
Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

31
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Pseudocode Interpreter (Pseudocode

Integrated Development Environment with

Lexical Analyzer and Syntax Analyzer using

Recursive Descent Parsing Algorithm)

Christian Lester D. Gimeno

Computer Department, College of Arts and Sciences, Iloilo Science and

Technology University, Iloilo City, Philippines

christianlester.gimeno@isatu.edu.ph

Date Received: August 2, 2017; Date Revised: October 27, 2017

Asia Pacific Journal of

Multidisciplinary Research

Vol. 5 No.4, 31-38

November 2017

P-ISSN 2350-7756

E-ISSN 2350-8442

www.apjmr.com

Abstract –This research study focused on the development of a software that helps students design,

write, validate and run their pseudocode in a semi Integrated Development Environment (IDE) instead of

manually writing it on a piece of paper.Specifically, the study aimed to develop lexical analyzer or lexer,

syntax analyzer or parser using recursive descent parsing algorithm and an interpreter. The lexical

analyzer reads pseudocodesource in a sequence of symbols or characters as lexemes.The lexemes are

then analyzed by the lexer that matches a pattern for valid tokens and passes to the syntax analyzer or

parser. The syntax analyzer or parser takes those valid tokens and builds meaningful commands using

recursive descent parsing algorithm in a form of an abstract syntax tree. The generation of an abstract

syntax tree is based on the specified grammar rule created by the researcher expressed in Extended

Backus-Naur Form. The Interpreter takes the generated abstract syntax tree and starts the evaluation or

interpretation to produce pseudocode output.
 The software was evaluated using white-box testing by several ICT professionals and black-box

testing by several computer science students based on the International Organization for Standardization

(ISO) 9126 software quality standards. The overall results of the evaluation both for white-box and

black-box were described as “Excellent in terms of functionality, reliability, usability, efficiency,

maintainability and portability”.

Keywords –Interpreted Programming Language, Lexical Analysis, Pseudocode Interpreter, Recursive

Descent Parsing,Syntax Analysis

INTRODUCTION

Pseudocode is an outline that simplifies and

represents programming language, used in designing

programs [1].Pseudocode is very important in the field

of Computer Science because of its simplicity in

representing algorithms and is considered as one of

the best notation used in teaching introductory

computer programming. An algorithm by definition is

an ordered set of well detailed and clear steps

provided to a computer in solving a particular

computing problem.

Teaching Computer Science students how to

design, analyze and write pseudocode in solving

computer programming problems is very difficultand

challenging to the Computer Science educators. At

present, there is no standard pseudocode syntax

adopted in teaching computer program logic

formulation. Syntax refers to the correct structure and

grammar of the pseudocode. Book authors and

educators implement their own syntax, special

techniques, and sets of grammar rules in writing

pseudocode.

Educators spend a lot of time checking and

evaluating pseudocodes manually written by students

on a piece of paper. As a result, educators cannot give

immediate feedback and corrections to each student.

In the same way, students who are taking

Programming Fundamentals subject cannot

comprehend the concept of creating an algorithm well

since it is written on a piece of paper. As a

result,students are not given the chance to actually see

the output of their written pseudocode and they cannot

test their pseudocode designs whether it is correct or

wrong as the designs are not executable. Executable

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

32
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

means that it can be run on the computer to see the

output. Furthermore, students are not sure whether

their pseudocode meets an educator's expected syntax

and logical designs.

To solve these problems, the researcher developed

a software that served as a tool in teaching

Programming Fundamentals. The tool served as an

Integrated Development Environment (IDE) where

students can design, write, validate and run their

pseudocode to see its output. Moreover, educators

can save time checking the correctness of the

pseudocode written by each student and can provide

immediate feedback to the students.

The researcher developed a lexical analysis or

lexer that splits pseudocode file or source into tokens;

a syntax analysis or parser using recursive descent

parsing algorithm that validates pseudocode

syntactically and generates an abstract syntax tree

along with the commands. The generation of an

abstract syntax tree is based on the specified grammar

rule created by the researcher expressed in Extended

Backus-Naur Form.In computer science definition,

Extended Backus-Naur Form is a notation used to

expressa formal description of a programming

language. In addition, the researcher developed an

interpreter that interprets the generated abstract syntax

tree and block of commandsto produce the output.In

this study, abstract syntax tree refers to an abstract

data plan or data structure used as global storage of all

valid tokens and commands generated by the parser or

syntax analyzer. The keywords used in this study are

common words from the English language and can be

easily understood by students.

The result of this research will help students to

quickly write, debug and run pseudocode with ease

instead of writing it on a piece of paper. The students

can grasp and understand the concept of programming

well when they see the output of their written

pseudocode quickly using the software. The

software will provide accompanying keyword

highlighter to help students familiarize with all the

keywords used in pseudocode.

The research is also beneficial to the Computer

Science educators who are teaching introductory

computer programming subjects, for it can be used as

an instructional tool in teaching pseudocode and

problem-solving. This research will help educators

explain the concept of algorithm expressed in

pseudocode with minimal effort by using the proposed

software. They can allow students achieve a deeper

understanding of pseudocoding techniques using the

software rather than by simply reading a textbook and

writing pseudocode on a piece of paper.

RELATED LITERATURE

The syntheses of ideas and information that

support the development of Pseudocode Interpreter

conducted through an active and profound research

are presented. An overview of the Lexical Analysis

(Lexer or Tokenizer), Syntax Analysis (Parsing or

Parser), Recursive Descent Parsing, Abstract Syntax

Tree, and Interpreter are discussed. Moreover, the

review of previous researches, applications,

requirements and other considerations that were found

in the journals, books, websites, encyclopedias,

thesis/dissertations and other published studies were

included to further support the study.

 A lexical analyzer, or lexer for short, takes a string

of individual letters and divide this string into tokens.

Additionally, it will filter out whatever separates the

tokens (the so-called white-space), i.e., layout

characters (spaces, newlines etc.) and comments [2].

In this study, the researcher used Lexical Analysis to

scan the pseudocode source as a stream of characters

and converts it into meaningful lexemes and stores it

on a data structure. Lexical analyzer represents these

lexemes in the form of the token as: <token-name,

attribute-value>. The lexical analyzer splits the

pseudocode source into lexemes, by skipping any

whitespaces, single line comments and multiple line

comments.

Lexemes are said to be a sequence of characters

(alphanumeric) in a token. There are some predefined

rules for every lexeme to be identified as a valid

token. These rules are defined by grammar rules, by

means of a pattern. A pattern explains what can be a

token, and these patterns are defined by means of

regular expressions [3].

 In this study, a token of a language is a category

of its lexemes. For example, an identifier is a token

that can have lexemes, or instances, such as sum and

total. Consider the following pseudocode statement:

magic = 2 * counter + 10;

The lexemes and tokens of this statement are:

Lexemes Tokens
magic identifier

= equal-sign

2 integer-literal

* multiplication-operator

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

33
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

counteridentifier

+ addition-operator

10 integer-literal

; semi-colon

Syntax analyzer is the act of checking whether a

grammar “accepts” an input text as valid (according to

the grammar rules).As a side effect of the parsing

process, the entire syntactic structure of the input text

is uncovered. Since the grammar rules are

hierarchical, the result is a tree-oriented data structure,

called parse tree or derivation tree [4].

In this study, the syntax analyzer or parser is the

part of the program that takes tokens from a data

structure passed by the lexer, checks them, and takes

some action according to the token’s value. The

parser takes those actions based on the rules of the

programming language expressed in Extended

Backus-Naur Form.

 Another literature is the Abstract Syntax Tree.

In computer science, an abstract syntax tree (AST), or

just a parse tree or syntax tree, is a tree representation

of the abstract syntactic structure of source code

written in a programming language. Each node of the

tree denotes a construct occurring in the source code.

The syntax is "abstract" in not representing every

detail appearing in the real syntax. For instance,

grouping parentheses are implicit in the tree structure,

and a syntactic construct like an if-condition-then

expression may be denoted by means of a single node

with three branches. This distinguishes abstract

syntax trees from concrete syntax trees, traditionally

designated parse trees, which are often built by a

parser during the source code translation

and compiling process. Once built, additional

information is added to the AST by means of

subsequent processing, e.g., contextual analysis [5].

In this study, the Abstract Syntax Tree is a data

structure that acts as a global storage of programming

language commands. The researcher used linked list

to implement this abstract syntax tree to organize

commands (statements) in a data structure.

The researcher also used the Extended Backus-

Naur Form (EBNF) in describing pseudocode

grammars and structure theorem in implementing the

interpreter. The Interpreter, on the other hand, takes

the instructions handled by the parser and does the

items in the source code in a certain order. Moreover,

the interpreter reads the source code, gets tokens and

parses it to have an abstract plan in a data structure.

When the execution time comes, the interpreter reads

the abstract instructions from the data structure and

executes things one by one.

Structure Theorem states that it is possible to

write any computer program by using only three basic

control structures that are easily represented in pseudo

code: sequence, selection, and repetition.

Sequence.The sequence control structure is the

straightforward execution of one processing step after

another.

Selection.The selection control structures are the

presentation of a condition and the choice between

two actions, the choice depending on whether the

condition is true or false. This construct represents

the decision-making abilities of the computer and is

used to illustrate the fifth basic computer operation,

namely to compare two variables and select one of

two alternative actions.

Repetition.The repetition control structure can be

defined as the set of instructions to be performed

repeatedly, as long as a condition is true. The basic

idea of repetitive code is that a block of statements is

executed again and again, until a terminating

condition occurs. This construct represents the sixth

basic computer operation to repeat a group of

actions[6].

 The researcher used Structure Theorem as the

proper structure on how the user will input the

pseudocode. The user must follow the Structure

Theorem to prevent error/s in validating the

inputtedpseudocode. However, there will be a

difference with the syntax in the structure theorem.

The researcher created and adopted the closely related

language like C language to the syntax found on the

Structure Theorem. The uses of curly braces,

brackets, semicolon at the end of every statement are

examples to be adopted in this study.

PseudoCode Compiler is a software that implements a

basic version of the pseudocode used for teaching

algorithms and problem-solving concepts. The

software was developed by Chris Henderson [7].

 The Pseudocode Compiler is similar to this study

because this software used Lexer to tokenize written

pseudocode and a Parser that parse tokens to produce

the output. The software also supports looping

constructs such as while, repeat until and counted

loop. However, the software does not support nested

construct such as nested loop and nested condition. It

does not also support combined condition using

logical AND and OR. In this study, the researcher’s

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

34
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

software is similar to the Pseucode Compiler but it can

support nested loops, nested condition, combined

condition and modulo operator that enables students to

solve complex programming problems.

Another software called Dynamic Parser can

perform syntactic analysis or parsing of input data

consisting of a set of tokens based upon a provided

grammar including conditional tokens. It was

developed by Evgueni Zabokritski. While

the parser grammar can be fixed, the

dynamic parser can utilize an independent transform

function at parse time to translate or replace particular

tokens effectively performing dynamic parsing. The

transform function can be utilized in conjunction with

conditional tokens to selectively activate and

deactivate particular grammar rules [8].

A dynamic Parser is a software that can parse the

input of the user based upon a provided grammar

including conditional tokens similar the Pseudocode

Interpreter that uses a parser that validates the pseudo

code source inputted by the user according to the

specified grammar expressed in Extended Backus-

Naur Form.PSeInt is a pseudocode interpreter for

Spanish-speaking programming students developed by

Pablo Novara. Its main purpose is to be a tool for

learning and understanding the basic concepts about

programming and applying them with an easy

understanding Spanish pseudocode[9].PSeInt is a tool

to assist students in their first step in programming.

Through a simple and intuitive pseudo-language in

Spanish (supplemented with a text editor flowcharts),

it allows you to focus on the fundamental concepts of

computational algorithms, minimizing the difficulties

of language and providing a work environment with

numerous grants and didactic resources. PSeInt is

related to this study because it uses Lexical and

Syntax Analysis in processing pseudocode source in

the Spanish language. The tool also supports

keywords and syntax coloring similar to the tool to be

developed in this study which will support variety set

of keywords and functions library.

OBJECTIVES OF THE STUDY

The general objective of this study was to develop

a Pseudocode Interpreter.

Specifically, this research study aimed to develop

lexical analyzer that performs lexical analysis on

pseudocode to produce a valid token; develop syntax

analyzer using recursive descent parsing algorithm

that validates pseudocode source syntactically and

generates an abstract syntax tree and commands;

develop an Interpreter that interprets the generated

abstract syntax tree and commands to produce the

necessary interpretation of pseudocode source; and

evaluate the system based on International

Organization for Standardization (ISO) 9126 in terms

of functionality, reliability, usability, efficiency,

maintainability and portability.

MATERIALS AND METHODS

Pseudocode Interpreter is a software that acts as

an Integrated Development Environment for the

students who are taking programming introductory

subject such as program logic formulation. Its main

purpose is to be a tool for learning and understanding

the basic concepts of programming and applying an

easy understanding of the programming language

structure. The software was designed to help students

learn writing correct pseudocodes and to solve

programming problems. This software was also

intended to help educators teach the basic of

programming notion using pseudocode. The

researcher designed a software to establish standard

pseudocode for teaching introductory programming

subject (CS 2- Program Logic Formulation) in

Computer Science, Information Systems, and

Information Technology curriculums.

The skeletal structure of the software was depicted

and shown in Figure 1.

Figure 1. Skeletal Structure of the Software

This is how it works semantically:

• LEXER gets the pseudocode source and splits it into

tokens

• PARSER gets those tokens and creates commands

from them according to thelanguage grammar. It

places those commands into the abstract syntax tree.

• INTERPRETER takes the abstract syntax tree and

starts interpretation to produce output.

To fully understand the flow of the software, the

context diagram had been discussed in this section.

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

35
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

Figure 2. Context Diagram of Pseudocode

Interpreter

The Context Diagram of the Pseudocode

Interpreter is shown in Figure 2 depicting the actual

flow of data coming from the user and its

transformation. It contains the process symbol that

represents the software to model. It also shows the

external entity (user) who will interact with the

software. In this diagram, the users who may interact

include the students, teachers or anyone who wants to

use the software and learn programming essentials. In

between the process and the external entity, there are

data flows (connectors) that indicate the existence of

information exchange between the entity and the

software.The software accepts a pseudocode source or

a pseudocode file given by the user. Then, it

performs lexical and syntax analysis to determine the

validity of the tokens. The software will notify the

user if there are some invalid tokens received,

otherwise, it will generate an abstract syntax tree to be

used by the interpreter in generating the output.

Project Development Methodology

Figure 3. Prototyping-based Methodology [11]

Software prototyping methodology is the software

engineering model used by the researcher in the

development of Pseudocode Interpreter as shown in

Figure 3.

The software prototyping refers to building

software prototypes which display the functionality of

the product under development but may not actually

hold the exact logic of the original software [10].

In software prototyping, instead of freezing the

requirements before proceeding to design or coding

stage, a prototype is built to understand the

requirements. The prototype is developed based on

the currently known requirements. By using the

prototype, the end user can get an actual feel of the

software since the interactions with the prototype

enable them to understand the requirements of the

desired software better.

The software was implemented using Java

programming language and Netbeans 8.2 on Windows

environment. Java Developers Kit version 8 and Java

Runtime Environment were also used.

RESEARCH METHOD USED

The evaluation of the software was based on the

evaluation criteria of the standards of ISO 9126.

The ISO 9126 software quality model identifies six

main quality characteristics namely: Functionality,

Reliability, Usability, Efficiency, Maintainability, and

Portability.

For the test case design method, the researcher

used both the white box and black box testing

methods. For the white box, the researcher took the

basis path testing wherein it examines all the possible

paths of execution for at least once, which includes

the flow graph notation, cyclomatic complexity,

independent path and the graph matrices. These

methods focus on control structure and the

internal/logical structure of the software. The

respondents for the white box testing are mostly

developers, IT personnel, programmers, and

educators. The Black box testing was conducted by

the researcher and was done based on the Graphical

User Interface(GUI) of the system, where the

researcher examined some fundamental aspects of the

software with little regard for the internal logical

structure of the software. The respondents of the

black box testing are the students who have already

taken up introductory programming subject. For the

testing strategies, the researcher applied unit testing

wherein each method or operation within the class of

the software will be tested to uncover errors in the

internal processing logic and data structure within the

boundaries of the module. Next, the researcher

applied an integration testing wherein the approach

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

36
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

used is the bottom-up approach. The researcher began

the constructions and testing from the lowest level and

moving upward. In addition, the researcher applied

the regression testing ensuring that the integrated

software does not produce unintended side effects

while integrating each cluster. Then the researcher

applied the validation testing which is based on the

requirement specifications of the end-users wherein in

all functional requirements were satisfied, and all

behavioral characteristics were achieved. Under

validation testing, the researcher conducted the Alpha

and Beta testing wherein the Alpha testing was done

on the developers side with the representative group

of the end-user while the beta testing was done in an

environment that cannot be controlled by the

researcher; the end-users record all problems that had

been encountered and these were modified. Lastly,

the researcher used software testing to fully exercise

the Pseudocode Interpreter through stress testing, and

deployment testing.

VALIDATION OF INSTRUMENT

The instrument used for the study contains the

Personal Information of the respondents, as well as

their educational and employment information.

The list of ISO 9126 statements used in the instrument

has been validated and published by Abra, Al-Qutaish,

Desharnais and Habra [12].

DATA COLLECTION PROCEDURE

To gather initial data such as software

requirements and in-depth knowledge of the study,the

researcher conducted series of interviewswith

different computer science students and with the

different ICT professionals. The purpose of the

interview was to get all the software requirements to

start the software development. After the

development of the software, the researcher conducted

quantitative data gathering in the form of a survey

using questionnaires. Two sets of survey

questionnaires were prepared for two sets of

respondents.

The researcher has chosen30 respondents

including two teachers specializing in programming

subjects, ten software developers from the industry

and eighteen computer science students. The

respondents were chosen through purposive sampling

technique in which the researcher has chosen a

specific group or a person willing to participate in this

research. Implementing purposive sampling technique

warrants that a cross-section of computer science

students is included in the sample. This method

allows each computer science student,already taken

(CS 2) Program Logic Formulation subject (who have

passed or failed the subject), male or female, 2
nd

 year

to 3
rd

 year were invited to evaluate the software.

Furthermore, ten software developers from the

industry, who are 18 years old and above, male or

female, specializing in programming (any

programming language), junior or senior programmer

were also invited to evaluate the software. Each

respondent had the privilege to state their suggestions,

comments, and feedback.Two important ethical issues

adhered during the conductof the research,

confidentiality and informed consent. The

respondent’s right to confidentiality is always

respected in this research and any legal requirements

on data protectionadhered. The respondents were fully

informed about the aims of the research, and the

respondent’s consent to participate in the evaluation

were obtained and recorded.

DATA PROCESSING AND STATISTICAL TREATMENT

The researcher used Microsoft Excel 2010 for the

data processing and analysis in this study. To

determine the validity and reliability of the software,

the weighted Mean and Standard Deviation (SD) was

used to ensure that the software conforms to its stated

requirements.

Displayed in Table 1is the scoring method used by

the respondents to evaluate the software based on ISO

9126.
Table 1.Scoring Method

RESULTS AND DISCUSSION

The researcher used the weighted mean and

standard deviation in determining the functionality,

and the user acceptability of the software. Based on

the results of the evaluation collected from the ICT

professionals, the overall results of the software’s

evaluation based on ISO 9126 software quality

standards was rated with a mean of 4.31 and standard

deviation of 0.63 and is described as “Excellent” as

shown in Table 2.This means that software is

Range of Scale Description

4.21-5.00 Excellent

3.41-4.20 Very Satisfactory

2.61-3.40 Satisfactory

1.81-2.60 Good

1.00-1.80 Poor

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

37
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

acceptable with no revisions as evaluated by the

different ICT professionals including programmers,

developers, and ICT teachers.

Table 2.Evaluation of the System through White Box

Testing of the Software (perceived by ICT professionals)

Statement Mean Description SD

Objective 1: develop lexical

analyzer that performs lexical

analysis on pseudocode to

produce a valid token.

4.00 Very

Satisfactory

0.85

Objective 2: develop syntax

analyzerusing recursive

descent parsing algorithm that

validates pseudocode source

syntactically and generates an

abstract syntax tree and

commands.

4.17 Very

Satisfactory

0.58

Objective 3: develop an

Interpreter that interprets the

generated abstract syntax tree

and commands to produce the

necessary interpretation of

pseudocode source.

4.75 Excellent 0.45

Overall 4.31 Excellent 0.63

For objective 1stated as develop lexical analyzer

that performs lexical analysis on pseudocode to

produce a valid token has a Mean value of 4.00 and

SD of 0.85 which described as “Very Satisfactory”.

This means that the lexical analyzer functions

accurately based on its stated purpose and set of

functionalities to validate tokens on pseudocode

source. The results denote that the software as

perceived by the respondents, handles tokens and

lexemes coming from lexer while maintaining its

performance level. The software can

accommodate multiple entries of pseudocode

source. The software also exhibits lack of software

errors and failure.

For objective 2 stated as develop syntax

analyzerusing recursive descent parsing algorithm that

validates pseudocode source syntactically and

generates an abstract syntax tree and commands has a

Mean value of 4.17 and SD of 0.58 which described

as “Very Satisfactory”. This means that the main

function of the softwareto analyze pseudocode source

syntactically shows that the software components

interacted with other components of the software

accurately and completely displayed the necessary

results such as parsing arithmetic and boolean

expressions; ladderized and nested conditional

statements; switch case andarrays; and nested looping

statements such as for loop, while loop and do-while

loop.

 For objective 3 stated as develop an Interpreter that

interprets the generated abstract syntax tree and

commands to produce the necessary interpretation of

pseudocode source has a Mean value of 4.75 and SD

of 0.45 which described as “Excellent”. This means

that the software accurately and completely displayed

the necessary results. It is also implied that the

software, as evaluated by the respondents’ complied

as an application which validates and interprets

pseudocode correctly based on the syntax and makes

it executable whenever the user writes and runs

pseudocode source on the software.The majority of

the respondents also agreed that the software functions

accurately based on its stated functionality.

Table 3. Evaluation of the System through Black Box

Testingof the Software (perceived by computer science

students)

Characteristics Average

Mean

Description Standard

Deviation

Functionality 4.18 Very

Satisfactory

0.56

Usability 4.22 Excellent 0.53

Average Mean 4.20 Very

Satisfactory

0.6

The overall average mean of the Pseudocode

Interpreter was rated as 4.20 with a standard deviation

of 0.60 described as “Very Satisfactory” based on the

perception of the computer science students. It

signifies that the software is easy to use and the

features are easily understood by the students.As

shown in Table 3,the assessment of the users in terms

of functionality was described as “Very Satisfactory”

with a mean value of 4.18 and SD of 0.56 which

described as “Very Satisfactory”. This means that the

software functions accurately based on its stated

functionality. It also implies that the software

interoperates cohesively or smoothly with other

related libraries which include the abstract syntax

tree classes, the runtime classes and the grammar

rules.
Usability was described as “Excellent” by the

respondents with a mean of 4.22 and SD of 0.53.This

means that the functions and content of the software

were designed for its intended user.The software is

easy to use and can be operated by the user in a given

environment and the software provides easy

Gimeno , Pseudocode Interpreter (Pseudocode Integrated Development Environment with Lexical Analyzer…

38
P-ISSN 2350-7756 | E-ISSN 2350-8442 | www.apjmr.com

Asia Pacific Journal of Multidisciplinary Research, Vol. 5, No. 4, November 2017

navigations.It shows that it was readily accepted by

the majority of the students because it shortens the

learning curve of the students. Moreover, the results

of the evaluation show that the software was designed

according to the needs and specifications of the end-

users.

CONCLUSION AND RECOMMENDATION

After attaining all the objectives of the research

entitled Pseudocode Interpreter, the researcher

established the following conclusions: (1) the software

can accept the user’s input based on the Robertson’s

structure theorem; (2)the software performs lexical

analysis on the pseudocode source, matching every

element found and creates a valid token; (3)the

software can interpret arithmetic expressions, boolean

expressions, and combined arithmetic-boolean

expressions; (4) the software can parse three control

structures such as sequence, selection, and repetition;

and (5) the software can interpret the pseudo code

source and provides the user the interpreted results.

The following are the recommendations for the other

functions and improvement of the software. These

are the following: (1) the software does not have code

completion to speed up the process of coding, the

researcher recommends toenhance the software that

has the intelligence or can give auto-suggestion; (2)

that software does not have number lines for better

readability, hence, the researcher recommends to

enhance the software that can display number lines to

help user finds specific line of code;and (3) the

software does not have desk check table for variable

monitoring purposes, thus, the researcher recommends

to enhance the software that can produce desk-check

table for step by step simulation of the output and

better monitoring of the values displayed on the

screen.

REFERENCES
[1] Terms, P. I. (2017). SOFTWARE PROGRAMMING.

Retrieved June 27, 2016, from

https://prezi.com/umsi0yh9oey8/software-

programming

[2] Compiler design Tutorial. (2017). Retrieved June 7,

2016, from

https://www.tutorialspoint.com/compiler_design/

[3] Mogensen, T. ©. (2009). Basics of compiler design.

[S.l: TorbenÆgidiusMogensen.

[4] Aho, A. V., Lam, M. S., &Sethi, R. (2006). Compilers:

Principles, techniques, and tools (2nd ed.). Boston,

MA: Pearson Addison-Wesley.

[5] Tutorial on abstract syntax trees (ASTs). Retrieved

July 2, 2016, from http://www.jmodelica.org/api-

docs/usersguide/1.2.0/ch04s01.html

[6] Robertson, L. A. (2006). Simple program design, A

step-by-step approach, fifth edition (5th ed.). United

States: Delmar Cengage Learning.

[7] Henderson, C. Retrieved June 27, 2016, from

http://www.hendersontech.com/?cat=5

[8] Zabokritski, E. (2008). Dynamic Parser. United States

Patent

[9] PSeInt. Retrieved June 3, 2016, from

http://pseint.sourceforge.net

[10] SDLC - Software Prototype Model. Retrieved from

Tutorialspoint, http://tutorialspoint.com

[11] Tegarden, D. P., Dennis, A., & Wixom, B. H. (2012).

Systems analysis and design with UML (4th ed.).

United States: John Wiley & Sons.

[12] A. Abran, R. A. Qutaish, J. Desharnais, and N. Habra

(2008). Software QualityMeasurement: Concepts and

Approaches. Institute of Chartered Financial Analysts

of India.

COPYRIGHTS
Copyright of this article is retained by the author/s,

with first publication rights granted to APJMR. This is an

open-access article distributed under the terms and

conditions of the Creative Commons Attribution license

(http://creative commons.org/licenses/by/4.

