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Abstract A first derivative method for the integration of first-order oscillatory problems is derived in this 

research. The integration is carried out within a two-step interval. The method of collocation and interpolation 

of power series basis function was adopted in deriving the method. The method derived was tested on some 

sampled oscillatory differential problems to verify its reliability. The results obtained in terms of the point wise 

absolute errors show that the first derivative method developed approximates the exact solutions closely. The 

method derived was also tested for zero-stability, consistency and convergence. 
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1. Introduction 

Most of the phenomena, processes and situations that describe the world in which we live are contained in what 

are known as differential equations. Such equations appear not only in the physical sciences, but also in biology, 

engineering, management sciences, and all scientific disciplines that attempt to understand the world in which 

we live. It is also important to state that many of these equations that govern the physical world have no solution 

in closed form. Therefore, to find the answer to questions about the world in which we live, we must resort to 

solving these equations numerically. Also, the subject is by no means closed, so researchers should be on the 

lookout for new techniques that provide greater efficiency and higher accuracy [1]. 

A very challenging set of these differential equations being encountered in our day-to-day activities is the 

oscillatory differential equations. They are differential equations whose solutions are composed of smooth 

varying and of a ‘nearly periodic’ functions, i.e. they are oscillations whose wave form and period varies slowly 

with time (relative to the period), and where the solution is sought over a very large number of cycles [2]. 

In this research, oscillatory problems of the form, 

0 0'( ) ( , ), ( )y x f x y y x y           (1)  

shall be considered; where 0: , , , ( )m m mf y y y x    is assumed to possess oscillatory solution 

and f  satisfy the existence and uniqueness theorem stated in the theorem below. 

Theorem 1.1 [3] 

Let, 

 
( ) ( 1)

0( , , ',..., ), ( )n n k

kU f x u u u U x C         (2)

0,1,..., ( 1); andk n u f  are scalars. Let  be the region defined by the inequalities 
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0 0 , , 0,1,..., ( 1),( 0, 0).j jx x x a s c b j n a b          Suppose the function 

0 1 1( , , ,..., )nf x s s s   is defined in   and in addition: 

(a) f  is non-negative and non-decreasing in each 0 1 1, , ,..., innx s s s   ; 

(b) 0 1 1 0 0( , , ,..., ) 0 for ; andnf x c c c x x x a      

(c) 0, 0,1,2,..., ( 1).kC k n    

Then, the differential equation (1) has a unique solution in  . 

A lot of methods have been proposed for the solution of problems of the form (1). Linear Multistep Methods 

(LMMs) have been developed varying from discrete LMMs to continuous ones. Continuous LMMs have greater 

advantages over the discrete methods such that they give better error estimation, provide a simplified form of 

coefficients for further evaluation at different grid points and provide approximate solution at all interior points 

within the interval of integration, [4]. These methods are first derivative methods that are implemented in 

predictor-corrector mode and Taylor series expansions are adopted to supply starting values, [5]. The setbacks 

of the predictor-corrector methods are that they are very costly to implement, longer computer time, greater 

human effort and reduced order of accuracy which affect the accuracy of the method. 

Scholars latter developed block methods to cater for some setbacks of the predictor-corrector methods 

mentioned above. Block methods generate independent solutions at all selected grid point without overlapping. 

It is less expensive in terms of the number of function evaluation compared to predictor-corrector methods and 

moreover it possesses the properties of Runge-Kutta methods of being self-starting, see [6, 7, 8]. The block 

method was modified by   incorporating function evaluation at off-step points to afford the opportunity of 

circumventing the Dahlquist ‘zero stability barrier’ (as stated in Theorem 1.2 below) and this made it possible to 

obtain convergent k-step methods with order 2 1k  up to 7k  , [9]. Even higher orders are available if two or 

more offstep points are used. This method was called ‘hybrid method’. The method is useful in reducing the step 

number of a method and still remains zero-stable, see the works of [10, 11]. 

Theorem 1.2 [12] 

There is no consistent, zero-stable linear k -step method whose order exceeds 1k   if k  is odd or 2k   if k  

is even. 

Definition 1.1 [13, 14]  

A differential equation is said to be oscillatory if, 

(i) all the nontrivial solution of (1.1) have an infinite number of zeros (roots) on 0x x  , and 

(ii) it has at least one oscillating solution. 

Definition 1.2: [15] 

A numerical integration scheme is said to be ( )A  -stable for some  0, / 2   if the wedge  

 : ( ) , 0S z Arg z z    
  

is contained in its region of absolute stability. The largest  max. .i e   is called the angle of absolute 

stability. 

 

Definition 1.3: [15] 

A numerical integration scheme is said to be (0)A -stable if it is ( )A  -stable for some  0, 2  . Note 

that  
2

A
 
 
 

-stability A -stability. 

2. Derivation of the First Derivative Method 

A first derivative method of the form, 
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(0) ( ) ( )m n n mA E hd hb  Y y f y F Y        (3) 

shall be derived for the integration of oscillatory problems of the form (1), where 
(0) , ,A E d and b  are 

r r  matrices ( r  is the number of collocation points). On the other hand, , , ( ) ( )m n m nY y F Y and f y  are 

vector matrices with r  entries.  

This derivation shall be achieved by employing power series as basis function as shown in equation (4) below, 

1

0

( )
r s

n

n

n

y x a x
 



             (4) 

where  r and s  are the numbers of collocation and interpolation points respectively.  

Let the approximate solution to (1) be given by power series of degree 7, by allowing 1 7r s    in equation 

(4), that is, 

 

7
2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

( ) n

n

n

y x a x a a x a x a x a x a x a x a x


            (5) 

with the first derivative given by, 

2 3 4 5 6

1 2 3 4 5 6 7'( ) 2 3 4 5 6 7y x a a x a x a x a x a x a x           (6) 

Substituting (6) into (1) gives, 

2 3 4 5 6

1 2 3 4 5 6 7( , ) 2 3 4 5 6 7f x y a a x a x a x a x a x a x           (7) 

Now, interpolating (5) at point 
5

,
3

n sx s   and collocating (7) at points 
1

, 0 2
3

n rx r

 
  

 
, leads to a system 

of nonlinear equation of the form, 

XA U           (8) 

 where   

 0 1 2 3 4 5 6 7

T
A a a a a a a a a           

1 2 1 4 5 2

3 3 3 3

T

n n n n
n n n n

U y f f f f f f f 
   

 
  
 

 

2 3 4 5 6 7

5 5 5 5 5 5 5

3 3 3 3 3 3 3

2 3 4 5 6

2 3 4 5 6

1 1 1 1 1 1

3 3 3 3 3 3

2 3 4 5 6

2 2 2 2 2 2

3 3 3 3 3 3

2 3 4 5 6

1 1 1 1 1 1

4

3

1

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2

n n n n n n n

n n n n n n

n n n n n n

n n n n n n

n n n n n n

n

x x x x x x x

x x x x x x

x x x x x x

x x x x x x

X x x x x x x

x

      

     

     

     





2 3 4 5 6

4 4 4 4 4

3 3 3 3 3

2 3 4 5 6

5 5 5 5 5 5

3 3 3 3 3 3

2 3 4 5 6

2 2 2 2 2 2

3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

n n n n n

n n n n n n

n n n n n n

x x x x x

x x x x x x

x x x x x x

    

     

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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Solving (8) by Gauss elimination method for the ' , 0(1)5ja s j  and substituting back into the power series 

basis function gives a linear multistep method of the form,   

2

5 5

03 3

1
( ) ( ) ( ) , 0 2

3
j n j

n
j

y x x y h x f j  




 
    

 
      (9) 

where the coefficients of n n jy and f   are given as, 

5

3

7 6 5 4 3 2

0

7 6 5 4 3 2

1

3

7 6

2

3

1

1
(209952 1711206 5688144 9913995 9675792 5202792 1391040 137575)

139104

1
(6561 51030 158193 246645 197316 68040 3625)

7245

1
(3149280 23320710 67482072

1391040

t t t t t t t

t t t t t t

t t t











       

       

   5 4 3 2

7 6 5 4 3 2

1

7 6 5 4 3 2

4

3

95111415 64978200 17010000 171875)

1
(262440 1845585 4997538 6475140 4009320 982800 44375)

86940

1
(1049760 6991110 17799264 21662235 12791520 3061800 124375)

463680

t t t

t t t t t t

t t t t t t







   

       

      

7 6 5 4 3 2

5

3

7 6 5 4 3 2

2

1
(78732 494991 1194102 1394820 802872 190512 15325)

86940

1
(69984 413910 957096 1087695 617064 146160 5125)

463680

t t t t t t

t t t t t t



















       


      
   (10) 

and t  is given by  

nx x
t

h


             (11) 

Evaluating (9) at 
1 1

2
3 3

t
 

  
 

, gives a discrete two-step algorithm of the form  (3) given by, 
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1 1

3 3

2 2

3 3

1 1

4 4

3 3

5 5

3 3

2

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

n n

n n

n n

n n

n n

n n

y y

y y

y y

y y

y y

y y

 

 

 

 

 



  
  

     
     
     
     

     
     
     
     
    

 
  

1

3

2

3

1

4

3

5

3

428149
0 0 0 0 0

417312

8419
0 0 0 0 0

86940

3043
0 0 0 0 0

30912

6346
0 0 0 0 0

65205

27515
0 0 0 0 0

278208

907
0 0 0 0 0

9660

2713

7245

n

n

n

n

n

n

f

f

f
h

f

f

f

h











 
 

   
   
   
   
   
   
   

   
   
   

    
    

  
 
  



410461 67477 69737 4381 30701

139104 260820 463680 86940 4173120

752 4447 4112 3629 976 199

1449 86940 21735 28980 21735 28980

81 6201 3803 8289 171 1207

161 51520 9660 51520 3220 154560

3712 1784 39232 58 832

7245 21735 65205 7245 217

  

  

 

1

3

2

3

1

4

3

5

3

2

416

35 65205

725 34375 8875 24875 3065 1025

1449 278208 17388 92736 17388 92736

432 27 1744 27 432 907

805 3220 2415 3220 805 9660

n

n

n

n

n

n

f

f

f

f

f

f













 
 

  
  
  
  
  
  
  
  
  
  
  
  
 

 
  

    (12) 

This is a first derivative method for the solution of oscillatory problems of the form (1).  

3. Analysis of the First Derivative Method 

In this section, some basic properties of the first derivative method shall be discussed.  

3.1 Order of Accuracy of the First Derivative Method 

The order of accuracy of a method quantifies the rate of convergence of computed solution of a differential 

equation to the exact solution. According to [16], the first derivative method (12) is said to be of uniform 

accurate order p , if p  is the largest positive integer for which 0 1 2 1... 0, 0p pc c c c c       . 1pc   

is called the error constant and the local truncation error of the method is given by; 

 ( 1) ( 1) ( 2)
1 ( )p p p

n k pt c h y t O h  
           (13) 

The larger the order of accuracy, the faster the error is reduced as h  decreases. Therefore, for our first 

derivative method 0 1 2 3 4 5 6 0c c c c c c c       , implying that the order  6 6 6 6 6
T

p   

and the error constant is given by 

6 6 6 6 6 63.5672 10 4.9438 10 4.7926 10 4.8807 10 4.7663 10 5.1121 10
T

             . 

3.2 Consistency of the First Derivative Method 

Consistency refers to a quantitative measure of the extent to which the exact solution satisfies the discrete 

problem. The first derivative method (12) is consistent since it has order 1p  . Consistency controls the 

magnitude of the local truncation error committed at each stage of the computation, [17]. 

3.3 Zero Stability of the First Derivative Method 
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Definition 3.1 [17]: A block method is said to be zero-stable, if the roots kszs ,...,2,1,   of the first 

characteristic polynomial )(z  defined by )det()( )0( EzAz   satisfies 1sz  and every root 

satisfying 1sz  have multiplicity not exceeding the order of the differential equation.  

For the first derivative method (12), the first characteristic polynomial is given by,  

 

1 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 1
( )

0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1

z z

   
   
   
   

    
   
   
   
   

        

             
5

0 0 0 0 1

0 0 0 0 1

0 0 0 0 1
( 1)

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

z

z

z
z z

z

z

z






  







 

Thus, solving for z in  

 
5( 1) 0z z             (14) 

gives 1 2 3 4 5 60 1z z z z z and z      . Hence, the first derivative method (12) is zero-stable. 

3.4 Convergence of the First Derivative Method 

The first derivative method is convergent since it is consistent and zero-stable. 

Theorem 3.1 [18] 

A linear multistep method is convergent if and only if it is zero stable and consistent  

3.5 Region of Absolute Stability of the First Derivative Method 

Definition 3.2 [19] 

Region of absolute stability is a region in the complex z  plane, where z h . It is defined as those values of 

z  such that the numerical solutions of 'y y   satisfy 0jy   as j   for any initial condition. 

Applying the boundary locus method, we obtain the stability polynomial for the first derivative method derived 

as; 

6 6 5 5 6 5 4 6 5

3 6 5 2 6 5 6

8 1348847 79 17751889 29 49712251
( )

39123 314940150 27945 787350375 1242 299943000

475 24256997 569 67419419 206

3726 52490025 1242 69986700 207

h w h w w h w w h w w

h w w h w w h w

     
          

     

   
        

   

5 6 5208

207
w w w

 
  

 
                (15) 

The region of absolute stability of the first derivative method is shown in Figure 3.1. 
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Figure 3.1: Stability region of the first derivative method 

The stability region obtained in Figure 3.1 is A(0)-stable, see [15]. The unstable region consists of the complex 

plane outside the enclosed figure while the stable region is the interior of the curve.               

4. Results 

4.1 Numerical Experiments    

The first derivative method developed shall be applied on some sampled oscillatory differential equations that 

find application in science and engineering. The following notations shall be used in the Tables below: 

ERR= Absolute error in the computational method 

Eval t =Evaluation time per seconds 

ESJ-Absolute error in [20] 

EJS-Absolute error in [21] 

Problem 4.1 

Consider the Prothero-Robinson oscillatory problem 

' cos sin , 1, (0) 0y Ly x L x L y       

with the exact solution 

  ( ) siny x x  

Source: [20] 

Problem 4.2 

Consider the oscillatory problem 

' sin 200( cos ), (0) 0y x y x y      

with the exact solution 

  
200( ) cos xy x x e   

Source: [21] 

Table 4.1: The result for the Prothero-Robinson oscillatory problem 4.1 

  t                    Exact Solution          Computed Solution        ERR             ESJ                Eval t  

0.1000    0.0998334166468282    0.0998334166468281    5.551115e-017    1.452952e-011   0.0313    

0.2000    0.1986693307950612    0.1986693307950610    1.942890e-016    1.621117e-011    0.0345     

0.3000    0.2955202066613396    0.2955202066613391    4.440892e-016    2.131013e-011   0.0376    

0.4000    0.3894183423086506    0.3894183423086496    9.436896e-016    1.379910e-011   0.0409    

0.5000    0.4794255386042031    0.4794255386042017    1.443290e-015    2.744084e-011    0.0440    

0.6000    0.5646424733950355    0.5646424733950336    1.887379e-015    1.111424e-011  0.0470    

0.7000    0.6442176872376912    0.6442176872376887    2.553513e-015    2.865663e-011  0.0502    

0.8000    0.7173560908995230    0.7173560908995198    3.219647e-015    1.921784e-010   0.0533    

0.9000    0.7833269096274836    0.7833269096274799    3.774758e-015    1.239202e-010   0.0564    

1.0000    0.8414709848078967    0.8414709848078923    4.440892e-015    1.471102e-010  0.0596 
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Figure 4.1: Graphical result showing the oscillatory nature of Prothero-Robinson Problem 4.1 

Table 4.2: The result for the oscillatory problem 4.2 

  t                    Exact Solution          Computed Solution        ERR             EJS               Eval t  

0.0010    0.1812687469220599    0.1812687444444861    2.477574e-009   6.581226e-006  0.0360    

0.0020    0.3296779539650273    0.3296776444451111    3.095199e-007    2.937887e-006  0.0525    

0.0030    0.4511838639093485    0.4511836088351063    2.550742e-007    9.396094e-006  0.0731    

0.0040    0.5506630358934451    0.5506626209385402    4.149549e-007    1.130466e-005   0.0952    

0.0050    0.6321080588545993    0.6321077180050110    3.408496e-007    7.910709e-006  0.1200    

0.0060    0.6987877881417979    0.6987873709128151    4.172290e-007    1.031328e-005  0.1358    

0.0070    0.7533785361584351    0.7533781938140038    3.423444e-007    1.042596e-005  0.1362    

0.0080    0.7980714821760110    0.7980711092733236    3.729027e-007    7.798045e-006  0.1365    

0.0090    0.8346606120517877    0.8346603062446752    3.058071e-007    8.490002e-006  0.1369     

0.0100    0.8646147171800526    0.8646144047247972    3.124553e-007    8.038839e-006   0.1372  

 
Figure 4.2: Graphical result showing the oscillatory nature of Problem 4.2 

4.2. Discussion of Results 

The numerical result (in Tables 4.1 and 4.2) and graphical results (in Figures 4.2 and 4.3) clearly show that the 

first derivative method derived is computationally reliable; this is because the computed solutions converge to 

the exact solutions. The stability region obtained also shows that the method can effectively handle even stiff 

equations since it is A(0)-stable.  

 

Conclusion 

The first derivative method developed in this research has been shown to be efficient in handling oscillatory 

problems of the form (1). It is also important to note that the method derived is consistent, convergent and zero-

stable. Thus, the method derived is recommended for the solution of oscillatory problems of the form (1). 

Suffice to say that the method derived can handle stiff and other first order differential equations.  

0 5 10 15 20 25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y
(x

)

 

 

Exact Solution

Computed Solution

0 5 10 15 20 25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

y
(x

)

 

 

Exact Solution

Computed Solution



Sunday J et al                                            Journal of Scientific and Engineering Research, 2017, 4(9):342-350 

 

Journal of Scientific and Engineering Research 

350 

 

 

 References 

[1]. Collins, G. W. (2003). Fundamental numerical method and data analysis. Case Western Reserve 

University. 

[2]. Stetter, H. A. (1994). Development of ideas, techniques and implementation. Proceeding  of 

Symposium in Applied Mathematics, 48: 205-224. 

[3]. Wend, V. V. (1967). Existence and uniqueness of solution of ordinary differential equations. 

Proceedings of the American Mathematical Society, 23(1): 23-27. 

[4]. Kayode, S. J. & Awoyemi, D. O. (2010). A multi-derivative collocation method for fifth order ODEs. 

J. Math. Stat., 6(1): 60-63.  

[5]. Akinfenwa, O. A., Akinnukawe, B. & Mudasiru, S. B. (2015). A family of continuous third derivative 

block methods for solving stiff systems of first order ODEs. Journal of the Nigerian Mathematical 

Society, 34: 160-168. 

[6]. Sunday, J., Odekunle, M. R. & Adesanya, A. O. (2013). Order six block integrator for the solution of 

first-order ordinary differential equations. International Journal of Mathematics and Soft Computing, 

3(1): 87-96. 

[7]. Sunday, J., Odekunle, M. R. & Adesanya, A. O. (2014). A self-starting four-step fifth-order block 

integrator for stiff and oscillatory differential equations. J. Math. Comput. Sci., 4(1): 73-84. 

[8]. Sunday, J., James, A. A., Odekunle, M. R. & Adesanya, A. O. (2015). Chebyshevian basis function-

type block method for the solution of first-order initial value problems with oscillating solution. J. 

Math. Comput. Sci., 5(4): 462-472. 

[9]. Butcher, J. C. (2000). Numerical methods for ordinary differential equations in the 20
th

 century. Journal 

of Computational and Applied Mathematics, 125: 1-29. 

[10]. Sunday, J., Dlanga, Y. & Andest, J. N. (2016). A quarter-step computational hybrid block method for 

first-order modeled differential equations using Laguerre polynomial. Engineering Mathematics 

Letters, 4: 1-16. 

[11]. Sunday, J., Dlanga, Y. & Andest, J. N. (2016). Integration of first-order modeled differential equations 

using a quarter-step method. Advances in Research Journal, 7(1): 1-8. 

[12]. Dahlquist, G. (1956). Convergence and stability in the numerical integration of ODEs. Math. Scand, 4: 

33-53. 

[13]. Borowski, E. J. & Borwein, J. M. (2005). Dictionary of Mathematics. Harper Collins Publishers, 

Glasgow. 

[14]. Kanat, B. (2006). Numerical Solution of highly oscillatory differential equations by magnus series 

method. Unpublished master’s thesis. Izmir Institute of Technology, Izmir. 

[15]. Fatunla, S. O. (1988). Numerical methods for IVPs in ODEs. Academic Press Inc, New York 

[16]. Lambert, J. D. (1991). Numerical methods for ordinary differential systems: The initial value problem. 

John Wiley and Sons LTD, United Kingdom. 

[17]. Fatunla, S. O. (1980). Numerical integrators for stiff and highly oscillatory differential equations, 

Mathematics of Computation, 34: 373-390. 

[18]. Butcher, J. C. (2008). Numerical methods for ODEs. John Wiley and Sons Ltd, Chichester, England, 

2
nd

 Edition. 

[19]. Yan, Y. L. (2011). Numerical methods for differential equations. City University of Hong-Kong, 

Kowloon. 

[20]. Sunday, J., Adesanya, A. O. & Odekunle, M. R. (2014). A self-starting four-step fifth-order block 

integrator for stiff and oscillatory differential equations. Journal of Mathematical and Computational 

Sciences, 4(1):73-84.  

[21]. Sunday, J., Skwame, Y. & Odekunle, M. R. (2013). A Continuous Block Integrator for the Solution of Stiff 

and Oscillatory Differential Equations. IOSR Journal of Mathematics, 8(3): 75-80. 

 


