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I.     INTRODUCTION 

Recently, the study on the coupled system gets 

great importance. A wide variety of interesting 

complex collective phenomena like synchronization, 

dynamical hysteresis, phase flip, oscillation 

quenching etc. having  potential application are 

found in different coupled systems [1]-[7]. 

Oscillation quenching is a phenomenon where the 

suppression of oscillatory behavior occure through 

the interaction of coupled system. We found two 

types of oscillation quenching; Amplitude death 

(AD) and Oscillation death (OD) [8]. In AD the 

coupled system converges to homogeneous steady 

state (HSS) whereas in OD the system converges to 

heterogeneous i.e. inhomogeneous steady state 

(IHSS). Oscillation quenching is mainly important 

to control and stabilize the system viz. in laser [9], 

neuronal systems [10], [11], etc. In spite of this, it 

has found applications in diverse field [7], [12], 

[13]. 

The simultaneous occurrence of AD and OD and 

the transition from AD to OD under diffusive 

coupling in coupled Stuart-Landau oscillators had 

been reported by Koseska et al. in [12]. After then 

several works have been reported showing such 

transition in different coupled system like; mean 

field diffusive (MFD) coupled system [14], [15], 

time-delayed system [16], dynamic coupled system 

[17], conjugate coupled system [18], [19], diffusive 

and repulsive coupled system [20], [21] etc.   

 Most of the cases the quenching phenomena and 

their transitions had been assumed the case of one-

channel coupling. But, the interactions between 

coupled oscillators can be more complicated [22]. 

The ability of synchronization of the complex 

network has been highly affected by dual channel 

coupling [23]. It is also reported that, two [24] or 

multi channel delay [25] have been introduced to 

stabilize the chaotic systems. The effect of delay 

and the multi-channel coupling on the region of OD 

in coupled identical oscillators had been reported in 

[26]. 

But, the effect of more than one channel coupling 

on the dynamics of coupled system are still not 

properly ascertain. In [27] the effects of identical 

dual-channel coupling on the AD and OD region, 

and their transition in coupled non-identical 

oscillators were explored.  But in this paper, we 

examined the AD-OD transition scenario in Chua 

circuit using non-identical dual channel coupling 

between them. Such type of coupling is also known 

as direct-indirect coupling. Chua’s circuit is one of 

the most simple and efficient circuit that exhibits 
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wide variety of nonlinear dynamics within it. It can 

also be easily implemented in experiments [28]-

[30]. So far literature is concern, a good amount of 

works have already been done on the coupled 

Chua’s circuit using different coupling schemes 

[19], [31-35]. But in all cases the coupled system 

has been under single channel coupling and 

converges to a common steady state showing AD in 

them. Sharma et al. already reported AD with mean 

field diffusion in [34], [35]. We explore the 

dynamics of such MFD coupled Chua’s circuit 

when an additional diffusive coupling has been 

employed through another channel. It is well known 

that Chua’s circuit is a third order autonomous 

system and its dynamics is described by three state 

variables [30]. In our work, we coupled one of the 

state variables of Chua’s circuits through MFD 

coupling and another state variable through a 

simple variable resistor (i.e. direct diffusively 

coupled). Interestingly, in such condition the 

system shows the transition between AD and OD 

depending upon the coupling strength. The OD is 

appeared through symmetry breaking. Such 

dynamics are described through numerical 

simulation and also supported by a prototype 

hardware experiment. The stability of steady states 

is derived theoretically using Routh-Hurwitz 

technique.  

The paper has been organized as follows. The 

equations describing the system dynamics for such 

modified MFD coupled Chua’s circuit has been 

formulated in section 2. The derivations of the 

steady state points and their stability have been 

examined analytically in section 3. The occurrences 

of AD, OD and their transition in the system have 

been discussed in section 4 through numerical 

simulations. The effect of different coupling and 

design parameters on the quenching dynamics of 

the system have also been discussed here in details. 

In establishment of such dynamics we perform an 

experiment on a proto type hardware circuit using 

off-the-self ICs. The details of the experiments and 

the experimental results are described in section 5. 

Some concluding remarks are given in the Section 6. 

II.     SYSTEM EQUATIONS FOR MODIFIED COUPLED 

CHUA’S CIRCUITS 

The complete hardware circuit diagram of 

coupled Chua’s circuits under non-identical dual 

channel coupling is shown in Fig. 1. First, we 

connect the branch points having voltage ���and ��� through MFD coupling. Using the Kirchhoff’s 

current law we derive the following equations for 

MFD coupled Chua’s circuits are [30],  

��� ������ = (���	���)
��� − (���)  (1a)          

��� ������ = (���	���)
��� + ��� + � ��������� (��� +

���) − (���)�				               (1b)                          

�� ������ = −���    (1c) 

��� ������ = (���	���)
��� − (���)  (1d)          

��� ������ = (���	���)
��� + ��� + � ��������� (��� +

���) − (���)�				               (1e)                          

�� ������ = −���    (1f) 

Here, the first digit of subscript (i.e. 1 or 2) is used 

to represent first or second Chua’s circuit, 

respectively. (���)	 and (���)	 in equation (1a) 

and (1d) represent the response of the nonlinear 

resistor of two Chua circuits respectively and it can 

be mathematical represented as follows, 

����,��� = �����,�� + ���� (�� −��)[����,�� +
 !� − ����,�� −  !�]     (2) 

Here, ��  ( = −� ��
����� + � ��#� ) and �� ( =

−� ��
����� − � �$

�#���) are the inner and outer slopes 

of the typical characteristic curve of the Chua’s 

nonlinear resistor.  !  is the breakpoint of two 

slopes (which are considered identical for both 

circuits). Now we connect the branch points having 

the voltage ���  and ���  through a simple 

resistor 	�%  (Fig.1). Thus, the two Chua’s circuits 

are direct diffusively coupled through these state 

variables. Then the above equation set are modified 

as given below,  
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��� ������ = (���	���)
��� − (���) + (���	���)

�%  (3a)          

��� ������ = (���	���)
��� + ��� + � ��������� (��� +

���) − (���)�				               (3b)                          

�� ������ = −���    (3c) 

��� ������ = (���	���)
��� − (���) − (���	���)

�%  (3d)          

��� ������ = (���	���)
��� + ��� + � ��������� (��� +

���) − (���)�				               (3e)                          

�� ������ = −���    (3f) 

Considering & = �
������ , a dimensionless quantity, 

we normalized the above equations and derive six 

normalized state equations describing the dynamics 

of such dual channel coupled Chua circuit as,  

�'�
�& = (�{(*� − '� − ('�)) + +�('� − '�)(4a) 

�*�
�& = '� − *� + ,� + ��(��*�-*�� � − *�) (4b)                          

�,�
�& = −.�*�     (4c) 

�'�
�& = (�{�*� − '� − ('�)� − +�('� − '�)}(4d)            

�*�
�& = 0[('� − *� + ,�) + ��(��*�-*�� � − *�)]
      (4e)      

 
�,�
�& = −.�*�     (4f) 

Here, '�,� = ���,��
 ! , *�,� = ���,��

 ! , ,�,� = ���,�����,�
 ! , 

	(� = (������) , (� = �������������� , 0 = �������������� , .� =
(��������� ) , .� = (����������� ) , ('�) = ���(���) , 

('�) = ���(���). The factors � [�� = ������� and 

�� = �������], � = ������ � and + [+� = ���
�%  and +� =

���
�% ] signifies the diffusive strength, mean field 

strength and strength of direct coupling of the 

coupled system, respectively. 

 
Fig. 1  The hardware circuit diagram for experiment of modified MFD 

coupled Chua’s circuits 

III. STABILITY ANALYSIS 

In this section at first we calculate the different 

steady states in quenched condition of the coupled 

system and then we assess analytically the limit of 

those steady states (oscillation quenched) using 

Routh-Hurwitz technique. 

In case of AD, we have '�∗ = '�∗ , *�∗ =	*�∗ , 	,�∗ =,�∗ . Putting these conditions and equating the left 

hand side of equation (4) equal to zero, we can see 

that the system has the following steady state values,   

(i) ('�∗ , �, −'�∗ , '�∗ , �, −'�∗ ) , for, '�,� < −� , (ii) 

(�, �, �, �, �, �) , for, �'�,�� < �  and (iii) (−'�∗ , �, '�∗ , −'�∗ , �, '�∗), for,  '�,� > �,where, '�∗ =
4(��	��)���
(�-�����) 5. These are the trivial steady states of 

the system. 

In case of OD, we have '�∗ = −'�∗ ,  *�∗ = 	−*�∗ , 	,�∗ = −,�∗ . Putting these conditions in equation (4), 

we can get the following steady state values,   

(i) ('�∗ , �, −'�∗ , '�∗ , �, −'�∗ ) , for, '�,� < −� , (ii) 

(�, �, �, �, �, �) , for, �'�,�� < �  and (iii) (−'�∗ , �, '�∗ , −'�∗ , �, '�∗), for,  '�,� > �,where, '�∗ =
6 (��	��)���
(�-�����)±�+�,�8. These are non-trivial steady states 

and depend on the strength of direct coupling. Note 
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that, the OD states are born through symmetry 

breaking if we have +� = +�. Otherwise, the two 

states of OD will not be symmetric. This can be 

done by taking ���and ��� different. 

Next, we find the stability of the trivial steady state 

values. Here, the linear transformation Jacobian 

matrix of the system is constructed at the steady 

state points with '�,� > � using the relation '�∗ ='�∗ , *�∗ =	*�∗ , 	,�∗ = ,�∗ . The characteristic equation 

is a cubic equation of the eigen value λ and it is as 

given: 

9��,�,� + (:� + �;�)9��,�,� + (:� +�;�;�(�)9�,�,� + ;�(�.� = �                           (5)
 

Where, ;� = (� +�����) , ;� = (� −�) , :� =(� + ;�(�) and :� = (.� +�����(�). Applying 

the Routh-Hurwitz array technique to the equation 

(5) we obtain the limit of the steady state as follows, 

� > �
;� [<�.� − :�:�

;�(�� + {�� (:� + :�
;�(�)}� −�

� (:� + :�
;�(�)]                         (6) 

Beyond this limit of �  the system became stable. 

Note that, if the system converges into '�,� < −� 

and −� < '�,� < �  zone one can use the same 

method to get the limiting value of �. The predicted 

limits of the steady state of the coupled system are 

for a typical case is shown in Fig 2 and it supports 

the numerical prediction. 

IV. NUMERICAL SIMULATION RESULTS 

The 4th order Runge-Kutta technique has been 

used for numerical integration of the state equations 

given in (4) to explore the dynamics of coupled 

Chua’s circuit under non-identical dual channel 

coupling. Every time, we discard large amount of 

initial data to eliminate the transient behavior. The 

influences of coupling parameters (�, �, +) along 

with the conventional parameters like (, ., 0on the 

dynamics of the coupled Chua’s circuit has been 

examined through simulation.  

To study the dynamics we initially take the two 

identical Chua circuits, for which we set (� =(� = ( = �� , .� = .� = . = �=. #� , 0 = � , �� = �� = �  and +� = +� = + = � , respectively.  

In this condition the two isolated Chua’s circuits 

show oscillatory behaviour. It is observed that the 

periodic oscillations of the coupled Chua’s circuit 

under MFD coupling (i.e. single channel coupling 

( + = � )) would converge (both '  and *  state 

variables) to the trivial HSS (as predicted in section 

3) with properly chosen �  and �  values i.e. AD 

occurs. This observation is shown in Fig.2. This is 

similar as reported in literature [34], [35]. 

Now with the application of second channel 

coupling (proper +  value) we observe that the 

trivial steady state of '  state variable becomes 

unstable and give birth of two new IHSS through 

symmetry breaking (i.e. OD is created) for low � 

value. But, at the same time the y state variable 

remains in the same HSS i.e. no OD is observed. 

Thus, we get a complex dynamics for a dual 

channel coupled system. Since, it is practically 

impossible to construct identical oscillators, 

because of the tolerance values of the circuit 

components. Therefore, we study the dynamics 

with non-identical parameters. For which we set the 

parameter as (� = �� ,  (� = �. ?$(� , .� =�%. �# , 	.� = �. �$.� , 0 = �. �$ , �� = �� = � 

and +� = +� = + . The observation is shown in 

Fig.3. Note that in Fig.3 in AD region ' is non zero 

which is the characteristic of a nontrivial AD, thus 

OD and possibly a nontrivial AD coexists as 

discovered in [14], [15]. It is also observed that the 

difference between two IHSS for '  state variable 

gradually increases as we increase the + value but 

remain unaltered for variation of � and � values. 

We find that with the increasing value of direct 

diffusive coupling parameter (+) the AD domain 

tends to shrink while it enlarges the OD domain in 

the �−� parameter space. This fact is depicted in 

Fig.4. In Fig.4 beyond the quenched state we 

observe the system oscillates with multi-period. But 

since we are interested only in quenching 

phenomena we simply defined them as oscillatory 

state (OS). 
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Fig. 2 Transition from the region of oscillatory state (OS) to amplitude death 

(AD) as observed through numerical simulation in parameter space (@ −A) 

for two identical Chua’s circuits coupled under MFD coupling. The other 

system parameters are: BC = BD = B = 10 , GC = GD = G = 18.43 , K = 1 , @C = @D = @  and LC = LD = L = 0 , respectively. Here, OS defines the 

oscillatory dynamics with different periods (colour bar 0-9) and AD (colour 

bar 10) the quenched state. The limit of stable state as predicted analytically 

by equation (6) is shown by continuous white line 

 

 
Fig. 3 (a) Transition of M state variable from the region of oscillation death 
state (OD) to amplitude death (AD) as observed through numerical simulation 

with A as control parameter under dual channel coupling. (b) Variation of N 

state variable with A as control parameter under dual channel coupling. No 

state transition is observed here. The other system parameters are: BC = 10,  BD = 0.95BC , GC = 17.64 , 	GD = 1.05GC , K = 1.05 , @C = @D = @  and LC =LD = L  respectively. The initial values of the coupled system are MC(0) =0.5, NC(0) = 0.04, SC(0) = 0.01, MD(0) = 0.05, ND(0) = 0.01, SD(0) = 0.05 
 

 
Fig. 4 The variation of AD, OD, and OS areas as observed through numerical 

simulation in A −@ parameter space with g as control parameter. The other 

system parameters for (i) are: BC = 10 ,  BD = 0.95BC , GC = 17.64 , 	GD =1.05GC , K = 1.05, @C = @D = @  and LC = LD = L  respectively (i.e. both the 

systems are non-identical) and for (ii)	BC = BD = 10,  GC = GD = 17.64,	K =1 , @C = @D = @  and LC = LD = L  respectively (i.e. both the systems are 

identical). In both cases the initial values of the coupled system are MC(0) =0.5, NC(0) = 0.04, SC(0) = 0.01, MD(0) = 0.05, ND(0) = 0.01, SD(0) = 0.05 
 

V. EXPERIMENTAL STUDIES 

Hardware circuits of the coupled Chua’s circuit 

under non-identical dual channel coupling as shown 

in Fig. 1 are designed on a bread board using IC 

TL082 (op-amp for Chua diode, inductor block and 

MFD coupling), capacitors and resistors etc. Here, 

we use a ±�� volt power supply. The two Chua's 

circuits are designed using the following parameters 

[30]: ��� = ��� = ��� ohm, ��� = ��� =��� ohm, ��� = ��� = �. �  kohm, ��# = ��# =��  kohm, ��$ = ��$ = ��  kohm ��� = ��� =�. �  kohm, ��% = ��% = ��� ohm, ��= = ��= =��? = ��? = �  kohm, ���� = ���� = �. �  kohm, ��� = ��� = ��� = ��� = �. �TU , ��� = ��� =�. ��TU and 2 k POT for each ��� and ���. Here, 

the inductors in Chua's circuits are replaced by 

general impedance converters [36]. The effective 

inductances of general impedance converters are 22 

mH each. The MFD coupling block has been 

constructed with �� = �� = �# = �$ = ��  kohm 

and ��(∝ �), ��(∝ �
�) with 10 k POT. The direct 

coupling has been done by using a high value 

resistor �%.  

To explore the dynamics of such modified circuit 

we have first set ��� = �. =#  kohm and ��� =�. %�  kohm. With these values both the system 

show chaotic dynamics (Fig.5(a)). Then we apply 

MFD coupling. When we set �� = �. $? kohm (i.e. � = �. ��) and �� = �. �$ kohm (i.e. � ≈ �. %=) 

the chaotic dynamics converges to oscillation of 

period-1. At �� = �. � kohm (i.e. � = �. �#) the 

oscillatory behavior of both the systems completely 

vanishes and they converge to the same steady state 

(single dc line appears on the oscilloscope). Thus, 

AD occurs. These two results are shown in Fig.5(b) 

and Fig.5(c), respectively. In all these cases the 

direct coupling connection is taken as open 

(i.e.�% = ∞). 

Next we experimentally verify the influence of �% 

(∝ �
+) on the circuit. The AD state (single dc line) 

splits into two new steady states (two dc lines 

appear on the oscilloscope) even when we connect �% with a very high value (300 kohm). Thus OD 

appears. The observation is shown in Fig. 6. The 

separation between the two dc line varies with the 

variation of �%. 
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Fig. 5 Experimentally observed amplitude death in Chua’s circuit. The time 

series traces of YCC  and YDC; (a) the chaotic dynamics in two isolated Chua’s 

circuits for ZCC = 1.84 kohm and ZDC = 1.72 kohm; (b) Oscillation of period-1 

dynamics of MFD coupled Chua circuit for ZCC = 1.84  kohm, ZDC = 1.72 

kohm, \] = 1.59 kohm and \^ = 2.35 kohm and (c) Occurrence of AD in 

the coupled system for ZCC = 1.84 kohm, ZDC = 1.72 kohm, \] = 1.2 kohm 

and \^ = 2.35  kohm. The direct coupling connection is taken as open 

(i.e.\_ = ∞) 
 

 
Fig. 6 Experimentally observed transition from the amplitude death (AD) to 

Oscillation death (OD) for two Chua’s circuits coupled through MFD 

coupling as well as direct coupling. The time series traces of YCC  and YDC; (a) 

the AD in coupled Chua’s circuits for ZCC = 1.84 kohm, ZDC = 1.72 kohm, \] = 1.2 kohm, \^ = 2.35 kohm and\_ = ∞; (b) occurrence of OD for \_ =300kohm;  and (c) separation between two dc line increase with variation of \_ 
VI. CONCLUSIONS 

We have explored the quenching dynamics of 

the non-identical dual channel coupled Chua’s 

circuits. Using detailed numerical simulations we 

have shown that an additional direct coupling 

through second channel can induce multi complex 

dynamics in the coupled system. It generates OD in 

a MFD coupled Chua’s circuit, a transition between 

AD and OD and OD coexists with a nontrivial AD. 

Numerically we show that the fact is true for both 

identical and non-identical systems. It has been 

shown that OD appears in the system even when the 

direct coupling is very weak. We have also 

experimentally observed the generation of OD. This 

study includes a new dimension to the study of 

versatile nonlinear phenomena that one can find in 

most simple Chua’s circuit. The introduction of 

additional coupling makes the system behavior 

more complex. So, the study can be extended to 

other chaotic systems to improve our understanding. 

We also hopeful apart from electronic circuits, the 

dynamics of such dual channel non-identically 

coupled system can be observed in engineering and 

biological systems and it may reveal the practical 

application of this transition. 
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