
in around 40% of patients (121,122). It appears that 
alteration in biomechanical properties of the disc structure, 
sensitization of nerve endings by release of chemical 
mediators, and neurovascular ingrowth into the degenerated 
discs all may contribute to the development of pain. The 
loss of disc structure also alters the loading response and 
alignment of the rest of the spinal column, including that of 

the facet joints, ligaments, and paraspinal muscles, which 
eventually may become additional pain generators.(123)
 The development of pain might be the result of the 
presence of macrophage and mast cells that propagates the 
inflammatory cascade. Macrophages increase the levels of 
multiple inflammatory mediators, especially IL-6 and IL-
8, nitric oxide, tumor necrosis factor (TNF)-a and IL-1b.
(124) The concentration levels of the said cytokines have 
correlated with pain intensity, and persistent activation of 
sensory fibers upregulates nitric oxide synthase, therewith 
increasing the level of nitric oxide, suggesting a possible 
positive feedback loop of pain generation.(125)
 The  onset  of  discogenic  pain  is  characterized  
by nerve  fiber  ingrowth  into an  otherwise  aneural  
tissue (Figure 6).(20,126-128) The interplay between 
inflammatory cytokines and neurotrophins, produced by disc 
cells and infiltrating immunocytes as well as neurotrophin 
receptors and  their  modulators  may  guide  this  process. 
Then neuronal tissue will develop after the development 
of vascularized granulation tissue. Degenerated disc 
cells secrete brain-derived growth factor (BDNF), which 
promotes neuronal development.(129) The release of 
proinflammatory cytokines IL-1b and TNF-a from the 
surrounding tissues also upregulates nerve growth factor 
(NGF) and expression of its receptors on the disc tissue.
(130) Progressively small nerve fibers form along with 
the granulation tissue.(131) NGF promotes the collateral 
sprouting of additional peripheral sensory nerves into 

Figure 6. A series of events occur during DD that are proposed 
to cause discogenic pain.(126) (Springer International Publishing 
AG). NP: nucleus pulposus; AF: annulus fibrosus; BDNF: brain-
derived growth factor; NGF: nerve growth factor; FGF: fibroblast 
growth factor; TGF-b1: transforming growth factor beta 1; TNF-a: 
tumor necrosis factor alpha; IL: interleukin; NO: nitric oxide.
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The recent standard of care for LBP due to degenerative 
disc changes includes non-operative approaches, such as 
pain management, and operative approaches. The non-
operative management aims primarily in symptomatic pain 
relief, while permitting possible endogenous recovery such 
as resolution of herniation (148,149) or the repairment 
of structural damage (150,151). The main target of non-
operative LBP management is analgesia. It is accomplished 
by a combination of nonsteroidal anti-inflammatory drugs 

Gene Therapy for IDD

the inner  AF and  the  NP, increases nerve survival, and 
increases the action and sensitivity of nociceptive sensory 
neurons.(18-20,130,132-135)
 Of note, nerve fibers that innervate disc tissue are 
categorized as nociceptive and thought to be derived from 
the dorsal root ganglia. They express acetylcholinesterase, 
protein gene product (PGP) 9.5, substance P (SP), BDNF, 
transient receptor potential cation channel subfamily 
V member 1 (TrpV1), calcitonin gene related peptide 
(CGRP), and neurofilament protein (NFP).(136-140) These 
relationships suggest a direct linkage between inflammatory 
cytokines, neurotrophins and nociception.(141) Mechanical 
stimuli which are normally innocuous to disc nociceptors 
can, in certain circumstances, generate an amplified 
response which has been termed ‘peripheral sensitization’. 
This may explain why some degenerative discs are painful 
and others not. There is growing evidence that these pain 
receptors in painful disc are peripherally sensitized by the 
activity of sympathetic efferent which may initiate a pain 
impulse in response to ischemia, pressure changes or in 
amatory irritation.(142,243)
 Knowing why nerves and blood vessels grow into AF 
may lead to effective strategies to hinder the process, or 
render it less painful. AF may reflects a microenvironment 
of low mechanical stress within a tissue which normally 
exhibits a fluid pressure many times greater than systolic 
blood pressure.(144,145) Normally, fluid pressure will 
extend from the nucleus into the inner and middle annulus 
(28), where it would be expected to collapse any blood 
vessel. Reduced pressure within a fissure is able to provide 
a route for ingrowth of blood vessels and accompanying 
nerves. In addition, proteoglycans can inhibit the growth 
of nerves (146) and blood vessels in vitro (147), and any 
loss of proteoglycans from within an annulus fissure may 
increase their attractiveness to ingrowing vessels.(23)

(NSAIDs) and physical therapy to strengthen core muscles 
among other programs. Surgical management may start 
with epidural injections of local anesthetic, steroids, or 
a combination of both prior to more invasive surgical 
approach.(24)
 The current treatment options for IDD and the pathology 
associated with it are not the underlying pathophysiology.
(152-155) With advances in molecular and cellular biology, 
researchers  have  start  to  characterize the pathophysiological 
pathways associated with DD and thus provided targets for 
potential biological treatments to augment or reverse the 
course of IDD.(156) Although the certain pathophysiology 
of DD still has not completely understood, however it is 
known to be affected by the interaction between various 
genetic, biologic and biomechanical factors.(95,157-159) 
The hallmark of DD is the progress loss of proteoglycans 
which  coincides  with  decreases  in  oxygen tension,  free 
radial  accumulation, decreased pH, and the increased 
activity of aberrant proteolytic enzymes.(73,160,161) 
With the loss of proteoglycans  the  NP  cannot  maintain  
normal physiologic hydrostatic pressure, resulting in in the 
dehydration of the disc.(162) There is also a progressive 
fibrosis of the NP as the ratio between type I to type 
II collagen increases.(163) The NP and AF lose their 
morphological diversity as the degeneration happens, which 
ultimately distracts the finely balance biomechanics of the 
disc and spine as whole.(162,164)
 Numerous risk factors, such as age, abnormal physical 
loading, and genetics, may lead to the development of 
IDD (Figure 7).(165) The homeostasis of IVD tissues is 
biologically regulated by the active maintenance of a balance 
between the anabolism and catabolism of disc cells. This is 
achieved through a complex and precise coordination of a 
variety of substances, including cytokines, growth factors, 
enzymes and enzyme inhibitors, in a paracrine or/and 
autocrine fashion.(166,167) The latest therapeutic strategies 
for DD have included some efforts in upregulating the 
production of key matrix proteins (e.g., aggrecan), or 
downregulating the catabolic events induced by the pro-
inflammatory cytokines, IL-1 and  TNF-a.(109,168-174)
 To deliver these therapeutic agents, some approaches 
such  as  protein  injection  and  viral  or  non-viral  gene 
transfer have been suggested and preclinically tested.
(167,175-177) The most direct approach to regenerate or 
repair a degenerated IVD is by injecting anabolic factors. 
However, there are some issues that need to be consider, 
such as the half-life and solubility of the factors, the proper 
carrier, the presence of inhibitors and some other factors.
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Figure 7. Numerous risk factors that may cause to the development of IDD.(165) (Adapted with permission from Elsevier).

(177) The stimulation of matrix synthesis by cytokines or 
growth factors changes IVD homeostasis by shifting cellular 
metabolism to its anabolic state.(166) It was demonstrated 
that the rate of synthesis of proteoglycans by IVD cells 
increases several-fold following the addition of transforming 
growth factor  (TGF)-a and epidermal growth factor (EGF).
(178,179) Insulin-like growth factor (IGF)-1 also stimulates 
IVD cell proliferation and matrix synthesis in vitro.(180,181) 
Members of the bone morphogenic protein (BMP) family, 
osteogenic protein (OP)-1 (182) and BMP-2 (183), have 
both been found to enhance the propylene glycol metabolism 
of IVD cells. OP-1 strongly stimulates the production and 
formation of the extracellular matrix by rabbit IVD cells 
(182), as well as by human IVD cells in vitro (184). OP-1 
was also found to be effective in the replenishment of a 
matrix rich in proteoglycans and collagens after depletion 
of the extracellular matrix following exposure of IVD cells 
to IL-1 or chondroitinase ABC.(185,186) BMP-2 is known 
to facilitates the expression of the chondrogenic phenotype 
by human IVD cells, increases proteoglycan synthesis and 
up-regulates the expression of aggrecan, collagen type I, 
and collagen type II mRNA, compared to untreated control 
levels.(187) Both recombinant human BMP (rhBMP)-2 and 
-12 increased human NP cell proteoglycan and collagen 
synthesis while having minimal effects on AF cells.(188)
 Another member of the BMP family, namely growth 
and differentiation factor-5 (GDF-5), was also found to 

stimulate propylene glycol and type II collagen expression 
in mouse IVD cells.(189) Moreover, the recombinant 
human GDF-5 (rhGDF-5) enhances cell proliferation and 
matrix synthesis and accumulation by both bovine NP and 
AF cells.(190) Some epidemiologic studies highlighted that 
DD may be caused to a large degree by hereditary factors 
with apparently a relatively minor effects of environmental 
and behavioral risk factors (191-195), which indicated 
that genetic factors might play an important role in the 
pathogenesis of IDD.
 Recently, Mayer, et al., reviewed the literature and 
found that the genetic polymorphisms of 21 genes have been 
associated with IDD, including vitamin D receptor (VDR), 
GDF5, aggrecan, collagen types I, IX, and XI, fibronectin, 
hyaluronan and proteoglycan link protein 1 (HAPLN1), 
thrombospondin, cartilage intermediate layer protein 
(CILP), asporin, MMPs1, 2, and 3, parkinson protein 2, 
E3 ubiquitin protein ligase (PARK2), proteosome subunit 
b type 9 (PSMB9), tissue inhibitor of metalloproteinase 
(TIMP), cyclooxygenase-2 (COX2), and IL-1a, IL-1b, 
and IL-6.(10,196) The idea of gene therapy originated as a 
means to repair the heritable genetic disorders by replacing 
defective genes with functional genes, which then able to 
cure the underlying disorder. The recent concept of gene 
therapy has broadened to include the transfer of exogenous 
genes encoding therapeutic proteins into cells to treat 
disease. Gene therapy changes host cell DNA, which then 
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provides a mechanism for the sustained production of the 
desired therapeutic product.(156) The role of gene therapy 
in the treatment of LBP has been extensively evaluated 
to prevent DD disease, regenerate degenerated IVD, and 
promote spinal fusion.(123)
 Beside the dependence of sustained expression of the 
therapeutic gene, the success of gene therapy also lie on the 
efficiency of the genetic material transfer to the host cell. 
With very little exceptions naked plasmid DNA alone is 
not an effective means of gene transfer. Therefore the use 
of vectors is necessary to facilitate the transfer of genetic 
information to host cell. There are some types of vectors, 
which later classified into either viral or nonviral vectors 
(include liposomes, gene guns, DNA-ligand complexes, 
and microbubble enhanced ultrasound). Liposomes are 
phospholipid vesicles which deliver the genetic material into 
the cell by fusing with the host’s cellular membrane. Viral 
vectors use the natural ability of viruses to infect host cells 
and thus transfer the viral genetic information into the host. 
Viral vectors are very efficient at transducing the desired 
genetic material to the host cell, even into slowly dividing 
senescent cellular populations like those of the IVD. Viral 
vectors which is used for the gene therapy applications 
include adenovirus, adeno-associated virus, herpes 
simplex virus, lentivirus, retrovirus and also pox virus. 
Each viral vector is associated with specific advantages 
and disadvantages. Therefore proper selection of vector is 
critical to successful gene therapy.(156)
 In addition to the selection of the appropriate gene 
and vector, another notable consideration with gene therapy 
applications is the delivery strategy utilized. There are 
currently two basic strategies for the delivery of exogenous 
therapeutic genes into target cells. The in vivo strategy 
involves the direct transfer of the gene-vector complex to 
the targeted cellular population within the living host. The 
ex vivo strategy differs significantly as the targeted cells 
are isolated and removed from the living host. These cells 
are then cultured with transduction of the therapeutic gene 
occurring in vitro. The final step includes the re-implantation 
of the genetically altered cells back into the host.(156)

Stem Cell Therapy for IDD

One of the available sources for cell-based repair of the 
disc that recently as been developed is MSC.(197-199) 
MSCs are a heterogeneous population of multipotent cells 
capable to differentiate along the chondrogenic, osteogenic, 
and adipogenic lineages but not the hematopoietic lineage. 

Many different sources of MSCs have been identified and 
studied, for example bone marrow, synovial membrane and 
adipose tissues.(25-27)
 Studies with MSC have been particularly promising. 
Co-culture of MSC with NP cells stimulates both NP 
cells proliferation and MSC differentiation toward the 
chondrogenic lineage.(200-203) Increased production of 
cytokines,  particularly  TGF-b favors  these  transformations.
(203-205) The NP contains MSC that are similar to the 
MSC recovered from bone marrow (206), and studies in 
animal models  of DD  have  shown  that  MSC  injected  
in  the  NP  area  not  only  survive  for  months  but  also  
proliferate in canine (207,208), porcine (209), and rabbit  
models (210). Moreover, the transplanted MSC induced 
production of extracellular  matrix  proteins,  including  
aggrecan  and other  proteoglycans,  and  types  I and II 
collagens.(207,209,210)
 A major limitation of using stem cells as a therapy for 
IDD is an appropriate delivery method that will not cause 
further injury to the IVD. The most direct route is an injection 
into the affected IVD, ensuring a localized therapeutic 
effect. However, in vivo studies suggest that needle injection 
into the IVD may cause further degeneration.(211-213) In 
fact, many studies use needle puncture as a model system 
to study DD in animals.(214-216) Recently, a population 
of stem cells isolated from human umbilical cord blood, 
multipotential stem cells (MPSCs), was reported to exhibit 
expanded multipotency with the ability to differentiate into 
cells of mesoderm, endoderm and ectoderm lineage.(217) 
Importantly, these cells were reported to home to sites of 
injury (218), and engraftment at the injured site following 
an intravenous injection of these cells. Contrasting to 
direct injection, intravenous injection neither improved the 
degeneration status, nor preserve disc height, however, both 
delivery methods increased glycosaminoglycan (GAG) 
protein and Acan gene expression relative to controls, 
suggesting possible paracrine effects.(219)
 The mechanism for the inhibition of DD by MSCs 
most likely follows two aspects. First, MSCs can transplant 
to cartilage-like cells and secrete extracellular matrix. 
Second, MSCs can encourage NP cell activity and inhibit 
NP cell apoptosis.(205) Based on reported animal studies, 
a systematic review has showed that the use of MSCs for 
the treatment of DD is largely safe and effective. With the 
exception of 2 reports out of 24 controlled trials, no further 
complications were noted. According to previous studies in 
a rabbit model noted osteopyte formation anterolaterally to 
the disc space, which was attributed to leakage of the MSCs.
(220,221) MSC treatment seems to have a more persistent 
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and consistent quality of regenerative effect. In a clinical 
setting, injection of MSCs has the benefit of minimizing 
invasiveness of secondary surgery in comparison with 
installation of mechanical device which also requires 
tertiary surgery to remove device after treatment.(216)
 All the combined evidences support the application 
of bone marrow MSCs for regeneration of IVD and that 
long-term survival of injected cells in the hypoxic disc 
environment is feasible. In addition to MSC long-term 
survival in vivo, immediate and trophic effects are of great 
importance in supporting MSC differentiation into disc cells, 
contributing to immediate disc repairing. Therefore, future 
studies can also focus on the methods that support MSC 
differentiation as adjuvants. It should also be remembered 
that the trophic effects from MSCs injected into the IVD 
could potentially contribute to activate endogenous disc or 
stem cells to enhance the regenerative efficiency.
 Extending the concept of stem cell therapy further, 
investigators have exploited the use of allogenic stem cells. 
This has the added advantage of off-the-shelf availability. 
Moreover, as the cause of DD is thought to be multifactorial, 
the use of allogenic stem cells could eliminate potential 
autogenic precipitating factors such as genetic predisposition 
(222-225), or the diminished potency of stem cells due to 
natural aging (197). In fact, IVD is suggested to be immune-
privileged due to its avascular nature. A study, showing 
allogenic NP cell transplantation did not elicit lymphocyte 
infiltration, is consistent with this notion.(197) The problem 
of immune rejection is likely to be even less for allogenic 
MSCs, since MSCs are capable of escaping alloantigen 
recognition.(194,197) 
 Adipose-tissue-derived stromal cell (ADSC) show 
potential for restoring degenerative discs and may prove 
effective in the treatment of IVD. The results of ADSC 
implantation studies in a DD model were promising, 
indicating that ADSCs could maintain their viability and 
proliferate within the rat IVD.(194)
 Notochordal cells are the developmental origin of 
the NP. Yet they are not expressed in adult human IVD. 
Induced pluripotent stem cells (iPSCs) have demonstrated 
their ability to differentiate into various cell types. In IVD 
applications, mouse and human iPSCs have been shown 
to differentiate into NP-like cells expressing notochordal 
markers and assumed the possibility that they may be used 
as a novel cell source for cellular therapy.(200) Notochordal 
cells have been observed to substantially stimulate 
biosynthetic activity of NP cells through factors secreted 
into conditioned medium.(200) These findings support 
the notion that molecular agents secreted by notochordal 

cells constitute a promising alternative for disc repair.(24) 
Results of stem cell studies in IVD are developing and, if 
delivery obstacles can be overcome, may offer alternative 
future treatment strategies.

DD progresses with age and involves a shift in the metabolic 
productivity of the IVD. The degenerative and inflammatory 
changes occurring as the disc degenerates promote 
increased neural and vascular ingrowth into the disc, 
potentially accounting for the painful discomfort patients 
experience with DD. Treatments which utilize inherent 
growth potential, through growth factors or stem cells, can 
stimulate tissue repair but may also provide advantages by 
mitigating inflammation. By knowing the mechanism of 
IVD contributes an essential piece of the repair puzzle, lead 
to an optimum integrated management of LBP for new and 
refined concepts in pathophysiology, earlier detection of 
disease, and improved developments in tissue engineering 
for treatment.

Conclusion
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