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Abstract 

In this paper, we have established some new theorems on double weighted mean statistical 
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1. Introduction 

 
Let K IN IN   (the set of positive integers) be a two dimensional set of positive integers and let 

( , )K m n  be the number of ( , )j k  in K  such that  and j m k n  . If the sequence ( , )K m n  has a 

limit and limit is exist, then K  has a double natural density and defined as (MURSALEN etc. 

[4]) 

 
lim

2

( , )
( ) ,

K m n
K m n

mn
     

where ( , )K m n denotes the cardinality of ( , )K m n . 

 

A double sequence of real numbers ( , , 0,1,2...)jkx j k   is said to be statistically convergent to 

some number ,L  if for 0  , the set (FREEDMAN etc. [2]. 

 ( ) {( , ), , : }jkK j k j m k n x L                 (1.1) 

has double natural density zero. In this case we write, 

 lim jkST x L                (1.2) 
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Let { } and { }n np q be two sequences of the positive real constants, such that 

 
0

0

, as , ( 0, 0)
m

m j m

j

P p m p p


               (1.3)  

 0

0

 as,  , ( 0, 0)
n

n k n

k

Q q n q q


               (1.4) 

The double weighted means of a given double sequence { }jkx  are denoted by the ( , , )m nN p q  

means and the sequence-to-sequence transformation defined as (FEKETE [1]) 

 
,

0 0

1
, , 0,1,2....

m n

m n j k jk

j km n

t p q x m n
P Q  

             (1.5) 

The sequence { }jkx  is said to be double weighted means or ( , , )m nN p q  summable to L. If 

 
, ,  as ,m nt L m n                (1.6) 

and we may write 

 ( , , )jk m nx L N p q   

If =1 and 1,  thenm np q 
 

 
,

0 0

1 1
.

m n

m n jk

j k

t x
m n  

                (1.7) 

this is denoted by (C,1,1) and called the double Cesáro Summability. (RHOADES etc. [5]) 

If, 

 lim

0 0

1
, 0

m n

j k jk

j km n

m n p q x L
P Q  

              (1.8) 

the sequence { }jkX x  is said to be strong ( , , )m nN p q  summable to L and it is denoted by 

 lim

0 0

, , { }: , 0,  for some 
m n

m n jk m n jk

j k

N p q X x m n p q x L L
 

 
     
 

        (1.9) 

The matrix ( ) for ( , , )nk m nA a N p q  summability is given by 

 
, ,

, ,

j k

nk m n

p q
if j m k n

a P Q

O if j m k n


 

 
  

          (1.10) 

 

Before, we state the main result of this paper, let us give the some more definitions. 

A sequence { }jkX x  is said to be double weighted statistical convergent, if for given 0  , 

  lim 1
, , : 0j k jk

m n

m n j m k n p q x L
P Q

              (1.11) 

The set of double weighted statistical convergence sequence is denoted by 
N

ST  as follows.  

1
{ }: , lim , : 0,  for some Ljk j k jkN

m n

ST X x m n j m k n p q x L
P Q


 

        
      

(1.12) 

If the sequence { } is jk N
X x ST  is convergent, then we also use the notation L( ).jk N

x ST  
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2. Main Results 
 

Concerning double weighted mean statistical convergence of double sequences, we have proved 

the following theorems. 

 

Theorem 2.1: If the sequence { }jkx is , ,m nN p q -summable to L, then the sequence { }jkx is 
N

ST  

convergent and the inclusion, , ,m n N
N p q ST is proper. 

 

Theorem 2.2: Let ,   and ,  for all ,m n j k jkP Q p q x L M j k IN     . If 

( ),  then ( , , )jk jk m nN
x L ST x L N p q   

 

Theorem 2.3: Let , 1 or 1 and 1m n m nP Q P Q
Let

m n m n

      
        

      
, for all . ,   m n IN . If 

( ),  then ( )jk jk N
x L ST x L ST  and inclusion is proper. 

 

Theorem 2.4: If the sequence { } and { }m np q are bounded sequences, such that 

limsup ,m nP Q

m n

 
  

 
or limsup  and limsup ,m nP Q

m n

    
      

      
the 

N
ST

 
is equivalent to ST 

 

3. Proof of the Theorems 

 

The proof of the our theorems are as follows  

 

Poof of the Theorem 2.1: 

Let the sequence { }jkx be , ,m nN p q -summable to L  and { , : }j k jkK j m k n p q x L      . Then 

for a given 0   we have  

 
0 0 0 0

1 1

k Kj k

m n m n

j k jk j k jk

j k j km n m n

p q x L p q x L
P Q P Q

  

   

      

                                      

0

0

1

k Kj

m n

i k jk

j K km n

p q x L
P Q




 

    

                                                          
1

{ , : }j k jk

m n

j m k n p q x L
P Q

       

Hence, we obtain that the sequence  jkx  is 
N

ST  convergent to L. 

Now by the following example, it is shown that the inclusion is proper. Let us define the 

sequence { }jkX x  as follows.  

 
2 2

2 2

, &

, &
jk

jk if k n j m
x

O if k n j m

  
 

 
  

Let 1,2,3.... and 1,2,3....n np q   
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1

{ , : 0 }j k jk

m n

j m k n p q x
P Q

      

          
 

0,  as 
 m n

m n
n

P Q
     

and 

 2 2 2 2

0 0 1 1

1 1
0 , , ,  as 

m n m n

j k jk j k j k
j k j km n m n

p q x p q x n
P Q P Q   

       

Hence, the inclusion , ,  m n N
N p q ST  is proper. 

 

Proof of the Theorem 2.2: 

Let ( ) and { , : }jk j k jkN
x L ST K j m k n p q x L        

Since ,  and m n j k jkP Q p q x L M     

For all ,j k IN   and for a given 0   we have, 

0 0 0 0

1 1
, ,

m n m n

j k jk j k jk

j k j km n m n

p q x L p q x L j k K
P Q P Q


   

    
 

                                                                     0 0

1
, ,

m n

j k jk

j km n

p q x L j k K
P Q


 

    

                                                                    
 , : 0j k jk

m n

M
j m k n p q x

P Q
        

Since,  is arbitrary, we have that , ,jk m nx L N p q
 

Hence, completes the proof of theorem.
 

 

Proof of the Theorem 2.3: 

For  0  , we have, 

1 1
. { , : }jki m k n x L

m n
     

1
{ , , }j k jkj m k n p q x L

mn
      

1
{ , : }m n

j k jk

m n

P Q
j m k n p q x L

mn P Q


 
     
 

 

1
{ , : }j k jk

m n

j m k n p q x L
P Q

    

 

Since, 1  and 1 ,  hence ( )m n
jk N

P Q
x L ST

m n

   
     

   
 

Hence, completes, the proof of theorem. 

 

Proof of the Theorem 2.4: 

For given 0  , we have, 

1 1
. { , : }jki m k n x L

m n
     
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1
{ , : }j k jkj m k n p q x L

mn
      

1
{ , : }m n

j k jk

m n

P P
j m k n p q x L

m n P Q


  
      
  

 

1
{ , : }j k jk

m n

j m k n p q x L
P Q

      

Since, limsup <  and limsupm nP Q

m n

   
    

    , 

we have, 

 ( ) ( )jk jkN
x L ST x L ST     

Hence, completes the proof of theorem. 

 

4. Corollary  

 

Our theorems have the following results as a corollary. 

 

Corollary 4.1 

 

By replacing double sequence {xj,k} by the sequence {xk} and putting qn=1, our theorem reduces 

to the theorems of KARAKAYA [3]. 

 

References  
 

[1] Fekete. (2005). “TAUBERIAN CONDITIONS FOR DOUBLE SEQUENCES THAT ARE 

STATISTICALLY SUMMABLE BY WEIGHTED MEANS,” sarjevo J math. Vol.1. 

[2] A.R. Freedman, J.J. Sember, and M. ramphael. (1978). “SOME CESÁRO TYPE 

SUMMABILITY SPACES,” Proc. London Math. Soc. 37. 

[3] V. Karakaya and T.A. Chisti. (2009). “WEIGHTED STATISTICAL CONVERGENCE,” Iranian 

J. Sci. & Tech, Transaction, Vol. 33. 

[4] M. Mursaleen and O.H.H. Edely. (2003). “STATISTICAL CONVERGENCE OF DOUBLE 

SEQUENCE,” J. Math. Anal, Appl. 288. 

[5] B.E. Rhodes and F. Moriez. (1995) “DOUBLE WEIGHTED MEAN METHOD EQUIVALENT 

TO (C,1,1),” Pub. Math. Debrean 47. 

 
 

*Corresponding author. 

E-mail address: dr.adityaraghuvanshi@gmail.com 

http://www.granthaalayah.com/

