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Combined Effects of Hall Current and Chemical 
Reaction on Unsteady MHD Flow Past an 
Impulsively Started Vertical Plate with Constant 
Wall Temperature and Mass Diffusion 

Uday Singh Rajput, Neetu Kanaujia 

Combined effects of Hall current  and chemical reaction on unsteady 
MHD flow past a vertical plate with constant wall temperature and 
mass diffusion is studied here. The fluid considered is electrically con-
ducting and heat generating. The Laplace transform technique has 
been used to find the solutions for the velocity and Skin friction. The 
velocity profile, temperature and mass diffusion have been studied for 
different parameters like Schmidt number, Hall parameter, magnetic 
parameter, chemical reaction parameter, mass Grashof number, ther-
mal Grashof number, Prandtl number, and time. The effect of parame-
ters is shown graphically, and the values of the skin-friction have been 
tabulated. 

Keywords: MHD flow, Chemical reaction, Constant temperature and 
Mass diffusion, Skin fraction, and Hall current. 

1. Introduction  

Study of MHD and heat generation effect of moving fluid is important in 
view of several physical problems, such as fluid undergoing exothermic or 

endothermic chemical reactions. Chemical reaction can be codified as either 
homogeneous or heterogeneous process. MHD flow and Hall effect are 

encountered in powergenertors, refrigeration coils, and electric transfers etc. The 
researchers have studied the effect of Hall current in various flow models. . 

Mythreye et al. [5] have analysed chemical reaction on unsteady MHD convective 

heat and mass transfer past a semi infinite vertical permeable moving plate with 
heat absorption. Katagiri [1] has considered the effect of Hall current on the 
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magneto hydrodynamic boundary layer flow past a semi-infinite plate. Kandasamy 
et al. [2] have studied effects of chemical reaction, heat and mass transfer along a 

wedge with heat source and concentration in the presence of suction or injection. 
Hossain et al. [6] have analysed MHD free convection and mass transfer flow 

through a vertical oscillatory porous plate with Hall, ion-slip current and heat 

source in a rotating system. Seth et al. [4] have studied Hall effect on unsteady 
MHD natural convection flow of a heat absorbing fluid past an accelerated moving 

vertical plate with ramped temperature. Shehzad et al. [7] have studied three-
dimensional MHD flow of casson fluid in porous medium with heat generation. 

Gamal et al. [8] have analysed chemical entropy generation and MHD effects on 
the unsteady heat and fluid flow through a porous medium. Satya et al. [3] have 

studied the effects of Hall current and radiation absorption on MHD micropolar 

fluid in a rotating system. We are considering combined effects of Hall current  and 
chemical reaction on unsteady MHD flow past a vertical plate with constant wall 

temperature and mass diffusion. The effect of Hall current on the velocity have 
been observed with the help of graphs, and the skin friction has been tabulated. 

 

2. Mathematics Analysis.  

The unsteady flow of an electrically conducting, incompressible, viscous fluid 

past a vertical plate has been considered. The x axis is taken in the direction of the 
motion and z normal to it.  A transverse magnetic field B0 of uniform strength is 

applied on the flow. Initially it has been considered that the plate as well as the 

fluid is at the same temperature T∞. The species concentration in the fluid is taken 
as C∞. At time t>0, the plate starts oscillating in its own plane with frequency ω , 

the temperature of the plate and the concentration of the fluid, respectively are 
raised to Tw  and 

wC . Using the relation 0=⋅∇ B  for the magnetic field 

( )zyx BBBB ,,= , we obtain 
yB (say

0B ) = constant, i.e. ( )0,,0 0BB = , where
0B is 

externally applied transverse magnetic field. The Geometry of the problem is given 

in figure 1A. 
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 Figure 1A Geometry of the problem 

 
Let V be the velocity vector, and u, v, w are respectively the velocity 

components along x, y and z-directions. The governing equation of continuity is 
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 Since there is no variation of flow in the y- direction, therefore v = 0 

 The generalized ohm’s law including the effect of Hall current according to 
cowling (1957) is given as 
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 The external electric field E = 0, since polarization of charges is negligible. 

 Let  (jx,  jy, jz) be the components of current density J. Here jx, jy, and jz are 

the components  of current density  in the x, y, and  z directions,  respectively . 
Using above assumption, we get 
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  The fluid model is as under – 
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 The initial and boundary conditions are 

 

,CC  ,TT  0,  w0,u:0t ∞∞ ====≤   for all y. 

 
,CC  ,TT  0,  wt,cosuu:0t ww0 ====> ω
   

at  y=0.                                  (5) 

 ∞∞ →→→→ CC  ,TT  0,  w0,u   as ∞→y , 

 
 Here u and w are the primary and the secondary velocities along x and z 

respectively, ν- the kinematic viscosity, ρ- the density, Cp- the specific heat at 
constant pressure, k- thermal conductivity of the fluid,   D- the mass diffusion 

coefficient,  g- gravitational acceleration, β- volumetric coefficient of thermal 

expansion, t- time, m- the Hall current parameter, T- temperature of the fluid, β*

 
- 

volumetric coefficient of concentration expansion, C- species concentration in the 

fluid, Tw- temperature of the plate, Cw- species  concentration, B0 - the uniform 
magnetic field, σ - electrical conductivity.  

 

 The following non-dimensional quantities are introduced to transform 
equations (1), (2), (3) and (4) into dimensionless form: 
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 The symbols in dimensionless form are as under:   

 u  - dimensionless velocity of the fluid in  x- direction, w - dimensionless 

velocity of the fluid in  z- direction, θ  - the dimensionless temperature, C - the 

dimensionless concentration, Gr- thermal Grashof number, Gm  - mass Grashof 

number, µ - the coefficient of viscosity, Pr - the Prandtl number, Sc - the Schmidt 

number, M - the magnetic parameter, 0K  - chemical reaction, t - time, Q - heat 

generation   parameter. 
The dimension less flow model becomes 
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 The corresponding boundary conditions become 
 

0,C  0,θ  0,w  0,u:0t ====≤      for all y . 

1,C  1,θ  0,w  t,cosu:0t ====> ω
  

at  y =0.                                          (11) 

0,C  0,θ  0,w  0,u →→→→
  

as .∞→y                                               
 

Dropping the bars and combining equations (7)  and (8), we get 
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where iw,uq +=  with corresponding boundary conditions 
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 The solutions of the above equations are obtained by the Laplace 
transform method, which are as under 
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3. Skin friction  

The dimensionless skin friction at the plate y = 0 is computed by 
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4. Sherwood number  

 The dimensionless Sherwood number at the plate y = 0 is computed by 
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 5. Nusselt number 

 The dimensionless Nusselt number at the plate y = 0 is computed by 
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4. Results and Discussion 

 The numerical values of velocity, and skin friction are computed for different 
parameters. The values of the main parameters considered are 

 

M = 1, 1.5, 2; Gm = 5, 10, 15; Sc = 2, 5, 7; t = 0.1, 0.2, 0.3; Q = 1, 5, 10; 

tω =
°°° 60,45,30 ; Gr =10, 20, 30; K0 = 1, 10, 20; M = 1, 3, 5; Pr = 2, 3, 5. 

 
 It has been observed from figures 1, 2, 3, 7, and 9 that primary velocity (u) 

increases when Gm, Gr, m, t, and Q are increased. It means, Hall current has 
increasing effect on the flow of the fluid along the plate.  However, figures 4, 5, 6, 

8 and 10 show that u decreases when M, Pr, Sc, K0 and tω  are increased. Almost 

similar pattern is observed for secondary velocity. Figures 11, 12, 14, 17, and 19 

show that the secondary velocity (w) increases when Gm, Gr, M, t and Q are 
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increased. However, figures 13, 15, 16, 18 and 20 show that w decreases when m, 
Pr, Sc, K0 and tω  are increased. This implies that the Hall parameter slows down 

the transverse velocity. Figure 21 shows that concentration decreases when K0 is 
increased. And figure 22 shows that temperature increases when Q is increased. 

Table 1- shows that Skin fraction  xτ  decreases with increase in Sc, Pr K0 and M 

and it increases with Gr, Gm, m, t, Q, and tω . Further, zτ  increases with the 

increase in Gr, Gm, t, Q, and M; and it decreases with Pr, m, Sc, K0 and tω .  

 
 The results obtained are in agreement with the actual flow. 

 

 
 

    
Figure 1. The effect of Gm on velocity u.       Figure 2. The effect of Gr on velocity u. 
 

 
 

 

    
Figure 3. The effect of m on velocity u.           Figure 4. The effect of M on velocity u. 
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Figure 5. The effect of Pr on velocity u            Figure 6. The effect of Sc on velocity u. 
 

.      
Figure 7.The effect of t on velocity u.                Figure 8. The effect of K0 on velocity u. 

 
 

  
 

Figure 9. The effect of Q on velocity u.           Figure 10. The effect of tω  on velocity u 
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Figure 11. The effect of Gm on velocity w.      Figure 12.  The effect of Gr on velocity w. 
 

 
 

       
Figure 13. The effect of m on velocity w.          Figure 14.The effect of M on velocity w. 

 
 

           
Figure 15. The effect of Pr on velocity w.          Figure 16. The effect of Sc on velocity w. 
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Figure 17. The effect of t on velocity w.        Figure 18. The effect of K0 on velocity w. 

 

 

     

Figure 19.The effect of Q on velocity w.       Figure 20. The effect of tω  on velocity w. 

      

Figure 21. The effect of K0 on Concentration C   Figure 22. The effect of Q on   

                        temperature .θ  

 

 5. Conclusion  

 

 The effects of Hall current, heat generation, and chemical reaction are 
observed on both, the primary and secondary velocities. It has been observed that 

the primary velocity increases with heat generation, and Hall parameter. However 
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it decreases with chemical reaction. Further, secondary velocity increases when 
heat generation parameter is increased. However it decreases with Hall parameter 

and chemical reaction parameter. Similar effect is observed for drag at boundary. 

That is  xτ  increases with heat generation parameter, permeability of the medium 

and Hall parameter, and it decreases with chemical reaction parameter. Further, 

zτ  decreases when Hall and chemical reaction parameters are increased.  

            

                            Table 1. Skin friction for different parameter 

M m Pr Sc Gm Gr Q K0 t ωt [°] xτ
 zτ

 

3.0 1.0 0.71 2.01 10 10 1.0 1.0 0.2 30 3.4349 0.5266 

5.0 1.0 0.71 2.01 10 10 1.0 1.0 0.2 30 3.0542 0.8165 

2.0 1.5 0.71 2.01 10 10 1.0 1.0 0.2 30 3.7722 0.3455 

2.0 2.0 0.71 2.01 10 10 1.0 1.0 0.2 30 3.8562 0.1889 

2.0 10 3.00 2.01 10 10 1.0 1.0 0.2 30 2.7871 0.3138 

2.0 1.0 5.00 2.01 10 10 1.0 1.0 0.2 30 2.5065 0.3014 

2.0 1.0 0.71 5.00 10 10 1.0 1.0 0.2 30 3.1349 0.3416 

2.0 1.0 0.71 7.00 10 10 1.0 1.0 0.2 30 2.9709 0.3355 

2.0 1.0 0.71 2.01 05 10 1.0 1.0 0.2 30 2.6515 0.3386 

2.0 1.0 0.71 2.01 15 10 1.0 1.0 0.2 30 4.6056 0.3897 

2.0 1.0 0.71 2.01 10 20 1.0 1.0 0.2 30 6.3514 0.4587 

2.0 1.0 0.71 2.01 10 30 1.0 1.0 0.2 30 9.0742 0.5533 

2.0 1.0 0.71 2.01 10 10 5.0 1.0 0.2 30 4.0376 0.3808 

2.0 1.0 0.71 2.01 10 10 10 1.0 0.2 30 4.8040 0.4105 

2 1.0 0.71 2.01 10 10 1.0 10 0.2 30 3.1619 0.3487 

2 1.0 0.71 2.01 10 10 1.0 20 0.2 30 2.8861 0.3394 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.1 30 2.0408 0.2133 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.3 30 4.6922 0.5169 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.2 45 4.1697 0.3430 

2 1.0 0.71 2.01 10 10 1.0 1.0 0.2 60 6.3961 0.2442 
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