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Abstract—This paper addresses the Production
Routing Problem (PRP). In this problem we make
integrated decisions about the number of products
to be manufactured, the number of products to be
delivered to each customer and the routes of the ve-
hicles used to deliver the manufactured products. The
integrated problem attempts to minimize both produc-
tion and distribution costs, over all periods of a finite
planning horizon. An Integer Programming Model is
presented and model-based heuristics are proposed to
tackle the PRP. Computational results are shown for
both benchmark and proposed instances, in order to
compare the proposed solution method with a high-
performance commercial solver. The results show that
our approach outperforms the commercial solver in
getting high-quality solutions in instances with more
than 10 customers and 5 products.

Index Terms—Production Planning, Distribution
Scheduling, Vehicle Routing, Production Routing
Problem, Integer Programming.

I. INTRODUCTION
THE lot sizing and distribution problems, found in

various industries, are classical integer programming
problems that were introduced over 50 years ago by [28]
and [14], respectively. The increased competition between
companies lead to a search for more efficient solutions,
culminating in an integration of both problems - the
Production Routing Problem (PRP). The PRP consists
of minimizing both production and distribution costs, over
all periods of a finite planning horizon ensuring that the
customer demands are met while respecting the limits of
production capacity and vehicles capacity. This problem
has been addressed many times in literature, for example
(), {51, [7), 8], [9], [10], [12].

The lot sizing problem defines the size of each produc-
tion lot, in order to meet customers demand at minimal
cost, which usually comprises production, inventory hold
and setup costs. An extensive review of lot sizing problems
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can be found in [20]. The lot sizing part of the problem
dealt with in this paper considers a finite horizon, with
multiple products and a single capacitated production
plant. The demand is dynamic (varies over the planning
horizon) and previously known (deterministic) and back-
logging is not allowed.

On the other hand, the distribution part of the problem
consists of determining the quantity of each product to be
delivered at each customer for each period of the planning
horizon as well as defining the routes to be adopted for
each vehicle of a known fleet aiming to minimize the costs.

When the lot sizing and distribution problems are solved
hierarchically, i.e., a model is used to determine the size
of the production lots and the solution found solving this
lot sizing model is used as input data for another model
with the aim of determining the distribution scheduling,
we usually arrive at a suboptimal solution when looking at
a complete integrated approach, which can provide a more
efficient production plan and distribution schedule. Thus,
the PRP has been addressed more often in the literature,
since its solution can lead to higher profits in the supply
chain.

The PRP can be classified by some characteristics, as
the number of products (single or multiple), the number
of production plants (single or multiple), the production
capacity (capacitated or uncapacitated) and the type of
distribution fleet (homogeneous, heterogeneous or out-
sourced). In particular, this paper addresses the problem
with a single production plant with a limited capacity to
production which has to be used to manufacture multiple
products which are delivered to customers using homoge-
neous vehicle fleet without backlogging or partial delivery.
These features also were considered in [6].

For each period in the planning horizon the decisions
to be made are the following: (i) how much of each prod-
uct to be manufactured; (i) how much of each product
should be delivered at each customer; and (iii) the route
of each vehicle in the fleet, i.e., which customer will be
served by each vehicle. The problem aims to meet the
customer demands with no delay, taking into consideration
production and vehicle capacity aiming to minimize costs
(inventory, setup, and distribution). Vehicles have a route
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maximum length and cannot be refilled in the production
plant during a period and each customer can be visited,
at maximum, one time per period.

One of the contributions by this paper is the proposed
model-based heuristics for the PRP. Initially, a solution
is given by a relax-and-fix procedure, followed by a fix-
and-optimize improvement procedure applied in the initial
solution enhancing it iteratively by solving small subprob-
lems. We could not find a benchmark of instances available
in the literature with more than one product. So in order to
test our solution method, a set of instances with multiple
products was generated (with up to 15 customers, 14
periods and 5 products). Computational tests show that,
given a time limit, the proposed solution method can pro-
vide better solutions than a high-performance commercial
solver.

The remainder of this paper is organized as follows. A
brief literature review is shown in Section II, while Sec-
tion III presents the mathematical model for the problem
and in Section IV the model-based solution methods are
proposed. In Section V, a set of instances is proposed
and the computational results are presented and discussed.
Finally, the conclusions and future research indications are
shown in Section VI.

II. LITERATURE REVIEW

N this Section a brief literature review is shown, taking

into consideration some papers that tackle the PRP.

[17] studied a problem with multiple products, a single
capacitated production plant, and homogeneous fleet. In
this paper partial delivery is allowed, i.e., a single customer
can receive more than one vehicle in the same period.
Each vehicle is bound to a single route per period, i.e., the
vehicle can not be refilled during the period. A Lagrangian
relaxation over the coupling constraints was proposed and
computational results shows that the integrated approach
achieves solutions with lower cost.

(1], 12] [5], [7], [8], [9] and [10] addressed the PRP with a
single product, a single capacitated production plant and
homogeneous fleet with route length limit per vehicle in
each period. Besides those characteristics, partial delivery
is considered in [4].

A two-phase hierarchical heuristic is proposed for the
PRP in [8]. In the first phase, the lot sizing problem of
the PRP is solved by a dynamic programming algorithm
(proposed by [28]). Next, the distribution problem is
solved using the solution of the first phase as input. In
the second phase, a procedure readjusts the production
planning according to the route found, thus providing a
small measure of integration between both problems.

In [9] a Greedy Randomized Adaptive Search Procedure
- GRASP metaheuristic is proposed to deal with the PRP.
Initially, the production planning and vehicle routing are
separately tackled for each period of the planning horizon.
In a second phase, local search procedures reschedule
production, aiming to avoid unnecessary setup costs.

A memetic algorithm with dynamic population man-
agement is developed by [10]. In a memetic algorithm,

an initial population (a set of solutions) is randomly
generated, then they are modified by operators. Two
incumbent solutions are iteratively generated by mixing
they characteristics, forming new solutions. A local search
procedure is called to improve the generated solutions. The
incumbent population is subjected to proposed criteria to
decide which solutions will compose the next population.

An Op-ALNS heuristic is introduced in [2], consisting
in a variation of Adaptive Large Neigborhood Search -
ALNS proposed in [26]. First, several initial solutions
are generated by solving the production and distribution
subproblems, then a local search procedure is applied on
those initial solutions. This approach reached good quality
solutions for the proposed instances of [5].

A two-phase iterative method is proposed in [1]. In
the first phase, a production problem with visit costs is
solved, which determines production scheduling and cus-
tomer delivery. In the second phase, the available vehicles
are optimized by solving a series of Travelling Salesman
Problems. The visit costs are updated in this phase and,
if needed, a new iteration is made. While the stop criteria
(usually the maximum number of iterations or maximum
number of iterations without improvement) is not met the
procedure continues. A commercial solver was employed
on the first phase problem, while the heuristics proposed
in [22] was used in the second phase. Computational
results show that this method finds good solutions for the
instances proposed in [5].

Problems based on real data with multiple production
plants are addressed in [21], [24] and [15]. In [21] and [24]
the problem has heterogeneous vehicle fleet, while in [15]
the vehicle fleet is outsourced.

A maritime distribution problem was tackled by [21],
in which a two-phase method is proposed. In this method,
initially, a commercial solver is used to solve the integrated
problem with direct routes, i.e., vehicles can only go from
the depot to the customer, with no route with more than
one customer. In case the solution found is feasible, it
provide a primal bound for the problem. In the second
phase, two heuristics are employed to improve first phase’s
routing. The first heuristic swaps the vehicles for each
customer, while the second one uses the closest neighbor
method to rebuild the routes, starting from the “best”
vehicle, until it is at its limit, moving to the next one.
Two criteria are proposed to rank the vehicles, speed
and cost over distance. Computational tests compare the
performance of the proposed method with a commercial
solver.

A problem from the furniture industry with time win-
dows is addressed in [15]. In this problem backlogging is
allowed, as well as the transfer of products from a plant
to another, penalized by a dislocation cost. Customers
are considered to be internet retail buyers, henceforth,
and, there is no inventory at the customers. An Integer
Programming commercial solver is employed in [15] to deal
with the proposed model and computational results show
that, although the method has not reached any optimal
solution, it still have good results with a fixed one-hour
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running time. The problem of production and distribution
of pork ration is addressed in [24] which developed a two-
phase heuristic to deal with the problem.

The production routing problem with multiple products,
single plant, homogeneous fleet and no partial delivery
is addressed in [6] and [11]. A Tabu Search is proposed
in [6] and results are compared with other papers ([10]
and [7]). A hybrid relax-and-fix heuristic was proposed in
[11] for the PRP. First, the lot sizing problem is solved
by the relax-and-fix procedure, followed by a local search
(proposed in [18]) in order to optimize routes and make
adjustments to the lot sizes, if necessary.

Extensive reviews of PRP can be found in [3] and [23].
Table I summarizes the reported articles in this paper
in regard of the following characteristics: i) number of
production plants (single plant in table represented by s
or multiple plants by m), ii) number of products (single
product by s or multiple by m), iii) type of fleet (homo-
geneous fleet by hom, heterogeneous by het or outsourced
by out), iv) partial delivery allowed (yes or no), and v)
backlogging (yes or no).

TABLE I
SELECTED ARTICLES FROM THE LITERATURE OF THE PRP

Characteristics
Paper (Year) N W) G V) V)
Chandra and Fisher (1994) s m hom yes no
Fumero and Vercellis (1999) s m hom yes no
Boudia et al. (2005) s s hom no no
Lei et al. (2006) m s het yes no
Archetti et al. (2007) s s hom yes no
Boudia et al. (2007) s s hom no no
Boudia and Prins (2009) s s hom no no
Bard and Nananukul (2009) s s hom no no
Archetti et al. (2011) s s hom no no
Armentano et al. (2011) s m hom no no
Adulyasak et al. (2012) s s hom yes no
Piewthongngam et al. (2013) m m  het no yes
Absi et al. (2014) s s hom no no
Brahimi and Aouam (2015) s m hom no yes
Darvish et al. (2016) m m out no no
This paper (2017) s m hom no no

III. MATHEMATICAL MODEL

N this paper we addressed the PRP with the features
considered in [6], i.e., multiple products, a single pro-
duction plant and a homogeneous fleet.

The aim of the problem is to minimize the total cost
composed of production, inventory, and distribution costs.
Inventory costs differ by location (customer or plant),
however, they are period independent. A vehicle has a fixed
cost if it is used, plus its routing cost, proportional to the
route size. The production has an upper limit (capacity)
and backlogging is not allowed. There is a minimum and
maximum safety stock in each location. The vehicles have
a maximum routing length and can only travel through
one route per period, i.e., it is not possible to come back
to the plant to refill and still delivery in the same period,
and two or more vehicles cannot visit the same customer
in the same period.

In order to model the problem we define its represen-
tation, parameters and variables. Let G = (W, E) be a
complete graph for the problem, where W = {0,1,..., N}
are the nodes set including the plant and the customers
and E = {(k,1) | k,1 € W,k # I} are the edges set
connecting the plant and the customers. The plant, node

k = 0, manufactures products 7 = 1,...,J which are
delivered to the customers k = 1,..., N by the vehicles
v = 1,...,V. Indexes, parameters and variables are as
follows:

Indexes

k  Index for the plant (k = 0)

and for customers (k=1,...,N);
v Index for vehicles (v=1,...,V).
t Index for periods (t =1,...,T);
j Index for products (j =1,...,J);
Parameters
B Plant’s capacity;
b; Production time, per unit, of product j;
c§ Production cost, per unit, of product j;
7 Setup cost of product j;

hji  Unitary inventory cost of product j at customer k;
L;;  Minimum inventory level of product j at customer k;
U;r,  Maximum inventory level of product j at customer £;
C Capacity of each vehicle;

L Maximum route lenght of each vehicle;

f Usage cost of vehicle v;

cry Transportation cost at edge (k,1);

djrx Demand of customer k£ for product j in period ¢;

M A big number.

Variables

Dit Amount of product j manufactured in period t;

LIikz  Amount of product j in stock at customer k;
in the end of period t;

qjr;  Amount of product j delivered at customer k;
by vehicle v in period t;

z¥;  Amount of product j transported by vehicle v
through edge (k,1) in period ¢;

Yjt = 1, if product j is manufactured in period t,
and = 0, otherwise;

2y = 1, if the vehicle v travels through the edge

(k,1) in period t and = 0, otherwise.
The mathematical model is given by (1) - (14).

o The objective function (1) represents the sum of the
inventory, production, setup and distribution costs;

o Constraints (2) are the inventory balance between
production, inventory, and delivery in the plant;

o Constraints (3) performs the balance between deliv-
ery, inventory and customer demand;

o Constraints (4) ensure that the plant capacity is
respected;

o Constraints (5) ensure that the product can only be
manufactured if the plant was set up to the produc-
tion of this product;

o Constraints (6) and (7) represent the conservation of
flow between the factory and customers;

o Constraints (8) ensure the vehicle capacity and (9)
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guarantee the limit route length;

o Counstraints (10) sets at most one route per vehicle at
each period and constraints (11) assure each vehicle
route should end at the plant;

o Constraints (12) ensure that each customer is visited
at most by one vehicle in each period, not allowing
partial delivery;

o Constraints (13) assure the safety stock at each cus-
tomer. Constraints (14) define the domain of the
decision variables;

o Constraints (6) and (7) eliminate sub-routing [17],
which is when a vehicle passes in the same customer
twice or more in the same period;

o From constraints (6) and the non-negativity of the
variable ¢, the possibility of a vehicle picks up
products from a customer and delivery to another is
eliminated.

IV. SoLuTioN METHODS

T HE PRP is a NP-Hard problem. Therefore, large
instances, sometimes based on real world data, can-
not be solved using exact algorithms within an acceptable
computational time. Hence, many different heuristic ap-
proaches have been proposed in the literature to deal with
this challenging problem. In this paper, we propose a relax-
and-fix heuristic to find an initial solution to be used as a
starting point of a fix-and-optimize procedure to enhance
it. Both relax-and-fix and fix-and-optimize heuristics have
been widely used in the literature to deal with production
planning problems.

Those heuristics are based on a decomposition,
Q(1),...,Q(R), of the set of all binary and integer decision
variables (@)). Thereby, in each heuristic iteration, we solve
a small mixed integer subproblem in which a single subset
Q(r), r € {1,..., R} has its binary variables optimized
and the variables of the other subsets are fixed in the
incumbent value or linearly relaxed. As the number of
binary variables in each subset Q(r) is significantly smaller
than the number of binary variables of the set @, each
subproblem can be solved in a fairly reduced time. In
its simplest form (without overlapping), the relax-and-fix
heuristic takes a partition of the set @), i.e., we take subsets

Q(1),...,Q(R) of Q that satisfy the conditions:
QRIURR)U..UQR)=Q (15)
QUE)NQ) =0 Vi#j (16)

The number of iterations for the relax-and-fix procedure is
equal to the number of subsets for the adopted partition.
For each iteration » = 1,..., R, the variables of the set
Q(4) with 4 < r, are fixed in their incumbent value (found
from previous iterations), while variables of sets Q(j) with
7 > r are linearly relaxed and a subproblem is solved
considering just the variables of the set Q(r) as binary
and/or integer. However, it should be noticed that the
variables in the sets Q(j) with j > r are also optimized,
but linearly relaxed. If a feasible sub-solution is found for
each iteration, then the final solution is also feasible for
the original problem.

There are also some relax-and-fix procedures which
apply an overlapping technique in order to find better

solutions. In those procedures, we consider some variables
as binary and/or integer in a given iteration r, without
fixing them in the next iteration (r + 1). Overlapping
procedures tend to find a better solution at the end, as
their subproblems are closer to the original problem. Nev-
ertheless, they may consume much more computational
time, since each subproblem has a greater number of
binary and/or integer variables to be optimized.

Fix-and-optimize heuristic (proposed in [25]) is an im-
provement procedure that starts at a given initial feasible
solution and, in each iteration, a small subproblem is
solved, aiming to find a better solution. As the relax-and-
fix, the fix-and-optimize heuristic takes a decomposition
of the set of all binary and/or integer variables (Q) of
the problem, and in each iteration, only the variables of a
particular subset of @) are (re)optimized, while the others
are fixed on its incumbent value.

When all variables that will be (re)optimized at each
iteration are chosen randomly, it is said that the fix-
and-optimize procedure is stochastic. However, when all
variable subsets are previously known, it is said to be a
deterministic procedure. The procedures developed by [19]
and [13] show the advantage of using a stochastic approach
in mip-based heuristics. For lot sizing problems, the de-
compositions based in periods or products are commonly
found in the literature. The most common stop criterias
are: reaching the maximum running time, reaching the
maximum number of iterations, and the realization of
some iterations without improvement in objective function
value.

In this paper, a relax-and-fix heuristic is proposed to
find an initial feasible solution, which will be used as
input for a deterministic fix-and-optimize procedure. For
both heuristics a decomposition over the period is used.
More specifically, if, in a given iteration, the period t
is selected to have its variables (re)optimized, then all
variables y;;,Vj and 2}, Vv, k, 1 will be (re)optimized.

For each procedure, we introduce the parameters «
and [ to represent the number of consecutive periods
in each decomposition, and the number of consecutive
periods of overlapping, respectively. Preliminary tests were
performed, for both heuristics, with « varying from 1 to 3
and S varying from 0 to 3 (5 = 0 means the decomposition
has no overlapping). We limited their values to 3 so the
subproblems would stay small compared to the original
problem.

V. COMPUTATIONAL RESULTS

N this Section, we present the computational results

found by the proposed heuristics and compare with
the results found by the commercial solver Cplex 12.6. In
Subsection V-A, we presents the test instances used to
perform the tests and in Subsection V-B, we present and
discuss the computational results.

A. Instance Generation

Multiple products instances

based on [6]
generated for computational

tests. Instances

were
have
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(N,T,J) € ({5,10,15},{7,14},{3,5}). For each
combination (N,T,J), 10 instances were generated, in a
total of 120 instances. Both instances and computational
test results can be found in:

http://www.otm.icmc.usp.br/index.php/pt/pesquisa/instancias-de-
teste.

Some instances proposed in [5] were also used to perform
the tests. [5] addressed a PRP with a single product,
a single plant with limited capacity and homogeneous
fleet. The instance set with 14 customers and 6 periods
was considered in this paper. The set is further divided
into 4 classes with 120 instances each, with a differ-
ent set of considered costs. Taking class 1 as the base,
classes 2 and 3 have higher production and distribution
costs, respectively, while class 4 has no inventory cost
whatsoever. Both instances and results can be found in
https://sites.google.com/site/ayossiri/publications .

The implementation for the model and heuristics were
made in C++ with the solver IBM CPLEX 12.6. Com-
putational tests were performed on a node of the Cluster
Euler (CeMEAI-CEPID-FAPESP Process 132404/2014-1
and 476792/2013-4) equipped with 2 Intel Xeon E5-268v2
Processors and a 128GB RAM Memory. For all approaches
the time limit to solve each test instance was arbitrarily
set to one hour.

B. Computational Tests

Preliminary tests were performed, testing different de-
compositions for both heuristic procedures. Different com-
binations for agrr, aro, Brr and Bro were tested in a
small set of the generated instances and the results were
evaluated with a performance profile based on [16], in
order to set agr =1, Brr = 3, aro = 3 and Bro = 1.

The performance profile of a given heuristic is a prob-
ability density function calculated over its performance
in comparison with other heuristics. For each instance
the best performance of all heuristics was found and a
distance between performances defines a radius of per-
formance for each heuristics. They defined the quotient
Tph = W to measure that distance, where p
is the instance, h is the heuristic and H is the set of
all heuristics. That quotient is then used to calculate the
probability density function for all heuristics, with p(h, 7)
being the percentage of instances that r, , < 7, i.e. p(h, 1)
is the percentage of best solutions found by heuristic h.

For both the mathematical model and proposed heuris-
tics with the given combination, results found for the
generated instances are summarized in Table II. The first
column shows the instance size, in the second column
the average gap for the initial relax-and-fix solution is
shown, the third column the average gap for the solution
after the fix-and-optimize procedure is shown, the fourth
column shows the average gap found by the Cplex solver
and the fifth column shows average running time of the
proposed method. The running time of the CPLEX for
almost all instances achieved the time limit so, this value
is not showing in Table II. The number shown between

parenthesis in both second and third columns indicates
the number of instances which no initial solution was
found and the rows with * are averages ignoring the tests
where the heuristic could not find an initial solution. It
is noteworthy that CPLEX finds feasible solutions for all
proposed instances. Over all 120 instances, the proposed
heuristic finds feasible solutions for 90% of them.

As shown in Table II, the combined RF+FO found
better solutions than the Cplex solver, although was less
efficient than the Cplex to find feasible solutions for
bigger instances. For the 10 instances with (N/V,T,J) =
(15,14, 5), the RF+FO heuristic only found feasible solu-
tions for 3 of them. However Cplex only found optimal
solutions in the first and second instance groups, (5,7, 3)
and (5,7,5), in an average time of 2607 seconds and 3466
seconds, respectively. For the third group onwards the one-
hour time limit was reached by the Cplex for all instances.

From the information between the second and third
columns in Table II, it is noticeable the improvement
provided by the fix-and-optimize procedure over the initial
solution found by the relax-and-fix procedure, with bigger
improvement for larger instances as expected, because
the initial solution has a larger gap and therefore more
potential to improve. To compare the performance of the
methods the Figure 1 is shown, for the performance profile
over the instances solved by both methods.

100.00%

0.00%

80.00%

70.00%

plh,7)

60.00%

50.00%

RF+FO

20.00%

--=Cplex

30.00%
125 13

Fig. 1.  Performance profiles (Dolan and Moré (2002)) - Solved
generated instances.

In Figure 1, function p(h,7) shows the percentile of
instances for which the method h finds a solution less or
equal to 7 x S, where S was the lowest value found by
the compared methods. Therefore, when 7 = 1, p(h,7)
indicates the percentile of instances for which the method
h finds the best solution.

It is noteworthy that ), p(h,7) can be greater than
1, as long as two or more methods find the best solution
in at least one instance. The RF+FO performance curve
reaches 100% at 7 1.06 approximately, which means
that the proposed method is within at most at 6% of the
best solution in all instances.

After the tests performed considering the generated
instances, the instances in [5] were also tackled. Table

57



WATANABE, H.H.M., CIRINO, R.B.Z., SOLER, W.A.O., SANTOS, M.O. / Revista de Sistemas de Informagio da FSMA n. 19 (2017) pp. 53-61

TABLE II
HEURISTICS AND CPLEX GAPS - GENERATED INSTANCES

Instances (N/V, T, J)

RF average gap

RF+FO average gap

Cplex average gap

RF+FO average time

G, 7, 3) 3.45% 3.28% 3.04% 818.0
(5,7, 5) 3.00% 2.87% 2.79% 888.1
(5, 14, 3) 4.96% 4.81% 4.86% 1586.2
(5, 14, 5) 4.61% 4.36% 4.81% 2505.9
(10, 7, 3) 779% 7.46% 8.19% 2552.7
(10, 7, 5) 5.76% 5.33% 6.60% 2594.1
(10, 14, 3) 6.03% 5.62% 6.99% 3600.0
(10, 14, 5) 6.57% 5.57% 7.96% 3600.0
(15, 7, 3) 877% (1) 6.35% (1) 7.21% 3442.6
(15, 7, 3)* 8.73% 6.35% 7.29% 3442.6
(15, 7, 5) 8.73% 6.75% 7.01% 3600.0
(15, 14, 3) 11.90% (4) 6.21% (4) 14.55% 3600.0
(15, 14, 3)* 11.90% 6.21% 19.59% 3600.0
(15, 14, 5) 27.35% (7) 0.66% (7) 25.85% 3600.0
(15, 14, 5)* 27.35% 0.66% 22.87% 3600.0

IIT summarizes the results found in the 14 customers
instances. Gaps were calculated using the solution values
given in [5]. Tinin and Thne. are both the smallest and
biggest running time for each of the 120 instances of the
correspondent class, and column Time > 300s indicates
how many instances took more than 5 minutes to be
solved. The average time was calculated excluding the
instances that took more than 5 minutes, considering them
outliers.

100.00% /,_, .......................... ==

5000% 1+ -

8000% 1 s

7000% /-

plh, 7)

60.00% 1

5000% t

—Cplex

2000% {1

3000%

Fig. 2. Performance profile (Dolan and Moré (2002)) - Instances
from (Archetti et al. (2011)) - 14 customers

As those instances have a small dimension, given the
number of customers, Cplex could find the optimal so-
lution in the majority of them, however as shown by
column 7,4, it could not prove optimality in some cases
and passed the time limit (see Table III). Branch-and-cut
([5]) was the fastest method, disregarding outliers, however
with the biggest gap, worse than the initial solutions given
by the relax-and-fix procedure. Although RF+FO is not
as fast as the other two methods, it did not pass the time
limit at any of the instances, while also finding solutions
very close to the optimal values.

Figure 2 shows performance profile of the methods over
the instances of [5] with 14 customers. The average gap
difference is evident, with the curve for the branch-and-cut
far below from the other two. While Cplex found the best

solution in almost 95% instances, RF+FO finds success in
approximately 75% instances, however it is at most 2%
from the best solution in more than 97% of the tests.

VI. CoNCLUSIONS AND FUTURE WORKS

N this paper we addressed the integrated Production

Routing Problem. A mathematical model was pre-
sented and a solution method based on the mathemati-
cal formulation of the problem was proposed. Tests over
generated instances with multiple products and instances
from [5] were performed and showed that the proposed
approach achieved better results than a commercial high-
performance solver for medium size instances.

At a time limit of 1 hour, the proposed method is shown
to be competitive in comparison to the Cplex solver, with
a small disadvantage at small instances, but surpassing
the Cplex in medium size instances. However for instances
with 15 or more customers the proposed approach does
not find good solutions.

Tests over instances from [5] confirms the tendencies
observed in previous tests, RF+FO is faster than Cplex
in smaller instances, however, it didnf find the optimal
solutions to all considered instances. In comparison with
the branch-and-cut algorithm ([5]), RF+FO found better
solutions with more computational time. The heuristic
was more consistent and only surpassed the time limit
of 5 minutes in 10 tests (Table IIT), approximately 2.1%,
with a maximum time of approximately 10 minutes, while
branch-and-cut would take more than 2 hours for some
instances in case a time limit was not set. In a real applica-
tion, sometimes it is necessary to solve the problem several
times, so, to find good solutions in less computational time
is of the utmost importance.

For future works, we indicate further research in other
methods to find initial solutions, given that the proposed
method fails in finding initial solutions for some generated
instances, and, for large size instances, the RF heuristic
might take a high computational time. Also, other local
search procedures, like ALNS or the fix-and-optimize with
variable neighborhood search (VNS) proposed in [13] could
lead to better solutions.
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TABLE III
RESULTS FOR THE INSTANCES OF (ARCHETTI ET AL. (2011)) - 14 CUSTOMERS

Class Average Gap Average Time Tmin  Tmaz  Time >300s

1 2.131% 27.5 1 7200 12

2 0.298% 11.3 0 115 0

branch-and-cut [5] 3 3.433% 35.5 0 1863 8

4 0.923% 11.6 1 7201 7

1 0.000% 44.1 4 3607 12

Cplex 2 0.000% 35.7 2 3604 7

3 0.000% 81.4 12 3607 19

4 0.017% 37.4 9 3607 24

1 0.501% — — — —

2 0.042% — — — —

RE 3 2.377% — — — —

4 0.408% — — — —

1 0.054% 52.0 13 244 0

2 0.009% 50.1 9 235 0

RE4FO 3 0.343% 7.6 19 617 7

4 0.032% 76.6 15 430 3
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