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BACKGROUND: The number of elderly population 
in the world keep increasing. In their advanced 
ages, many elderly face years of disability because 

of multiple chronic diseases, frailty, making them lost their 
independence. Consequently, this could have impacts on 
social and economic stability. A huge challenge has been 
sent for biomedical researchers to compress or at least 
eliminate this period of disability and increase the health 
span.

CONTENT: Over the past decades, many studies of 
telomere biology have demonstrated that telomeres and 
telomere-associated proteins are implicated in human 
diseases. Accelerated telomere erosion was clearly 
correlated with a pack of metabolic and inflammatory 
diseases. Critically short telomeres or the unprotected end, 
are likely to form telomeric fusion, generating genomic 

Abstract

R E V I E W  A R T I C L E

instability, the cornerstone for carcinogenesis. Enlightening 
how telomeres involved in the mechanisms underlying 
the diseases’ pathogenesis was expected to uncover new 
molecular targets for any important diagnosis or therapeutic 
implications.

SUMMARY: Telomere shortening was foreseen as an 
imporant mechanism to supress tumor by limiting cellular 
proliferative capacity by regulating senescence check 
point activation. Many human diseases and carcinogenesis 
are causally related to defective telomeres, asserting the 
importance  of   telomeres   sustainment. Thus,  telomere  
length assessment  might  serve  as an  important  tool  
for  clinical prognostic, diagnostic, monitoring and  
management.
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Introduction

Genomic instability was carried along as the cornerstone in 
cancer  development, by accelerating  pile of genetic mutation 
that responsible for cancer cell evolution.(1,2) Genomic 
instability can occur through a variety of mechanisms, 
including a defective response to DNA damage, a defect in 
DNA replication, or a defect in chromosome segregation. 
The importance of some of these mechanisms has been 
demonstrated through the study of human genetic diseases 
that demonstrate both increased chromosome instability and 
cancer.(3,4)

	 In every cell cycle, there is always a probability 
of mistaken for damaged or broken DNA on the ends 
of eukaryotic chromosomes. This will cause cause cell 
permanently arrest in damage cellular pathways. Any 
attempts to repair would  address risks for genome integrity. 
Telomeres, a protein-DNA complex, work out this problem 
and prevent the chromosome end from initiating a DNA 
damage response.(5) Telomeres are composed of repeated 
DNA sequences bound by a series of specialized protein. 
It can be ideated as the chromosomes protective cap.(6) 
Any defect  in  this  cap  structure  could  lead  to  cell  
cycle  arrest or DNA repair activities which promote an 
end-to-end fusion of chromosomes via non-homologous 
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end joining (NHEJ).(7) Telomeres are directly affected by 
the inability of DNA polymerase to completely replicate 
the 5′ end of a linear chromosome, a situation which known 
as the end replication problem.(8,9)  In each replication, 
the chromosome terminus loss some DNA and commonly 
human somatic cells don’t have enough capability to 
compensate. Thus, progressive rounds of replication lead 
to gradual telomere shortening, until telomeres become 
critically short and considered as DNA damage.(10) Sensed 
as damage, a signal will be sent to stop the cell for further 
divisions and head to senescent pathways. This ability to 
limit damaged cell proliferation might be one of tumor 
suppressor mechanism.(11,12)
	 Contrary, telomere shortening correlates with cellular 
aging. Therefore, either abnormal telomere shortening or 
elongation, could detrimental for human health. Extreme 
telomere shortening due to telomerase deficiency in highly 
proliferative tissue, for example, can lead to diseases such 
as dyskeratosis congenita (DKC) or pulmonary fibrosis.
(12-15) Conversely, telomerase upregulation leads to the 
cellular immortalization that is fundamental to cancer 
cell growth.(16) Telomerase reverse transcriptase (TERT) 
known to has an essential role in telomere maintenance 
and in cancer biology.(17) The majority cancer cells 
depend on the activation of telomerase to gain proliferative 
immortality. Stem and progenitor cells also express low 
levels of telomerase.(18) This showed the essential of 
telomere length regulation for both cellular and organismal 
well being. Telomere length regulation affect by the  
structure and composition of the telomere, the availability 
of telomerase and the interplay between telomere proteins, 
telomerase and the DNA replication machinery.(19)

Telomeres and Telomerase Biology

Recent comprehensive insight about the mechanisms 
of age-related diseases, concluded the importance of 
overall  telomere  attrition  in  predicting  mortality  and 
those diseases.(20) Telomere roles as a cap to protect the 
genomic DNA through various mechanisms. One of it is 
by preventing the recognition of the linear chromosomal 
DNA end as a broken end, because once it was recognize 
as a broken end, automatically DNA end-joining, DNA 
recombination, or DNA repair mechanisms will be 
processed, leading to unstable chromosomes. Unfortunately, 
common chromosomal DNA replication machinery cannot 
completely copy the DNA until the extreme ends of the 
linear chromosomes, this leads to attrition of chromosome 
ends after many course of cell divisions.(20)

	 The structure and function of mammalian telomeres 
are highly conserved, built on long tandem arrays of duplex 
TTAGGG  repeats  ends  in  a  50- to  400-nt  30  protrusion 
of the G- rich  strand,  forming  the  binding  sites  for  the  
abundant telomere-specific protein complex, called shelterin 
(Figure 1). The presence of duplex telomeric repeats, a 
telomere-specific protein complex, and a 30 protrusion are 
general themes for all eukaryotic telomeres but the nature of 
the repeats and proteins vary widely.(21)

Figure 1. Telomere Structure.(20) (Adapted with permission 
from The American Association for the Advancement of Science).

	 Based on recent understanding of the molecular 
pathways that recognize and repair double-strand breaks in  
mammalian cells, the end-protection problem can be recast 
in more precise terms (Figure 2).
	 There are two independent signaling pathways in 
mammalian cells that are activated by double-strand breaks. 
Firts is the ataxia telangiectasia mutated (ATM) kinase 
pathway, directly activated directly by DNA ends, and then 
the ataxia telangiectasia and Rad3-related (ATR) kinase 
pathway, activated by the single-stranded DNA formed 
when the 5′ end of a double-strand break gets trimmed back, 
or resected.(5) 
	 To avoid premature cellular senescence and the 
acceleration age-related diseases, the telomere must have 
ample reserve length, but also telomere shortening is 
needed to suppress tumor formation. Then, telomere length 
homeostasis should be achieved.(22)  Mammalian telomeres 
solve the end-protection problem through the agency of a 
six-subunit protein complex called shelterin.(23) Shelterin is 
enriched with specificity for telomeres, through the binding 
complex of several DNA protein to several DNA sequence. 
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Two shelterin subunits, telomeric repeat factor (TRF)1 and 
TRF2, bind to the TTAGGG sequences in double-stranded 
DNA, and one subunit, protection of telomeres protein 
(POT)1, binds to these sequences in single-stranded form. 
These three proteins are held together by TRF1-interacting 
nuclear protein (TIN)2 and tripeptidyl peptidse 1 (TPP1), 
making the selectivity of shelterin for telomeric DNA 
is admirable.(5) Meanwhile represor/activator protein 1 
(Rap1) is a stabilizing protein associated with TRF2. Recent 
studies found that shelterin is not just a static structural 
component, but it was emerging as a telomere protecting 
protein complex which have a DNA remodeling activity to 
change the structure of the telomeric DNA, acts together 
with several associated DNA repair factors.(23,24) The 
sixsubunits of Shelterin on telomeric DNA are shown in 
Figure 3. 
	 Telomere  shortening  can  also  be  caused  by include 
nuclease action, chemical (such as oxidative) damage,  and  
DNA replication stress. Telomerase, as well as  recombination  
between  telomeric  repeats,  can  counteract these  damage-

Figure 2. The end-protection problem.(5) 
(Adapted with permission from The American 
Association for the Advancement of Science).

Figure 3. The six known subunits of Shelterin on telomeric 
DNA.(24) (Adapted with permission from PubMed Central).

causing  process  to  restore  telomere  length.(25)  Telomere  
length  is  balanced  on an  equilibrium set point. It 
shorten during replication and lengthened by telomerase. 
Any imbalance of this equilibrium leads to disease.(26) 
Telomerase is an RNA-containing reverse transcriptase  
that  adds  telomeric repeat DNA to  chromosome ends.
(27) This prevent telomeres to be shortened  in  the  end 
replication problem, which is the failure of the DNA 
replication machinery to duplicate the very end of each 
chromosome.(28) As stated before, once telomeres shrink 
to a critical length, signal will be sent for the cell senescent, 
or alternatively undergo programmed cell death. This is 
the major tumor-suppressive mechanism, to prevent any 
replication of damaged DNA. Continuously dividing cells 
such as germ cells, stem cells, and, importantly, most cancer 
cells then require telomerase activity for survival.(29,30)
	 Telomerase functions as a ribonucleoprotein enzyme. 
An integral telomerase RNA (TR) component was required, 
in addition to the catalytic TERT. Extensive studies have 
identified some structural and functional features within 
the TR and TERT essential for activity.(31) In eucaryotes, 
telomerase catalyzes the extension of telomeric DNA. 
Human telomerase complex involving Cajal bodies in its 
intracellular trafficking and its recruitment to telomeres. 
Once recruited, a separate step activated incuding increase 
in its repeat addition processivity.(32)
	 Telomerase is unique among reverse transcriptase (RT) 
by functioning as a ribonucleoprotein.(33-35) Telomerase’s 
catalytic core is minimally built of the TERT and the 
integral TR. TERT protein consists of the catalytic site for 
DNA synthesis, and assembles with the TR to provides 
the template (Figure 4). When telomerase activity was not 
needed, many accessory proteins in the holoenzyme take 
part in crucial roles for telomerase biogenesis, localization, 
and regulation.(36-40)
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Cellular Senescense

Figure 4. Telomere Structure.(40) (Adapted with permission 
from John Wiley & Sons, Inc). TERC: telomerase RNA component; 
NHP2: non-histone protein 2; NOP10: nucleolar protein 10; 
GAR1: glycine arginine rich. 

	 TERTs usually consist of four domains: the 
telomerase essential N-terminal (TEN) domain, the 
telomerase RNA-binding domain (TRBD), the RT domain, 
and the C-terminal extension (CTE). The TEN domain 
interacts with telomerase reverse (TER) and traps single-
stranded telomeric DNA to promote processive repeat 
synthesis.(41-43) This processes undergo by capturing the 
substrate and maintain the association with those single-
stranded  products.(44) The TRBD confers the specificity 
of interaction between TERT and TER.(41,45) Motifs 
preserved in the evolutionarily related retrotransposon RTs 
forms the active site in RT domain. Here, aspartic acid 
residues coordinate the magnesium ions needed for catalysis 
of deoxynucleotide (dNTP) addition.(46) In TERTs, this 
domain also positions the template and aligns the substrate 
3’ end.(47,48) RT domain function could be enhanced by the 
CTE and/or the nucleic acids.(49,50) So far, mutations in at 
least six telomerase components have been linked to human 
telomere-mediated disorders such as DKC, aplastic anemia 
(AA), and idiopathic pulmonary fibrosis (IPF).(16,17,51) 
Most cancer cells have their telomerase up-regulated so 
then they keep growing.(52)
	 Telomerases important role in oncogenesis is highlight 
due to recurrent mutations recently identified in the promoter 
of the gene for the hTERT (human TERT) telomerase protein 
component (53,54), the most frequent mutation in some 
cancer types (55). These promoter mutations are associated 
with increased hTERT expression, telomerase activity, and 
telomere length.(56) Otherwise, telomerase activity, its 
maturation, or the recruitment to telomeres deficiencies lead 
to human diseases such as aplastic anemia and DKC.(57)

	 All the time our cells experience stress and damage 
continuously either exogenous or endogenously. The 
responses range from complete recovery to cell death. 
Proliferating cells can commence a further response by 
adopting a state of permanently cell growth arrest, termed 
cellular senescence.(58,59) 
	 Cellular senescence was first defined by Hayflick as 
the ultimate and irreversible loss of replicative capacity 
occurring in primary somatic cell culture.(60) His study 
found that cell growth was reproducibly blocked after a fairly 
well-defined number (under constant culture conditions) 
of population doublings (PD), and this suggested the idea 
of a biological clock or, more specifically, a replication 
counter (61) that counts biological time in numbers of cell 
divisions, and after a reproducible number of divisions 
triggers signaling pathways that block cellular division. 
Several different processes have been suggested as possible 
clocking mechanisms (62), but telomere uncapping (63) is 
by far the best established and most extensively investigated 
of these besides the epigenetic derepression of the INK4a/
ARF locus, and DNA damage.(58) Cellular senescence 
protects against the development of cancer, while it also 
may be involved in aging.(59,64) The consequences of 
cellular senescence is the radically phenotype altering which 
thought to impair tissue function and predispose tissues. 
Accumulation of these known as “replicative senescence” 
will progress to diseases.(65,66) Oxidative stress and 
activated oncogenes such as Ras have also been shown to 
trigger cellular senescence.(67,68).
	 Degree of telomere shortening is quickened by 
oxidative damage, then telomere shortening could reflect 
the accumulation of oxidative damage.(69) Aging was 
known to be correlated with oxidative accumulation 
and the gradual of senescent cells accumulation induce 
aging mechanism of mitotic tissues. Senescent display 
a radically altered phenotype, genetic, morphology, and 
behavior clearly from its growth-competent counterparts. 
Supposed that the neighbor cells, extracellular matrix and 
other structural components affecting the process of aged 
tissues, increased the risk of cancer.(70-73) Together with 
senescent cells accumulation, senescence also limiting the 
regenerative potential of stem cells pools or loss of stem 
cell function. These two combination probably contribute to 
simultaneously aging process (Figure 5).(59)
	 Senescence was mediated by cell’s two main tumor 
suppressor pathways, the ARF/p53 and the INK4a/RB 
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Figure 5.	Short telomeres activate a DNA-damage response 
that leads to apoptosis and senescence.(15) (Adapted with 
permission from Annual Reviews)

pathway.(74,75) Ectopic expression of oncogenic Ras in 
primary cells demonstrated a senescent-like arrest mediated 
by p53 and p16INK4a, proved that oncogene-induced 
senescence could be a mechanism of potentially dangerous 
cells growth reatrain.(76) Thus, deprivation of these tumor 
suppressors mechanisms essentially achieve the oncogenic 
transformation of human cells in vitro (77), and indeed 
these pathways are frequently disrupted in human cancer 
cells (74,75).
	 The senescence growth arrest is not simply a halt to 
cell proliferation, akin to the reversible growth arrest of 
quiescence. Rather, senescent cells distinct from quiescence 
or terminal differentiation.(78) Among the prominent 
senescence-associated changes in gene expression, numerous 
cytokines, chemokines, growth factors and proteases of 
expression and secretion vigorously increased (79-84). This 
termed  as  the  senescence-associated  secretory phenotype 
(SASP).(85) SASP of senescent cells can cause normal cells 
to lose their optimal function, leading to tissue degeneration, 
and cause premalignant cells to proliferate and adopt more 
malignant phenotypes, promote to full-blown cancer.(85)
	 Senescence beta-galactosidase (SA-b-GAL) is a  
frequently  used  senescence biomarker.(86,87) Encoded 
by galactosidase beta-1 (GLB1) gene from lysosomal b-D-
galactosidase, SA-b-GAL activity increased in senescent 
cells. The eznymatic activity of SA-b-GAL has to be 
preserved for detection, so  the  tissues  should  be snap-frozen 
(87). Also, non-senescent cells display b-galactosidase 

activity in the lysosomes that functions most optimally at 
pH 4.(88) Therefore, senescent cells underwent a lysosomal 
compartment expansion, giving rise to an increase in 
b-galactosidase activity and can be measured at suboptimal 
pH 6 (hence, SA-b-GAL).(88-91)
	 Deeper understanding of the senescent phenotype 
of all mitotic cell-type will provide better assess for the 
potential consequences of their appearance, therefore we 
can combat the problem into three strategies: 1) prevention, 
2) removal and 3) replacement.(65)

Telomere and Aging

Aging can be defined as the progressive functional decline 
of tissue function yet results in mortality. The weakening can 
result from diminished or loss function of post-mitotic cells 
or due to functional decline in stem cell ability to replace 
cells, sustain replicarions and cell divisions. Aging should 
not be understood as disease but a context of evolution, 
such as The Disposable Soma model, proposed by Thomas 
Kirkwood in 1977, presumes that our body must budget the 
amount of energy available to it, and the compromise in 
energy allocation to the repair function will cause the body 
gradually to deteriorate with age.(92)
	 As the world population ages, it has become 
increasingly important to understand the physiologic 
consequences of aging and quickly identify those changes 
that are likely to result in progression to frailty. Frailty, to 
distinguish it from normal aging, usually implies a state 
of heightened vulnerability to acute and chronic stressors 
as consequences of significant reduction in physiologic 
reserve. It is usually associated with decline in function 
across multiple systems that in composite contribute to 
geriatric syndromes, including falls, osteoporotic fractures, 
incontinence, cognitive decline, anemia, malnutrition, and 
muscle wasting.(93)
	 Aging manifest in overall decline in various 
organs function  capacity in maintaining baseline tissue 
homeostasis and adequate physiological responses under 
stress (94,95). This process usually gradual, means modest 
in middle years aged tissues but late in life will accelerate 
rapidly and likely put organism into serious challenge of 
regenerative response. At the anatomical and physiological 
levels,  deficient regenerative response  and  decreased  
tissue cellularity  seems to be closely related to many of 
classic age medical syndrome, such as muscle atrophy, 
anemia, feeble  immune  responses  and  impaired  wound 
healing.(96)
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Today, withdrawal from the cell cycle after a certain number 
of cellular divisions (replicative senescence) is known to be 
triggered by shortened telomeres(103) Recent studies made 
us learned that cancer cells have evolved their ability to 
overcome senescence (52,104) because they can maintain 
the telomere lengths (such as expressing telomerase), then 
cancer cells are capable to divide indefinitely (104), a 
biomarker of almost all advanced human cancers.(30)
	 To limit tumors’ clonal proliferation, dominance and 
ensures a polyclonal composition of (stem) cells in large, 
long-lived multicellular organisms, human somatic (stem) 
cells loss its telomeric DNA progressively. Regrettably, 
this induce somatic cells to ignore or bypass the 
telomere”checkpoint (105), e.g., because their DNA damage 
responses are defective. Loss of telomere function like this 
can results in chromosome fusions, broken chromosomes, 
break-fusion bridge cycles, translocations, and aneuploidy, 
creating a genetic instability that grows further genetic 
alterations rapidly.(106,107) This way, telomere loss 
could also promote tumor growth by driving selection of 
cells with defective DNA damage responses (e.g., loss of 
p5).(29,108) DNA  damage  responses  involving  normal 
and dysfunctional telomeres with intracellular signaling 
pathways, while DNA repair involving proteins such as 
ATM, ATR, and p53.(109) Together these demonstrate 
telomeres as determinant dynamic elements required for 
genome stability, regulating the cell response under stress 
and growth stimulation.(97)
	 Crisis is a period where cell growth and death are 
in balance. In chromosome end fusions, chromosome 
breakage-fusion-bridge (BFB) happened leads to genomic 
instability, chromosome rearrangements, and eventually 
telomerase engagement. However, telomerase encountered 

Telomeres and Cancer

	 In term of cell fate and aging, telomeres play 
important roles by accustom the cellular response to stress 
and growth stimulation due to any DNA damage and 
previous cell divisions. To desist from DNA repair pathway 
activation, hundreds of nucleotides of telomere repeats must 
cap each chromosome end. Critically short or uncapped 
telomeres will be repaired by telomerase or recombination, 
but it was limited in most somatic cells. When too many 
uncapped telomeres accumulated, then cellular senescence 
is triggered. Germline cells usually express high levels of 
telomerase, so the telomere length is maintained. In somatic 
cells, the length is high diverse but commonly decline with 
age, as a barrier to tumor growth but as results the cells lose 
with age.(97)
	 Throughout a life time, our body supposed to possess 
a notable ability for continuous extensive and sustained 
tissue renewal, due to reservoirs of somatic tissue stem 
cells (98,99), but aging and regenerative researches show 
parallels blunted proliferative responses and misdirected 
differentiation of resident tissue stem cells parallel with 
age.  In  the  other  side,  these  long-lived  renewable  
reservoirs  can  also  affect  the  health  of  aged  individuals  
negatively  by providing a preferred cellular compartment 
for malignancy.(99)
	 Many human studies in genetic disorders has 
confirmed the relevancy of DNA damage signaling 
and metabolic regulation to drive the ageing process. 
Specifically, functional decline of tissue stem cells can 
primarily instrigated with age-associated telomere damage, 
alleviation of telomere capping function and associated p53 
activation. Together with mitochondrial dysfunction, these 
will affect in tissues renewal and bioenergetic support. 
A hypothetical model connecting telomere damage, p53 
activation, stem cell, and mitochondrial dysfunction offers 
a unifying explanation about how telomeres impact aging 
organism.(96)
	 The genotoxic stress model of aging, the core 
telomere-p53 axis integrates well with almost all genetic 
elements proven to be important in the aging process. First, 
it accounts for the premature aging phenotypes common to 
both telomere-dysfunctional mice and those with germline 
p53 hyperactivation.(100,101) Second, it describes how 
premature aging happened in mice lacking of SIRT1 or 
SIRT6, proteins that disable p53 activity.(102) Third, it 
explains the link between mitochondria and key aging 
factors: Peroxisome proliferator-activated receptor gamma 
coactivator (PGC)-1α, PGC-1β, forkhead box O (FOXO) 
proteins and B lymphoma Mo-MLV insertion region 1 
(BMI1);  mice  with  lack  of  these  genes  experience 

accelerated tissue degeneration and mitochondrial 
dysfunction.(96)
	 Revealing these networks by constructing a model 
of interaction  between  telomeres,  stem  cells  and 
mitochondria  will  provide  us  advance  biomarkers 
for aging and the strategies for therapy, i.e., telomeres 
stabilization either through brief telomerase reactivation, 
p53 modulation, mitochondrial function and biogenesis 
improvement, and mechanistic target of rapamycin 
(mTOR) and phosphoinositide 3-kinase (PI3K) pathways 
modulation, to rejuvenate both proliferating and quiescent 
the aged tissues.(96)
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Figure 6.	BFB cycles and chromosomal rearrangements during 
telomere crisis.(110) (Adapted with permission from Nature 
Publishing Group).

in approximately 90% of all malignant tumors (52), may 
predict poor or favorable outcome (110,111), thus making 
telomerase both a highly attractive biomarker and target for 
the development of mechanism-based cancer diagnostics, 
prognostics, and therapeutics.(30)
	 Genome instability caused by telomere crisis 
was found to induce chromosome gains and loses 
(aneuploidy), translocations, gene loss (manifested as 
loss of  heterozygosity (LOH)) and regional amplification 
through  BFB cycles (Figure 6).(108,112,113) The 
genomic alterations included whole genome reduplication, 
chromothripsis and kataegis.(114-116) Telomere fusions 
can occur between different chromosomes or between 
sister chromatids after DNA replication, thus leading to 
different outcomes.(4)  BFB cycles generally can lead to 
three outcomes related to cancer: LOH, nonreciprocal 
translocations and gene amplification. LOH frequently 
found in cancer-relevant loci, could arise if when a dicentric 
chromosome breaks and one of the daughter cells inherits 
a chromosome with a terminal deletion. Nonreciprocal 
translocations could arise when the DNA end of a broken 
chromosome invades another chromosome and copies part 
of this chromosome through a process called break-induced 
replication.(117,118) Nonreciprocal translocations occur 
during tumorigenesis in mice with shortening telomeres 
and are a frequent class of rearrangements in cancer.(119) 
Sequence analysis of more than 1,000 telomere fusion 
events has shown that a chromosome end lacking telomere 
protection can recombine with diverse chromosomeinternal 
loci (120).
	 Malignant tumors collectivelly characterized by 
telomerase expression, to service the unlimited cell 
proliferation, otherwise most benign and premalignant 
tumor characterized by the absence of telomerase.(121) 
Somatic mutations in the proximal promoter of the human 
TERT now become the most familiar noncoding mutation in 
cancer.(122)
	 Therefrom, telomerase become a very attractive 
target for any immortal cells including cancer stem cells. 
Telomerase expression, telomere length and cell kinetics 
between normal and tumor tissues are very different, thus 
make  it  more delicate for telomerase to be a relative 
safe  target for many developing therapy such as vaccines, 
and  specific  telomerase inhibitor, imetelstat sodium 
(GRN163L).(123) The key advantages of targeting 
telomerase in comparison  with most other cancer targets are 
its relative universality, criticality and specificity for cancer 
cells,  including  the putative  cancer  stem  cell. Telomerase 
is expressed in the majority of tumours from all cancer types 

(52,121,124) and some recent studies have suggested that 
cancer stem or stem-like cells are also telomerase-positive 
(125-128).

Telomeres and Diseases

Recent findings suggests, as the most risk factors for chronic 
disease, aging is the feasible modifiable one.(129) not only 
the apparent signs such as gray hair, wrinkle  and spotting 
skin, muscle wasting, altered adiposity, but aging increase 
the susceptibility to diseases as people enter the last decades 
of life, including sufficient immune function, cardiovascular 
diseases (CVD), cancers, type 2 diabetes mellitus (T2DM), 
depression, and especially cognitive decline, although they 
are also could happened as comorbid disease in younger 
people.(20) Both aging and disease result in the same 
outcome: the impairment of normal biological function. 
It would not, therefore, be a surprise if tissue dysfunction 
resulting from an aging mechanism eventually manifested 
itself as a disease. Therefore, we expect new development 
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in prevention and therapeutic methods by understanding the 
process of aging.(65)
	 Cellular senescence, as one basic process that play 
most contribution to age-related dysfunction and chronic 
sterile inflammation, refers to the essentially irreversible 
growth arrest that occurs when cells experience potentially 
oncogenic insults (58,130-134), and now believe that 
it was the potent anticancer mechanism (135-138). In 
contrast, despite its name, its discovery over 50 years 
ago, and increasing data associating senescent cells with 
aging phenotypes and age-related pathology (59,139-145), 
while eliminating senescent cells could delay age-related 
dysfunction (146), at least in a progeroid mouse model.
	 Cardiovascular disease (CVD) and type 2 diabetes 
mellitus (T2DM) are clearly related to age and can reduced 
life span.(147) in fact, people with same age do not 
experience the same cardiometabolic outcome, suggest 
that chronological age is not a precise measure for health 
status.(148) and we need a better biomarker to identify the 
cardiometabolic health so we not only can predict but also 
prevent the disease. Leukocyte telomere length (LTL) may 
be one such biomarker.(149)
	 Normally, LTL is reduced in normal aging with 
considerable inter-individual variation, supposed this 
reflects the biological age of the cells and organism, 
which could be different with chronological age (59,150), 
influenced by own genetic factors, lifestyle and disease. As 
example, regular exercise slow leukocyte telomere erosion 
(151,152), while obesity is associated with reductions in 
LTL (153,154). Current studies reported an association 
between LTL and chronic diseases including CVD and 
T2DM (154,155). As we know that those chronic disease, 
arthritis, together with aging normally involve increased 
oxidative stress and inflammation. Reduced LTL suggested 
to be responsible for those stressors.(156)
	 The 5′-TTAGGG-3′ repeats in the telomere sequence 
are prone to oxidative damage (8-oxodG). ROS-induced 
DNA breaks, so oxidative stress could promote telomere 
shortening in leukocytes and other cells in parallel with aging 
and chronic disease state.(157,158) Markers of oxidative 
stress are also elevated in association with shorter LTL in 
patients with rheumatoid arthritis (159) and T2DM (160). 
DNA damage in telomeres is very stable and not easily 
repaired, that’s why telomere shortening caused by reactive 
oxygen species (ROS) will be accelerated.(161) In addition 
to oxidative DNA damage, impaired calcium homeostasis 
in Alzheimer disease (AD) patient lymphocytes can also 
induce telomere erosion.(162,163) Oxidative stress can 
release calcium from mitochondria then triggers a viscous 

cycle of telomere shortening, promote more mitochondrial 
dysfunction that elevating ROS and leads to DNA damage 
which worsen the telomere shortening.
 	 LTL associated with increasing stress hormones 
level such as norepinephrine, epinephrine, cortisol and 
insulin-like growth factor (IGF)-1.(164-166) Exaggerated 
activation of HPA cause decreased of growth hormone 
(GH) and affecting the telomere maintenance.(167) Stress 
responses also affect in decreased dehydroepiandrosterone 
(DHEA) and increased bulk lymphocyte proliferation and 
markers of oxidative damage, in total resulting in stress-
induced leukocyte telomere erosion.(156,165)
	 Although not immediately, telomere shortening in 
leukocytes and microglia can affect neuronal health by 
compromising the normal functions of these immune cells 
within the brain.(168,169) The roles of the immune system 
in the initiation and progression of Newcastle disease (ND) 
are being actively investigated.(170) Telomere shortening 
in immune cells, astrocytes and neurons could amplify 
oxidative stress-dependent senescence and secretion of pro-
inflammatory mediators (senescence-associated secretory 
phenotype), results in diseases progression.(59,168,171).
The shortest telomere within a cell showed to pronounce 
cell senescence the most as well (172,173).
	 Chronic psychologic stress has been associated with 
shorter telomeres during childhood and adulthood, although 
not consistently. Children and adults with adverse and 
disadvantaged early life experiences (174-178), women 
who provide care for a family member with a chronic health 
condition (179-181), those who report high perceived 
stress (180-182) and women exposed to domestic violence 
(183) have shorter telomeres in leukocytes and varying 
subtypes of immune cells compared with those who have 
not experienced such stressors. Severity and chronicity of 
depression are also related to shorter telomeres.(184-186) 
Women with high consistency of healthy behavior appeared 
to be more protected although exposed to same level of 
stress, showed that telomere length can be expected to be 
maintained.(187)
	 Telomeropathies, a disorder caused by defects in the 
telomere maintenance machinery, just recently discovered 
shared a constellation of overlapping syndromes.(188,189) 
DKC was the first disorder associated to telomerophaty, 
manifest the diagnostic triad of oral leukoplakia, skin 
hyperpigmentation, nail dystrophy (190-192), most 
prominent  display  organ failure, usually in the bone 
marrow and  a  seri  of  symptoms  that  less  frequently 
appear such  as aplastic anemia or  specific  lymphopenias.
(193,194)
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	 In adulthood, idiopathic pulmonary fibrosis (IPF) 
is the most common symptom of a telomeropathy.(57) 
IPF is characterized by progressive failure of the lung 
coincident with fibrosis and inflammation.(195) Around 
8-20% of familial cases of IPF were in responsible of 
TERC and TERT inherited mutation (196), while 37% of 
familial cases and 25% of sporadic cases were correlated 
with shorter telomeres compared to the 10th percentile 
of the general population, besides as-yet undiscovered 
genetic or environmental causes (197). Other adult-onset 
manifestations of impaired telomere maintenance include 
familial liver cirrhosis (198), aplastic anemia in adulthood 
(199), and sporadic acute myelogenous leukemia (AML), 
in which both somatic and germline mutations have been 
found (200).

Biomarkers of Aging and Diseases

Early 1980s, scientists tried to define aging and its better 
predicting biomarkers objectively, separate from diseases 
but not universally accepted while biomarkers for diseases 
is conceptually more straight forward.(201-203) Valid 
aging biomarkers, which is describe the rate of aging than 
chronological age were expected to allow the evaluation 
of any better prevention and interventions.(204) A simpler 
set of aging biomarker criteria was proposed by Miller 
in Butler, et al., are: 1) Biomarkers which cover multiple 
physiological and behavioral domains, in association with 
age, so it can predict the outcome of a broad spectrum of 
age-sensitive tests better than chronological age; 2) It should 
intertwine biomarkers of aging with  biomarkers of disease 
and suggests that biomarkers of aging will be measuring 
degenerative changes; 3) The measurement will not alter 
another age-sensitive tests results or life expectancy of 
subjects.(205)
	 The major argument for the development of biomarkers 
of age-related disease could be summed up as follows: 1) 
Many age-related diseases develop over long periods and are 
not observable until they are well established; 2) Successful 
treatment of disease often requires early diagnosis and 
treatment; 3) Early biomarkers would permit such treatment 
when it has a better chance of producing a positive result 
than treatment begun late in the disease process; and 4)
Biomarkers would provide measures to assess the effects of 
treatment in less than the lifespan of the organism.(204)  
	 Telomeres play quite roles in brain biology and are 
found shortened in patients with neurodegenerative diseases 
such as dementia or AD.(206-209) In cellular immunology, 

telomerase activators were proven to boost immune system 
of human and mice (210-212), suggested that was associated 
with stem cells pools mobilizations by telomerase, 
particularly in this case, the hematopoietic stem cell niches. 
Telomere shortening also correlates with cardiovascular 
diseases. Thus, telomeres as indicators of biological aging 
and diseases. Many studies proven the association between 
LTL to stroke, myocardial infarction and T2DM. 1 SD in 
LTL could significantly raise stroke incident (OR 1.21, 
CI 1.06–1.37; I2=61%), myocardial infarction (OR 1.24; 
95% CI 1.04–1.47; I2=68%), and T2DM (OR, 1.37; 95% 
CI 1.10–1.72; I2=91%). Shortened leukocyte telomere 
length demonstrates a significant association with stroke, 
myocardial infarction, and type 2 diabetes mellitus.(149) 
	 β-galactosidase (β-Gal) expressed only in senescent 
cells, not in pre-senescent or quiescent fibroblasts or 
keratinocytes. At pH 6.0 using immunohistochemistry, 
β-Gal can be used as one of the best, reliable and simple 
methods to measure senescence in vitro and in vivo.(86,213-
219) SA-β-GAL demonstrated a positive correlation with 
increasing age using human skin samples.(86) So, SA-β-
GAL can be used as a marker for senescence in senescent 
protocol or through senescence-induced methods involving 
DNA damage agents, oncogenic signals, or over-expression 
of tumor suppressors such p16 and ARF.(220)
	 A crucial marker of senescent cell is senescence-
associated heterochromatin foci (SAHF). Employing the 
concept of irreversibility senescent cells, they present 
a characteristic heterochromatin condensation structure 
involving the formation of heterochromatic foci (221) which 
was visible  under microscopy, and defined by condensed 
regions of DNA/chromatin. SAHF are known to silence 
and repress several E2F-regulated genes such as MCM3, 
PCNA, or Cyclin A (221-223) and are known to be triggered 
by several pathways involving p16 or p53 activation.(223)
	 Conclusively, the ideal biomarker for senescence are 
cancer and aging marker, therefore  ideally  can  be used  
for  degenerative  diseases and cancer studies in vivo.(224) 
Telomere shortening represents the accumulation of DNA 
damage and its intrinsic mechanism during cell aging, 
which finally result in senescent.(10,225) The lifestyle 
factors (such as exercise, smoking, body mass) influence 
on the aging associated to the expression of serum markers 
of DNA damage (Cathelicidin-related antimicrobacterial 
peptide (CRAMP), elongation factor (EF)-1α, Stathmin, 
n-acetyl-glucosaminidase, and chitinase) in comparison 
to other described markers of cellular aging (p16INK4a 

upregulation and telomere shortening) in human peripheral 
blood. The study showed that lifestyle factors can affect age-
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We can now understand the limitation on cell division as a 
mechanism for tumor suppression. Indeed, in mice, cancer 
growth was hindered due to shorten telomere. On the other 
hand, when telomeres become very short it also could 
provoke tumor growth by genome instability. TERT can 
preserve the telomere length. The human telomerase consists 
of two subunits: a RNA templates, TERC, and the catalytic 
subunit, hTERT, which synthesizes the new telomeric 
DNA from the RNA template.(226) Cells who need a high 
replicative capacity, such as stem cells and progenitor cells 
have a higher activity of telomerase.(227) Telomerase 
elongates telomere, therefore stabilize chromosomes, and 
rejubenate gene expression pattern. The hTERT, out of the 
established role, could promote proliferation of resting stem 
cells via a non-canonical pathway (227) and perform a direct 
effect on cell transcription and signaling, e.g., as a cofactor 
in a β-catenin transcriptional complex (228), which plays a 
role in embryogenesis and development (229). Telomerase 
alone is not an oncogene, but permissive for carcinogenesis, 
so uncontrolled induction of telomerase would have a 
pitfall. ~90% tumor cells express more telomerase, makes 
telomeres as an overlap target for both anticancer and cell 
rejuvenation at different cellular and functional levels.(230)
	 Recent knowledges lead more idea to reversenormal 
cellular aging process to treat aging symptoms. Many 
studies tried to develop telomerase activators thay may 
induce  hTERT and/or hTR expression, enhance enzyme 
activity and/or influence cellular location, and came up 
single molecule such as cycloastragenol, derived from 
Astragalus membranaceus root (commercially available 
as TA-65), proved to transiently activate telomerase in 
T lymphocytes in the retardation of telomere shortening, 
increased proliferative potential, and enhanced functional 
response.(210,231) TA-65 also shown to improve the 
accelerated immunosenescence in HIV patients and 
increased the number of senescent memory CD8 T cells.
(210,231) Since 2013, TA-65 sold as supplement and give 
benefit for activating telomerase in immune cells, neonatal 
keratinocytes, and fibroblasts.(210,232) TA-65 acts via 

independent level of DNA damage biomarkers. Smoking 
and increased BMI significantly correlated with increased 
the level of biomarkers expression, apart from subjects’ 
chronological age. In contrast, exercise was associated 
with an age-independent reduction in the expression of 
biomarkers of DNA damage in human blood.(152)

Telomerase As Theurapeutic Target

extracellular-signal-regulated kinase (ERK)-pathway 
activation and subsequent enhancement of telomerase 
expression without increasing the cancer incidence (233).
	 Other phytochemicals have been shown to activate 
telomerase. Resveratrol activates telomerase in mammary 
epithelial (234) and endothelial progenitor cells (235), 
most likely due to the upregulation of sirtuin (SIRT)1 
although the long-term effects study is not incomplete yet 
(236). N-acetylcarnosine has been proposed as telomerase 
activator for cataracts treatment, because reduced telomere 
length is known intimately involved in opacification, 
making the lens opaque or cloudy.(237) Another compound 
that has proven to have a neuroprotective effects in mice 
and showed delayed progression of amyotrophic lateral 
sclerosis and increased survival in SOD1 transgenic mice is 
AGS-499.(238)
	 Some antioxidants such as N-acetylcysteine may 
also have indirect effect to upregulate telomerase activity 
by  blocking  the  nuclear  export  of  telomerase  into  the  
cytosol.(239) The α-tocopherol, shown to retain telomerase 
activity in brain microvascular endothelial cells.(240) ROS 
damage telomeres directly through vulnerable GGG triplet 
of the repetitive telomere sequence, and indirectly via 
telomerase activity modulating and cellular location.(241) 
So, hydroxymethylglutaryl-CoA (HMG-CoA) reductase 
inhibitors could also have telomere lengthening effects 
(242), by interfering with the redox balance of cells (239) 
and by increasing expression of the telomere stabilizing 
protein TRF2 (243). Finally, Ginkgo biloba was shown to 
activate telomerase by inducing PI3K/Akt signaling.(244)
	 The successful strategies in activating telomerase and 
rejuvenate cells applied in many tissue engineering and 
reconstructive surgery for extending cell lifespan. However 
this may accumulate genetic and epigenetic aberrations 
that can contribute to malignant transformation.(230) 
Several approaches for a telomerase-based gene therapy in 
the treatment of cancer then be developed, due to higher 
telomerase activity in cancer cells,  compared to most other 
cells.(52) Accordingly, approaches to block TERT have 
been pursued. One prominent example is Geron specfically 
modified oligonucleotide chemistry GRN163L which 
is complementary to TERC and, thus, able to bind to the 
catalytic center of TERT thereby inhibiting its function.(245) 
In contrast to direct TERT blockade, immunotherapeutic 
approaches use TERT-derived peptides to develop vaccines 
that would activate the immune system to specifically target 
cancer cells with high TERT expression. GV1001 is such 
a peptide vaccine that is currently under investigation in a 
substantial number of clinical trials.(230)
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	 Some difficulties in using telomerase as cancer 
therapeutic targets includes: First, anti-proliferative effects 
of telomerase inhibition only induced in cells with short 
telomeres so the drug need quite a time to be effective, 
while the tumor is growing. Second, the inhibition of 
telomerase cannot yet be specific for certain cells, so 
any highly proliferative cells which need telomerase 
for survival,  namely,  stem  cells,  etc  will  regard this  
treatment  negatively.(239) Thus, a narrow telomere length 
window therapy could be the answer for now.(246)

Telomeres physically could define as the edge of 
chromosomes, to protect them from nucleolytic degradation 
and DNA repair activities. Traditionally, lack of enzymes 
limit the ability of DNA replication to fully replicate 
telomere ends. Tigether with nucleolytic activities, telomere 
will be eroted in ieach replication, while telomere length 
homeostasis is essential for cell survival. Shortened 
telomere generate DNA damage, induce cellular senescence 
and apoptosis, and cause short telomere syndromes and 
associated age – related disease. Telomerase act de novo to 
counterbalance this shortened telomere by adding telomere 
sequences. On the other hands, elongated telomeres were 
found in cancer cells. They escape senescence to allow 
immortal growth. Telomere biology is best viewed in 
context: It was raising as a powerful inter-active factor 
for precision medicine in health monitoring and assesing 
disease, so we need further studies about the genetic and 
non-genetic determinants interaction in this telomere length 
maintenance, on different diseases.

Conclusion
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