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Abstract As we known that the notion of linear space can be given in tern the lines of the set of points, which 

satisfying certain axioms. In this case all the linear spaces in the usual sense, in particular the Euclidean plane 

(spaces), are a linear space in the sense line and points. In this work we want begin and investigate the 

generalization of the notion of linear space in tern the fuzzy lines. 

Let ℙ be a finite set with at least three points, L  be a finite F -lattice (i.e. completely distributive lattice with an 

order-reversing involution ' : L L ) and 𝕃 ⊆ 𝐿ℙ  be a set of the all Fuzzy subsets of ℙ. 
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Introduction 

Let's start with the following definition, which brings a different view to d-dimensional linear spaces. 

Definition 1.  For a subfamily (so called fuzzy lines) 𝕃  subset 𝐿ℙ and ℙ points the pair 𝕊 = (ℙ, 𝕃) is called 

fuzzy near-linear spaces  FNLS  if it satisfies the following condition.  

 1FLS   For any two different points P ,Q ∊ ℙ and l
 
∊ 𝕃 there exist such that     0l P l Q  . 

      The two different points in ℙ are on a line of 𝕃. 

      It is easy to see that if lattice L  is trivial (i.e. L  0,1 ), we obtain usual traditional near-linear space. 

      Let us to consider the following example. 

Example 1. Let ℙ
 
 1 2 3 4, , ,P P P P ,  0, ,1L a and 𝕃 ={l ,l’}with    1,0,1, , ' 1,0, ,1l a l a  . 

 
          It is obvious that 𝕊 = (ℙ, 𝕃) is a fuzzy near-linear space. Its we briefly denote as  
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𝕊 =



















1

1

00

11

a

a
 

      Similarly, for ℙ and L the following matrix also determines a fuzzy near-linear space: 

𝕊1 =



















1

01

00

01

aa

a

a

a

, 𝕊2 =



















aa

aa

aaa

aa

01

11

0

00

,𝕊3 =



















111

1

000

0010

a

aaa

a
,…. 

Definition 2.  Let the pair 𝕊 = (ℙ, 𝕃) be a fuzzy near-linear spaces. 𝕊 is called (fuzzy linear spaces) (FLS) if it 

satisfies the following condition: 

 2FLS   For any l
 
∊ 𝕃  there exist ∃P ,Q ∊ ℙ such that     0l P l Q  . 

Any  l  line of L is at least two points. 

 2FLS   For any l
 
∊ 𝕃 there exist  ∃P ,Q ∊ ℙ such that     0l P l Q  . 

In general speaking, in the definition of the FLS should to require also: 

(FLS-3) There exist ∃P ,Q,R ∊ ℙ  such that, for all  l
 
∊ 𝕃   holds 

      0l P l Q l R   . 

      There are three points, three of which are not on the same line. 

      Throughout in present paper we consider FLS with condition (FLS-3). 

Example 2. Let ℙ
 
 1 2 3, ,P P P  and  0,1L    there exists unique fuzzy linear spaces. 

1 0 1

1 1 0

0 1 1

S

 
 


 
  

 

 

If   1 0, ,1L a  then we can have at most 64  fuzzy linear spaces.  

      Checked directly that for the  1 20, , , , ,1n nL a a a  finite F-lattice and  𝕃 = 3 general number of the 

fuzzy linear spaces is
1
: 

                                                           
1
 For  the order , or number of elements  a set X , we use X 
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 𝕊 =
1

𝑛!
  …

6−𝑖1

𝑖2=0

6

𝑖1=0

    𝐶6−𝑖1−⋯−𝑖𝑛−1

𝑖𝑘

𝑛

𝑘=1𝑖1+...+𝑖𝑛 <6

6−𝑖1−⋯−𝑖𝑛−1

𝑖𝑛

= (1 + 𝑛)6 

In generally, a straightforward calculation shows that is true the following theorem: 

Theorem 1. Let 𝕊 = (ℙ, 𝕃)  be a FNLS and 𝑉𝑗 =:  {𝑃 ∊  ℙ, 𝑙𝑗(𝑃) ≠ 0}  for 𝑙𝑗 ∊ 𝕃. 

 Then  

 𝕊 =
1

𝑛!
  …

 𝐷 −𝑖1

𝑖2=0

 𝐷 

𝑖1=0

    𝐶 𝑃 −𝑖1−⋯−𝑖𝑛−1

𝑖𝑘

𝑛

𝑘=1𝑖1+...+𝑖𝑛 < 𝑃 

 𝐷 −𝑖1−⋯−𝑖𝑛−1

𝑖𝑛

=  (1 + 𝑛)𝑣𝑗

 𝑃 

𝑖=1

 

      Let 𝕊 = (ℙ, 𝕃)  be a FNLS. For 𝑃, 𝑃𝑗 ∊ ℙ and 𝑙, 𝑙𝑗 ∊ 𝕃   we introduce the following notations:  

𝑣 𝑙 =:   𝑃 ∊  ℙ, 𝑙 𝑃 ≠ 0  , 𝑏 𝑃 ≔   𝑙 ∊ 𝕃, 𝑙 𝑃 ≠ 0   

𝐶𝑖𝑗 =:   𝑄 ∊  ℙ, 𝑙𝑗 𝑄 ≠ 0   and ∃𝑙 ∊ 𝕃: 𝑙(𝑄)˄𝑙𝑗(𝑃𝑗) ≠ 0, 

 

 

0,  if 0

1,  if 0

j i

ij

j i

l P
r

l P


 


 

Proposition 2. Let 𝕊 = (ℙ, 𝕃)  be a FNLS.  If   ij jc v l  for every iP  and jl  with  0ijr  , then 𝕊  is a FLS. 

Proof. Let iP  and iQ  are the arbitrary two points of ℙ. Since 𝕃 ≠ ⌀, we can take a line from 𝕃,  say kl .  

If 1ik jkr r  , then   0k il P   and   0k il Q  . Hence,     0k i k il P l Q  , therefore  2FLS   

carry out.  

If 0ikr   and 0jkr   , then   0k il P   and   0k il Q  . By hypothesis there exists 𝑙 ∊ 𝕃 with 

    0i il P l Q  , since  ik kc v l . Therefore  2FLS   carry out. 

If 0ik jkr r  , then     0k i k il P l Q  . By  1FLS   the line kl  has at least two points, say one wich 

P    0kl P  .  By hypothesis there exists 𝑙 ∊ 𝕃  with     0i il P l Q  , since  ik kc v l . If  

  0jl Q  , then   2FLS   carry out. Otherwise (i.e. in the case   0jl Q  ) again by hypothesis there 

exists 𝑙′ ∊ 𝕃   such that    ' ' 0i il P l Q  , since    ,jc Q l v l .  Therefore  2FLS   carry out. Thus 

𝕊  is a FLS. 

Theorem 3. Let 𝑣 ≔  ℙ  and 𝑏 ≔  𝕃   . If  𝕊 = (ℙ, 𝕃 is a FLS, then  

   
1

1 1
b

j j

j

v v v v


   . (A sum with no entries is assumed to be zero.) 

Proof. For a set ℙ, there are 
 2

1

2
v

v v
C


  pairs of points (counting  ,i jP Q  to be the same pair as 

 ,i jP Q ). Also as any pair of points determines at least one line, therefore, the total number of pairs of points 

is no more than the total number of pairs of points on each line, i.e. 
   

1

11

2 2

b
j j

j

v vv v




 . 

Unlike traditional linear space, it is not hard to see that here the conversely assertion, general speaking, is not 

true, as show the following example. 
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Example 3.  For ℙ = {𝑃1 , 𝑃2 , 𝑃3},  𝕃 =  𝑙1 , 𝑙2, 𝑙3 and   0, ,1L a  we consider 𝕊 =  
1 0 𝑎
1 1 𝑎
0 1 0

 : 

 

Checked directly that 1 2 3v v v   and    
3

1

1 1 6j j

j

v v v v


    . But, it is easy to see that 𝕊 = (ℙ, 𝕃) 

isn’t a fuzzy linear space. 

In order to shown a conversely assertion, we give the following definition. 

Definition 3. Let 𝕊 = (ℙ, 𝕃) be a FNLS. We say that two lines il  and jl  are equivalent and denote as 𝑙𝑖~𝑙𝑗 , if 

there exists the points P ,Q ∊ ℙ
 
such that     0i il P l Q   and     0j jl P l Q  . Let 𝕃′ =  𝕃 ~ be the 

set of the equivalence classes of 𝕃, and let𝑏′ ≔  𝕃′ .  

It is easy to prove the following theorem. 

Theorem 4.  𝕊 = (ℙ, 𝕃) is a FLS iff     
'

1

1 1
b

j j

j

v v v v


   . 

      From Theorem 3 and 4 we obtain: 

Corollary 5. If  𝕊 = (ℙ, 𝕃) is a FLS,  𝕃 ≥ 3 and there exists P ,Q ∊ ℙ
 
 with     : 0 2l l P l Q   L

,  then    
1

1 1
b

j j

j

v v v v


   . 

Corollary.  If  𝕊 = (ℙ, 𝕃) is a FLS,  0,1L  , then 

   
1

1 1
b

j j

j

v v v v


   . 
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