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Abstract This paper emphasis on the derivation of the Black-Scholes formula for the valuation of the European 

options using Hermite polynomial basis. The work categorized the Hermite polynomials into the probabilists’ 

and Physicists’ Hermite polynomial and thereby uses the generating function of the probabilists’ Hermite 

polynomials to obtain the Black-Scholes formula for call and put which is generally used in the valuation of the 

European options. 
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1. Introduction 

The valuation of option has been of great importance in financial mathematics. An option can either be a call or 

a put. The main usefulness of an option is to give the holder the right (not obligation) to buy or sell an 

underlying asset for a predetermined price often called the strike price during a particular period of time. A 

standard option offers the right to buy (call) or sell (put) an underlying security by a certain date at a set strike 

price. In comparison to other option structures, standard options are not complicated. Such options are easy to 

trade and are well-known in the markets. However, the term standard option is a relative measure of complexity, 

especially when business men and investors are considering various options and structures. Examples of 

standard options are American options which allow exercise of right at any point during the life of the option 

and European options that allow exercise to occur only at the maturity date. The first popular mathematical 

model for pricing European options is the Black-Scholes model which used the assumption of no arbitrage 

argument to arrive at the fair price of the option. In their work, they considered the stock price process as a 

Geometric Brownian Motion in order to obtain a closed form expression for the European option price.  

2. Literature Review 

Different literature explained the applications of orthogonal polynomials and in particular, the Hermite 

polynomials. [1] discuss how the orthogonal polynomials can be constructed using the basic orthogonality 

properties and thereby uses the zeros of the constructed orthogonal polynomials as the point of collocation for 

solving an integral equation. In [2], the contingent claims were priced using the basis of family of Hermite 

polynomials. However, [3] extend and test the approach of [2] for pricing contingent claim where they use the 

model to price options on Eurodollar future. [4] wrote a paper on Hermite polynomials based expansion of 

European options where he seek the closed-form series expansion of option prices to know how the drift, 

volatility and jump components of underlying risk-neutral dynamics are been translated into option prices. [5] 

estimate the Neutral Density from option prices and Subjective Density from underlying assets using the 

Hermite polynomials’ expansion. 

However the breakthrough made by Fisher Black and Myron Scholes together with Robert Black in the stock 

option pricing in 1973 is still the most popular model used in the valuation of option especially the European 

option. According to [6], the stochastic integrals of the Hermite polynomials evaluated in Brownian motion is of 
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great importance in the Black-Scholes option pricing model. The famous Black-Scholes model uses the special 

martingales which are greatly related to the generating function of Hermite polynomials [7]. In this paper, we 

present the classic representation of Hermite polynomials and use the generating function of the polynomial to 

obtain the Black-Scholes formula. 

 

3. Hermite Polynomials 

 The Hermite polynomials belong to the family of the classical orthogonal polynomial sequence which arise in 

probability such as the Edgeworth series; in numerical analysis such as Gaussian quadrature, finite methods as 

shape functions for beams; in combinatorics as an example of an Appell sequence which obeys the umbral 

calculus; and in physics where they give rise to the eigenstates of the quantum harmonic oscillator [8]. These 

polynomials were first defined by Laplace in 1810 and then studied in detail by Chebyshev in 1859. However, 

Chebyshev’s work was overlooked and they are later named after Charles Hermite in 1864 who made an 

improvement on the polynomials. 

According to [8], there are two distinct way of standardizing Hermite polynomials and these are known as the 

probabilists’ Hermite polynomials denoted by )(xH
n

e  and the physicists’ Hermite polynomials denoted by 

)(xHn  . These two polynomials are defined mathematically as  
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 However, it is worth noting that the two definition given in (3.1) and (3.2) are not exactly the same but each is a 

rescaling of the other. that is,  
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 Without loss of generality, the polynomials 
n

eH  are sometimes denoted by nH  especially in probability 

theory because the probability density function for the standard normal distribution is 2
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 which is 

similar to the weight function of the polynomial. 

Using MATLAB code, the first six probabilists’ and physicists’ Hermite polynomials are given below:  
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Figure  1: The first six probabilists’ Hermite polynomials )(xH
n

e  

for the physicists’, we have  

 1=)(0 xH  

 xxH 2=)(1  

 24=)( 2

2 xxH  

 xxxH 128=)( 3

3   

 124816=)( 24

4  xxxH  

 xxxxH 12016032=)( 35

5   

  

   

Figure  2: The first six physicist’ Hermite polynomials )(xHn  
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3.1. Probabilists’ Hermite Polynomials 

 The monic Hermite polynomials are often referred to as the probabilists’ Hermite polynomials, denoted by 

nHe , and can be expressed as  
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 and are orthogonal in ),(   with weight function 2
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They satisfy the orthogonality condition  
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The three-term recurrence relation is given by  

 ).()(=)( 11 xnHexxHexHe nnn    

  

3.2. Normalized Hermite Polynomials 

 If the Hermite polynomial )(xHen  is normalized and the normalized form is denoted by )(
~

xeH n , 

then we can express )(
~

xeH n  as [3]:  
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 The polynomials are orthogonal in the interval ),(   with respect to the weight function 
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 The normalized recurrence relation of the Hermite polynomials )(
~

xeH n  is given by [9]  
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4. Convergence of Hermite Polynomials to the Black-Scholes Model 

 Consider the Hermite polynomials )(xHn  defined as  
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 where )(xw  is the reference measure (weight function) which is the standard Gaussian density. The 

normalized form of the polynomials given as  
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 Assuming this asset price tS  follows a geometric Brownian motion, then we have  
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where   is the drift rate,   is the variance rate (volatility) and tz  is the standard normal random variate with 

mean zero and variance one. That is (0,1)~ Nzt . 

Theorem Any arbitrary claim )(xg  in an Hilbert space (H ) can be written as  
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The coefficient na  is the covariance of the n -th term Hermite polynomial with contingent claim and is given 

by  
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 Proof   see [2] 

Let )(xC  and )(xP  denotes the pay off of the European call and put options. where  
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 Using the theorem above, we may write the payoff of the call and put option in terms of the basis of Hermite 

polynomials.  
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 Now using the generating function of the probabilists’ Hermite polynomials  
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 Using the Taylor’s series function, we have 
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 Then from (4.2)  
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 we obtain the generating functions of the European call option by using the coefficient of the call option given 

in (4.4). 
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 is the European call option generating function. From (4.3), we know the payoff of the call option is expressed 

as  
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 (4.6) indicates that 0)( xC . Hence  
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 We note that the formula for a cumulative distribution function of standard normal distribution is given by  
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 the value of the put option can be obtain in a similar way as the case of the call option  

 ).()(= 102 dNeSdKNP tut   
 

 Without loss of generality, since u  is a dummy variable, we can set it to be equal to zero. Therefore, we have  
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 and  
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However, setting the drift   to be equal to the risk-free rate r  specializes the reference measure to the 

equivalent martingale measure under Black-Scholes, and the Hermite polynomial pricing model collapses to the 

Black-Scholes model. Therefore, we have  
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5. Conclusion 

 A separate way for the derivation of the well-known Black-Scholes formula used for the pricing of the 

European call and put options has been presented. The method make use of the Hermite polynomials and some 

of the general properties of the polynomial. The derivation shows us that the Black-Scholes formula can be 

obtained without the use of the Partial differential equation. Moreover, the steps are easy to implement and it 

involves less computation. 
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