
Revista de Sistemas de Informação da FSMA
n. 19 (2017) pp. 34-41

http://www.fsma.edu.br/si/sistemas.html

34

Abstract—In companies environments, it is normal to exist

several systems to ease daily activities. In academic environments,
it also happens. However, academic environments may be even
more heterogeneous as there are many specialized activities, such
as: restaurant, library, academic processes, administrative
processes and computer network services, such as email and
network authentication. To maintain the data consistency
throughout the systems, all the systems must be integrated. This
integration was carried out at the Federal University of Lavras,
using Simple Object Access Protocol (SOAP) as communication
protocol. The development of a new system (mobile application),
it was noticed that SOAP is very CPU-intensive and slow, as
mobile devices have constraints such as internet and processing.
Thus, a REST-JSON layer to integrate mobile application and the
integration architecture was developed, benefiting from all the
resources the integration architecture had. By using this new
layer, the offer of functions from the integration architecture was
also expanded to REST, attending to other applications without
having to make big changes in the code. It was measured that the
REST-JSON layer consumes around 73% less data than SOAP.
The REST-JSON layer was released, attending to about 5600
installations of the application that requests the integration
around 54000 times a day.

Keywords—Service-Oriented Architecture, Information
Systems Integration, Web Services, JSON, SOAP

I. INTRODUCTION

orporative environments usually have different
information systems in its strategic, tactical and

operational levels [17]. Usually, it is necessary to share data
between those systems and this can be performed through
Information Systems Integration (ISI). There are many
different approaches for ISI such as "Composite Applications"
[14], with focus on techniques or "Distributed Business
Processes" [12], with emphasis on organizational processes.

In order to perform an ISI, we can use techniques such as
Service Oriented Architecture (SOA), configuring a Service
Oriented Integration (SOI).

Several technologies support the implementation of SOA,
such as the.NET framework, the Java 2 Platform, Enterprise

Edition (J2EE) and Web Services [10]. Web Services represent
a form to offer distributed resources connected to the Internet.

Some standards and technologies support the development
of Web Services, such as Representational State Transfer
(REST), an architecture that uses principles that make the
Internet scalable [7], and Simple Object Access Protocol
(SOAP), a widely used communication protocol [21].

Just like in the corporative environments, ISI also exists in
academic environments, which can be even more
heterogeneous than their corporative counterparts
[1][2][4][8][16]. In corporative systems, there can be ERPs
(Enterprise Resource Planning) with modules that cover
activities from several departments. In universities, due to the
high heterogeneity of the departments and activities, such as
restaurants, distance learning environments, academic control
systems and libraries, there usually are many different systems,
each one for its specific purpose. In this case, it is necessary to
share the data between those systems so that the data is kept
consistent.

The Federal University of Lavras (UFLA) has around 20
information and network systems and is an example of how
complex the integration of academic information systems can
be [8]. Those systems are maintained by the Information
Systems Department (CSI), which is subordinate to the
Information Technology Management Directorate (DGTI).
They are heterogeneous in terms of technology, database and
developers (some were developed by the CSI itself and other
by third parties).

The integration architecture between information systems
and network services was developed using SOAP as a
protocol, intending to be [8]: scalable, flexible, monitorable
and also, should count with security mechanisms.

The idea of scalability consists on the possibility of easily
including new web services; flexibility consists on meeting
different institutional requirements; monitorability in the idea
that any error could be easily detectable; and the security
mechanisms, as the whole integration works with personal,
confidential data. The set of web services offered is called
Integration Web Services (WSI).

Cristiano M. Garcia, Ramon Abilio
Information Technology Management Department (DGTI)

Federal University of Lavras, Brazil (UFLA)
{cristiano.garcia,ramon.abilio}@dgti.ufla.br

Systems Integration Using Web Services, REST
and SOAP: A Practical Report

C

Garcia, C. M.; Abílio, R../ Revista de Sistemas de Informação FSMA n. 19 (2017) pp. 34-41

35

UFLA is again the object of study in this paper, which

describes the addition of a new system in its integration
environment: a mobile application, called MinhaUFLA
(myUFLA), to be used by the academic community. Since
mobile devices do not have the same amount of resources
(energy, data plan, processing and storing capacity) as servers
do, the application was designed to be as smallest as possible
to the device. In this context, it was decided to perform the
integration of this application with the integration environment
using REST, as REST inquiries can be from 9 to 30 times
faster than SOAP and the XML structure can be up to 3 times
larger than JSON [6].

Therefore, it was detected an incompatibility between the
communication method used in the mobile device (REST) and
the standardized communication method in the existing
integration architecture (SOAP). This way, it was necessary to
develop a layer to integrate the mobile device and the
institutional systems.

The goal of this work is to show how this integration was
performed, evaluating positive and negative aspects. Given
that the use of mobile devices is growing, the main
contribution of this work is to make it possible for institutions
undergoing similar situations to analyze their integration
architectures and to decide whether or not to add an extra layer
for the communication of their mobile apps with the other
systems.

The rest of this work is organized as follows. Section II
present the related concepts Web Services, REST and SOAP.
Section III defines the problem. Section IV describes the
implemented solution. Section V evaluates the solution and
finally, in Section VI, it is presented our conclusions on the
whole work.

II. WEB SERVICES: SOAP AND REST

 Service Oriented Architecture is an independent technology
paradigm based on patterns which has become one of the main
paradigms in distributed systems [19]. SOA aims at organizing
and using resources that can be under the responsibility of
different organizations, providing a standardized way to offer,
discover and interact with functionalities used to achieve
consistent effects, with side benefits such as system growth
control and global service offer [18].
 The main goal of integration using SOA, called Service
Oriented Integration (SOI), is to integrate different systems
changing little or nothing in their implementation [11]. One of
the ways to implement SOI is by using Web Services, which
constitute a SOI by offering a service interface that allows for
the interaction between service providers and consumers [5].
 The ways to implement Web Services are [21] SOAP or
REST and the most commons standards used to interchange
data are the following:
i) Extensible Markup Language (XML) [20] – a standard used
to describe data in a flexible way; and
ii) Javascript Object Notation (JSON) –a language
independent format which is less verbose than XML and

whose characteristics are the following [13]: legibility (by
humans), easy to generate and analyze.
 SOAP provides a basic communication standard and uses a
document based on XML which is called Web Services
Description Language (WSDL) to describe the functionalities
offered by a WS [21]. The WSDL of the web services provider
related to the MinhaUFLA application is generated
automatically by the tool called NuSOAP1.
 NuSOAP identified the registered Web Services and create
message elements concatenating the words Request and
Response to the Web Services names in the WSDL. This way,
it identifies the parameters that must be sent to consume the
Web Service (message identified with Request) and what is
returned by the consumed Web Service (message identified
with Response). For instance, Figure 1 shows the message
elements from the service MinhaUFLA.auth. It can be seen
that it must be informed the parameters token and ip when
consuming the Web Service (Request) and the return value is
of type string (Response).

 Figure 2 shows an example of SOAP request to the Web
Service MinhaUFLA.auth (Request) and Figure 3 shows an
example of SOAP answer to this request (Response). In the
Figures 2 and 3, it can be seen that there is a structure defined
by the WSDL that must be respected for the Web Services to
work properly. In Figure 2 we can specifically see that the
Wizzdler2 tool (a tool used to generate request structures based
on WSDL documents) generated MinhaUFLA.auth for the
request. Through empirical tests, we noticed that
MinhaUFLA.auth and MinhaUFLA.authRequest are synonyms
within the SOAP request context.

 REST is an abstraction of the principles that make the
World Wide Web scalable and allows us to offer services
identified by a Uniform Resource Identifier (URI). HTTP
methods, such as GET, POST, DELETE and PUT define the
operation to be executed over a single or multiple records. For
instance, GET returns a record, POST inserts a new record,

1 https://sourceforge.net/projects/nusoap/
2 https://chrome.google.com/webstore/detail/wizdler/
oebpmncolmhiapingjaagmapififiakb

Fig. 1. Example of WSDL (partial)

Fig. 2. Example of SOAP requisition

Garcia, C. M.; Abílio, R../ Revista de Sistemas de Informação FSMA n. 19 (2017) pp. 34-41

36

DELETE removes one and PUT updates an existing record
[7].

 Therefore, SOAP requires a XML structure that must be
respected within the service request and response and REST
allows the communication pattern to be defined by the
interested parties [9]. Figures 4 and 5 show the same message
using SOAP-XML e REST-JSON. We can infer that the data
size will be bigger using SOAP-XML because the message
content will be surrounded by the SOAP protocol structure,
while using REST-JSON, this does not happen.
 Requests using REST-JSON were the best alternative for
mobile devices in tests that included also REST-XML and
SOAP in different operational systems (iOS 8.0, iOS 8.1,
Android 4.4.2 and the iOS simulator) [6]. It was observed that
REST-JSON requests are 9 to 30 times faster than SOAP
requests, both in processing and transmission time [6]. That is
due to the fact that the XML structure (for SOAP and REST-
XML) can be up to three times larger than the JSON structure
for the same data, besides the fact that the XML processing is
more costly in computational terms [6].

III. PROBLEM DEFINITION

 The integration architecture in the Federal University of
Lavras (UFLA) was developed using the PHP3 programming
language and designed to [8]: i) have security mechanisms, ii)
have the relationship between services and its providers based
on the concept that there will be many providers with few
services each, grouped according to the systems, which would
make it easier to have isolated maintenance; and iii) use
SOAP.
 Between the end of 2015 and the beginning of 2016, a new
app for Android based mobile devices called MinhaUFLA
(myUFLA) began to be developed [3]. This app has options
that are common to students and professors and options that
are specific for each profile. For instance, in the student
profile, the user can see the grades in each exam and the
geolocation of each classroom; and in the professor profile
there are options to check time and place of each class and to
insert student attendance information [4]. The app should use
data that already exists in the University information systems
and that is offered by the WSI.
 Therefore, the following issues were analyzed:

• The mobile app show, get and manipulate data using
the integration architecture in order to comply with
the security, manutenibility and scalability

3 http://www.php.net

requirements and to use the existing monitoring
mechanisms;

• Given that mobile devices have limited resources when
compared to conventional computers, in terms of
energy source, Internet bandwidth and processing
capability, the MinhaUFLA app was designed to use
the minimum processing capability and to transfer as
little data as possible through the Internet.

 Based on this analysis, we could see that the integration
architecture which uses SOAP and the use of REST-JSON by
the applications was not compatible. Hence, the solution was
to develop a SOAP/REST integration layer to allow the app to
communicate with the WSI through the integration
architecture.

IV. IMPLEMENTED SOLUTION

Given the problem described in Section III, it was designed
a SOAP/REST integration layer to allow the integration of the
mobile app, receiving REST/JSON requests coming from the
app and converting to SOAP for the integration (and vice-
versa), as described in the next subsections.

Fig. 3. Example of SOAP return value

Fig. 5. Example of REST-JSON message.

Fig. 4. Example of a SOAP-XML message.

Fig. 6. Integration architecture: providers and consumers

Garcia, C. M.; Abílio, R../ Revista de Sistemas de Informação FSMA n. 19 (2017) pp. 34-41

37

A. Communication Standard between Consumers and
Providers

 In the integration architecture at UFLA, there is a division
between Providers and Consumers. Providers offer Web
Services, while Consumers use those Web Services that the
others provide.
 Each provider is related to a specific system. For instance,
Pergamum, the library system, has its own provider and a
consumer that uses the data update web services that its
provider offers. This relationship can be seen in Figure 6,
which represents the integration architecture prior to the
MinhaUFLA app.
 The communication between providers and consumers is
made using a JSON object with 4 attributes: id, message, type
e system. This object is encapsulated by the structure intrinsic
to using SOAP.
 There is also a sequence in the requests to the WSI that must
be respected (Figure 7). In the example shown in Figure 7, the
consumer authenticates into the provider using a token
(password) previously defined. Next, the provider returns a
JSON object containing a SID (session id). After the
authentication, the consumer can access other services using
the SID [8].

 While communicating with the WSI, there must be a request
to the auth service which corresponds to the authentication
with the desired service provider and which considers the
token (used password) and the origin IP. In the communication
between the mobile app and the WSI there can be another step
after the authentication which is the login service (Figure 8).
This step exists only for a few services. While auth manages
the permission for the app to access the WSI, login manages
the permission for the user to access certain services inside the
application.

B. Integration Layer: REST/SOAP

The integration layer "translates" from REST-JSON to the
SOAP protocol used by the WSI and vice-versa. This way,
changes within the implementation of the WSI were
minimized. When designing this integration layer, called

within DGTI-UFLA "REST-JSON layer", it was considered
the following aspects:

i) service offer complementation by the WSI that offer them
using only SOAP; and

 ii) security and scalability requirements in case other
mobile app initiatives or even other Web or desktop
applications need the updated information.

This way, the updated architecture can be represented as

seen in Figure 9, where the applications access the
REST/SOAP layer which makes a SOAP requests to the WSI -
being able to access services from providers such as SIG,
Pergamum, RV3/Acesso and HCS, which would return the
required information through the same path used in the reverse
way, reaching the applications.

C. Implementation

 First, the Web Services for MinhaUFLA as well as the other
Web Services for the WSI were developed using SOAP. Such
Web Services correspond, for instance to the activities of
checking grades in activities of a specific class, remaining
credits in the university restaurant and checking academic
timetables. These web services should be accessed from the
application by the REST-JSON layer.

Fig. 7. Communication flow of the authentication of a Consumer and a
Provider.

Fig. 8. Communication flow of the web service that returns student grades

Fig. 9. Architecture using REST-JSON layer

Garcia, C. M.; Abílio, R../ Revista de Sistemas de Informação FSMA n. 19 (2017) pp. 34-41

38

 In order to implement the REST-JSON layer, we used the
PHP programming language together with the Laravel
framework, in its 5.2 version.
 The PHP language was chosen due to an existing standard
within DGTI-UFLA on internal systems and the Laravel
framework was chosen due to the fact that it creates Restful
web services.
 Even though Laravel has a lot of useful resources to web
development, it does not have the native resources to perform
SOAP requests. So, in order to perform the requests from the
REST-JSON layer to the WSI, it was used an integration
package from SOAP to Laravel, called laravel-soap4.
 Since Laravel is a MVC (Model View Controller)
framework, it is necessary to create a model and a controller.
In Laravel it is not mandatory to develop a view, that is, the
information can be made available directly from a controller.
 Hence, it was developed a generic model called WSClass to
access the Web Services that use SOAP and a controller
specific for the Web Services used by the MinhaUFLA app.
The specific web services pass the configuration parameters to
the model and the model accesses the SOAP web service. The
return from the web services is then returned by the controller,
being forwarded to the service consumer application.

4 Disponível em https://github.com/artisaninweb/laravel-soap

 In the particular Laravel context, it was also developed a
middleware, a concept used in Laravel to encapsulate requests,
allowing it to execute tasks relating to a specific controller
(before or after, depending on the configuration).
 This middleware evaluates the existence of a POST variable
called service, which defines the SOAP web service to invoke.
The Laravel routing is flexible and can be configured to use
the middleware and to redirect the request to a specific
controller. Figure 10 shows the internal flow of the REST-
JSON layer.
 Considering the flow presented in Figure 10 in a context
particular to Laravel for the creation of a new REST-JSON
web service, it is necessary to create a new route in the
routes.php file. Then, it should be created a controller that
must instantiate a WS model passing the configuration
parameters such as the SOAP provider, the WSDL URL and
invoke the access method passing the web service name and
the required parameters. In case there is any validation to be
performed in all requests, such as some type of filter,
cryptography, malicious code injection prevention, it is
suggested the creation of a new middleware.

V. EVALUATION SOLUTION

 The goal of this work is to demonstrate how this integration
between the mobile app and the integration environment was
done, while gathering some interesting data on this integration.
 As designed, the monitorability, maintainability and
scalability were extended to the layer, making it possible to
monitor the integration, even using the REST/JSON layer.
This is due to the fact that the layer itself invokes the WSI,
which record the requests/responses and use the same physical
server configured with HTTPS.
 We performed tests in order to verify the average processing
time for a request. It was performed 100 requests, with 5
second intervals from, a computer to a test environment
installed in a server with the Ubuntu Server 14.045 operational
system in the same network.
 The processing time was measured starting from the request
until receiving the response. The measurement was not made
from a mobile device because the results would vary with the
network that the device used to access the REST-JSON layer,
resulting in data that do not accurately reflect how much time
the layer costs to the request.
 In order to perform the requests, it was used the tools
Postman6 (for REST requests), and Wizdler (for SOAP
requests), both extensions to the Google Chrome7 web
browser. The request times were also evaluated using the
Tukey HSD test (Honestly Significant Difference) [15], which
measures the significant difference between group averages.
 Table I shows the averages and standard deviations
calculated from the response time measurement of the requests
and Figure 11 shows a graphic with the result of the Tukey
test.

5 http://releases.ubuntu.com/14.04/
6 https://www.getpostman.com/
7 https://www.google.com/chrome/browser/desktop/index.html

Fig. 10. Flow of a request from the application to the web services related to
the MinhaUFLA

Garcia, C. M.; Abílio, R../ Revista de Sistemas de Informação FSMA n. 19 (2017) pp. 34-41

39

 Observing Table I and Figure 11, it can be seen that the
implemented solution takes 100 milliseconds longer to process
a request. Since the integration architecture became hybrid,
using SOAP and REST-JSON, because of the insertion of the
REST-JSON layer in the call sequence, this time increase was
already expected.
 Even though the layer increases the request processing time,
this increase represents more processing only on the server
side, avoiding processing at the mobile device because the data
is returned in the JSON standard.
 It is also important to point out that 100 milliseconds is a
small, not perceptible time that does not affect the user
experience in a negative way.

It was also compared the return sizes for the SOAP and
REST/JSON requests using as an example three web services
developed to serve the MinhaUFLA app: auth, login and
getGrades. Auth returns the smallest data set and getGrades
returns the largest. That is, it was compared how much the
mobile app consumes in bytes and also, how much it will have
to process. The data of this comparison can be seen in Table II
and Figure 12.

The data observed in Figure 12 correspond to the bytes that
would be consumed in bandwidth in the mobile device. In
average, the messages using the REST/JSON layer use 73%

less bandwidth than those using SOAP.
The integration architecture using the REST/JSON layer has

been in the production environment since September/2016,
when the application was officially released. Until
November/2016 there were 5600 active installations of the app
performing in average 54.000 requests per day. The app has
1788 evaluations in Google Play, achieving an average of 4.8
stars out of the maximum 58.

VI. CONCLUSIONS AND FUTURE WORK

 Using web services to offer functionality through the web
has become more common each day due to its flexibility and
security when compared with other ways to offer
functionalities and because of its scalability. The most
common way to offer this functionality is using SOAP or
REST.
 At UFLA, there was a set of web services for the systems
integration and to offer functionalities. The integration web
services use SOAP, because they were designed for the
integration of systems with no restrictions concerning
processing, Internet and other resources. Nevertheless, with
the addition of an institutional mobile app, there was an
increase in the complexity of the existing integration on the
issues of processing power and data consumption restrictions
that apply to mobile devices.
 The solution developed, called REST/JSON layer, imposes
a increase in average of 100ms (or 0,1 seconds), consumes
73% less bandwidth than its SOAP counterpart and,
consequently, required less processing and energy expenditure
from the mobile device, because processing XML is slower
and requires more CPU than processing JSON [6].

 Among the positive points of the REST/JSON layer, we can
highlight the following:

• Web service offer to mobile devices with low time cost
when compared to a common SOAP request;

• Centralization of the web services offer by the WSI
was kept. That is, even though the Web Service was
offered using REST, initially the web service would

8 Data from April/ 2017

TABLE II
MESSAGES SIZE (IN BYTES) WHEN USING SOAP

AND THE REST-JSON LAYER

Communication
Web

Services
Size in bytes

SOAP auth 747
REST-JSON auth 97

SOAP login 893
REST-JSON login 179

SOAP getGrades 2968
REST-JSON getGrades 1000

Fig. 12. Size in bytes of the SOAP and REST/JSON requisition, by Web

Service

Fig. 11. Tukey Test for the comparison of the averages for the direct SOAP
requests and the ones through the REST-JSON. This means that the average
time for the SOAP requests are significantly better than the ones using the
REST-JSON layer, but do not enjoy the benefits of the latter.

TABLE I
AVERAGE REQUEST TIME

Communication Average time (ms) + standard deviation

SOAP 64.59 +/- 2.2304
REST-JSON 165.99 +/- 2.2403

Garcia, C. M.; Abílio, R../ Revista de Sistemas de Informação FSMA n. 19 (2017) pp. 34-41

40

be developed and made available through SOAP
through the WSI and the REST-JSON would only
have the role of transcribing the REST-JSON
requests to SOAP and vice versa;

• Mechanisms existing in the integration architecture,

such as monitorability, maintainability and scalability
were extended to the REST/JSON layer;

• Minimum additional work is necessary for the offer of
web services also in REST/JSON (when compared to
the necessary work to offer the web services only in
SOAP).

 As negative points of the REST/JSON layer, we can point
out the following:

• Increase of about 0.1 seconds in request time;
• Increase in maintenance complexity, because the layer

was developed by using technologies that are
different from the ones used in the WSI.
Nevertheless, the architecture used offers important
positive points in detriment to the less important
negative points, as discussed in Section V.

 Hence, the problems pointed out after the analysis of the
issues were solved with the implementation of the
REST/JSON layer. The existing integration architecture
changed to allow the integration of the app without interfering
in the offer of the web services and in the integration
mechanism used until that point, keeping its characteristics and
mechanisms of security, monitoring, flexibility and scalability.
The consumption of energy and Internet bandwidth by the
mobile devices were made in JSON and the SOAP request
processing was performed by the application server.
 Given that the performance of REST/JSON requests is a lot
faster and less burdensome to the CPU, we suggest the
following future works:

• To perform new studies on REST-JSON (or other
related that may arise);

• The evaluation of the technologies that support HTTP
requests;

• To perform internal tests with JSON/REST and other
technologies;

• The study of the possibility of rewriting the web
services in JSON/REST or in another more efficient
technology.

REFERENCES

[1] Ehab N Alkhanak and Salimah Mokhtar. Using services oriented
architecture to improve efficient web-services for postgraduate students.
Proceeding of the WASET, pages 68–71, 2009.

[2] VO Andersson, RT dos Santos, ALC Tillmann, and JH Noguez. S.
cobalto webservice: Solução para consistência de informações. Resumo
Publicado na VIII Workshop de Tecnologia da Informação e
Comunicação das IFES, 2014.

[3] S. G. S. Araújo, C. M. Garcia, R. Abílio, and N. Malheiros. Acesso a
Serviços e Informações Acadêmicas da Universidade Federal de Lavras
em Dispositivos Móveis com a Plataforma Android. X Workshop de
Tecnologia da Informação e Comunicação das IFES, 2016.

[4] Carlos Costa, Ana Cristina Melo, Aníbal Fernandes, Luís Mendes

Gomes, and Hélia Guerra. Integração de sistemas de informação
universitários via web services. In Actas da 5a Conferencia Ibérica
de Sistemas y Tecnologias de Información, pages 290–295, 2010.

[5] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
Sistemas Distribuídos-: Conceitos e Projeto. Bookman Editora, 2013.

[6] Steven Davelaar. Performance Study – REST vs SOAP for Mobile
Applications. Disponível em <http://www.ateam-
oracle.com/performancestudy-rest-vs-soap-for-mobile-applications/>.
Accessed in: 06 maio 2016., 2015.

[7] Roy T Fielding and Richard N Taylor. Principled design of the modern
web architecture. ACM Transactions on Internet Technology (TOIT),
2(2):115–150, 2002.

[8] C. M. Garcia, R. Abilio, and N. Malheiros. Abordagens e Tecnologias
para Integração de Sistemas: Um Estudo de Caso na Universidade
Federal de Lavras. Revista de Sistemas de Informação da FSMA,
(15):11–22, 2015.

[9] Peter Leo Gorski, Luigi Lo Iacono, Hoai Viet Nguyen, and Daniel
Behnam Torkian. Service security revisited. In Services Computing
(SCC), 2014 IEEE International Conference on, pages 464–471. IEEE,
2014.

[10] Wu He and Li Da Xu. Integration of distributed enterprise applications:
a survey. IEEE Transactions on Industrial Informatics, 10(1):35–42,
2014.

[11] B. Hensle, C. Booth, D. Chappelle, J. McDaniels, M. Wilkins, and
S. Bennett. Oracle reference architecture-service-oriented integration.

[12] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns:
Designing, building, and deploying messaging solutions. Addison-
Wesley Professional, 2004.

[13] JSON.org. Introducing JSON. Disponível em <http://www.json.org/>.
Accessed in: 06 junho 2016., 1999.

[14] Victor Manuel Moreira Martins. Integração de Sistemas de Informação:
Perspectivas, normas e abordagens. PhD thesis, 2006.

[15] John Neter, Michael H Kutner, Christopher J Nachtsheim, and William
Wasserman. Applied linear statistical models, volume 4. Irwin Chicago,
1996. R. J. Vidmar. (1992, August). On the use of atmospheric plasmas
as electromagnetic reflectors. IEEE Trans. Plasma Sci. [Online]. 21(3).
pp. 876–880. Available:
http://www.halcyon.com/pub/journals/21ps03-vidmar

[17] Fajar Suryawan. Inter-database synchronization: a low-cost approach to
information system integration. 2014.

[18] Efraim Turban, Dorothy Leidner, Ephraim Mclean, and James
Wetherbe. Tecnologia da Informação para Gestão-: Transformando
os Negócios na Economia Digital. Bookman, 2010.

[19] Mohammad Hadi Valipour, Bavar AmirZafari, Khashayar Niki Maleki,
and Negin Daneshpour. A brief survey of software architecture concepts
and service oriented architecture. In Computer Science and Information
Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference
on, pages 34–38. IEEE, 2009.

[20] Willem-Jan van den Heuvel, Olaf Zimmermann, Frank Leymann,
Patricia Lago, Ina Schieferdecker, Uwe Zdun, and Paris Avgeriou.
Software service engineering: Tenets and challenges. In Proceedings of
the 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems, pages 26–33. IEEE Computer Society, 2009.

[21] W3.org. Extensible Markup Language (XML). Disponível em
<https://www.w3.org/XML/>. Accessed in: 06 março 2017., 2016.

[22] Michael Zur Muehlen, Jeffrey V Nickerson, and Keith D Swenson.
Developing web services choreography standards—the case of rest vs.
soap. Decision Support Systems, 40(1):9–29, 2005. information system
integration. 2014.

