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Simple and Multi-collision of an Ellipsoid with Planar
Surfaces. Part II: Example
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This paper is a complementary one for our previous paper [25]. The
collision of the elljpsoid is considered to take place with the main
planes of the reference system. In our simulation we obtain the follow-
ing results: no collision, collision with a single plane, simultaneous colli-
sion with two planes, simultaneous collision with the all three planes,
and collision for a longer time with one or more planes.

Keywords: simultaneous collision, simulation, planar surfaces, €ellip-
soid

1. Introduction

This paper contains an example of the vibration of an ellipsoid which collides
with one or more planar surfaces. The formulae used in this paper are those ob-
tained by the authors in their previous one [25].

We consider an ellipsoid of mass m = 60kg and the semi-axes equal to
a=0.1m, »=0.1m, and ¢ = 0.2m. The equation of the ellipsoid is

2 2 2
R (1)
a b c
It results the principal central moments of inertia of the ellipsoid

Jx - m(b2 + cz) - O.6kgm2, Jy - M = 0_6kgm2,
5 > ()
J. = M = 0.24 kgm?.

Because of the equality of the semi-axes a and b, the ellipsoid is a rotational one.
At the point A of coordinates (in the local reference frame Oxyz) x, =0,

v4 =0, z, =c, the ellipsoid is acted by a spring of stiffness k . The other end of
the spring is linked at the point B (Fig. 1).

372



Figure 1. The motion of the ellipsoid.
The point B has an oscillatory motion of equations
Xp = (XB)O + Ay Cos(th)r Yy = (YB)O + Ay COS((*JYt)r
Zy = (ZB)O + Az Cos(mzt)
where (XB)O, (YB)O, and (ZB)0 are the initial coordinates of the point B relative

(3)

to the fixed reference system O,XYZ, Ayz, Ay, and A, are the amplitudes of
the vibration on the three directions O,X , O,Y, and O,Z, t is the time, while
Wy, Wy, and w, are the pulsations of the vibration on the same main axes.

The ellipsoid is acted only by its own weight mg on the vertical direction and

by the elastic force in the spring.
Denoting by X,, Y,, Z, and X,, Y, Z,, the coordinates of the points

A, and B, respectively, by [, the non-deformed length of the spring, by [ the

length of the spring at one given moment, by i,, j,, and k,, the unit vectors of

the axes O,X , O,Y, and O,Z , respectively, by F,,, and F,, the elastic force in

the spring in the fixed reference system O,XYZ, and its magnitude, respectively,
one may write the following relations

l:\/(XA_XB)2+(YA_YB)2+(ZA_ZB)21 )

F, = k|l = |, (5)
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AB AB
F, = k(l - lo)ﬁ = k(l - l())T

(XB _ XA)i() + (YB _ YA)j() + (ZB _ ZA)k() ] ©)
\/(XB - XA)2 + (YB - YA)2 + (ZB - ZA)2
If we denote by [A] the matrix of rotation, by {RP}, and {rp} the column

matrices of coordinates of a generic point P with respect to the systems O,XYZ,
and Oxyz, respectively, one has

= k(1 -1,)

{RP} = [XP Yp ZP]TI {rP} = [xP Yp ZP]T’ ()
{R,} ={Ro} +[Afr, . (8)

Consequently, writing
{Fel} = [FelX Fy F,; ]T ©)

with the aid of its projections onto the axes O,X , O0,Y, and O,Z , the projections
of the elastic force onto the mobile axes are

{fe/} = [A]T{Fez} . (10)
The moment of the elastic force relative to the center O of the ellipsoid is
m, = OA xf,, (11)
0 -z, Y4 | fae 0-cO] fo T ey
{mel} =l zy 0 =xy ) S |=|c O O fop | =| Serw |- (12)
YA Xa 0 | fu 00 0] f 0

The equations of motion of the ellipsoid are
mX = Fy, mY = F,,, mZ=F,, -—mg,
J, 0, _(‘Oy(‘uz(‘]y _Jz):mebc = ey (13)
7,6, —ww, (/. = J.)=my =cf, Jo -wwl/, -J)=m, =0,
where
w, = YPcosdcosO + Osin @, w, = -Ysindpcos 6 + Bcosd,

@, =PsinO+¢. 0

2. Simulation

Two cases are considered for the simulations. In the first case, the working
parameters have the following values: the coefficient of restitution with the plane
0,XY, k =0.5, the coefficient of restitution with the plane O,XZ, k, = 0.6,

the coefficient of restitution with the plane O,YZ, k; = 0.7, the initial position of
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the point B, (X,), =0.15m, (¥;), =0.15m, (Z,), =0.6m, the pulsations
Wy =187, wy, =187, W, =357, the amplitudes of the excitation
Ay =0.1m, Ay =0.1m, A,y =0.05m, the non-deformed length of the spring
I, = 0.05m, the stiffness of the spring k =1.2 x10* N/m, the initial values for
the simulation (X,), =0.15m, (¥,), =0.15m, (Z,), =0.25m, W, =Orad,
6=0rad, ¢ =0rad, (Xo)o =0m/s, (Yo)o =0m/s, (Zo)o =0m/s,
W, =Orad/s, 6, =Orad/s, ¢, = Orad/s. For the second case the exception is

k; = 0.6 .. In both cases the time of simulation is # = 10s, while the step of itera-
tion is Ar = 0.0025s. The results of the simulation are given in the next figures.

b)

Figure 2. Time history: &) X, = X, (t); 6) X, = X, (¢) in the first case.

; : b
Figure 3. Time history: &) Y, = Y, (t); b)Y, = Y,(t) in the first case.

b)
in the first case.

: b) Zy = Z,(t)

b)

a) b)

Figure 6. Time history: &) 6 = 8(c); 6 = 6(¢) in the first case.
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3. Conclusion

The first case offers only simple and double collisions. An example of a colli-
sion with the planes O,YZ and OyXZ is at ¢+ =3.1025s. A series of successive

collisions with the plane O,YZ appears for ¢ D[2.2725,2.4375]s. The second

case offers triple collision at r = 3.0825s.

The shape of the diagrams in Figs. 2—13 suggests the possibility of the ap-
pearance of chaotic dynamics in the motion of the ellipsoid. A study concerning
this aspect will be the goal of a future paper.
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