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Abstract In this paper we look over history of conservative averaging method in last 50 - 100 years. Some well-

known mathematicians in classical papers investigated problems with non-classical boundary conditions, which 

have derivatives in boundary conditions equal or higher as derivatives in the main partial differential equation. 

Forty or fifty years ago it was important to construct mathematical models for intensification of the crude oil or 

gas output. We have experience in around 30 years in these fields. Most of the papers were published in Russian 

language. We have made short overlook of some most important papers. In these papers were investigating 

problems with non-classical boundary conditions, mathematical basis of method of conservative averaging was 

constructed. For the situation with layered media we have introduced integral spline, which fulfils the energy or 

mass conservation in new simplified (less dimensional) formulation of the problem.  We introduce new 

hyperbolic approximation for conservative averaging method. In the paper is given a new representation for 

classic cubic spline. Our new formula allows calculating spline values with O(n) operations.      
 

Keywords Conservative averaging, Energy conservation, Petroleum models, Integral parabolic spline, Cubic 

spline 

1. Introduction 

We start with history in the last 100 years [1]-[11]. Good short history about thermal conductivity in the 18
th

 and 

19
th

 century and Fourier research is given in the paper [12]. 

Real processes take place in natural or technical systems with complicated structure. Very often such systems 

consist of separate layers with different thickness and different physical properties. It means that on the surfaces 

between two adjacent layers we have jump in coefficients of differential equations mathematically describing 

correspondent physical process. A. Buikis has developed and mathematically justified special method – 

conservative averaging method (CAM) [15] – [55], [60] – [63]. The main idea of CAM is that the new problem 

formulation in main domain has fulfilled all energy peculiarities, and fulfils conservation laws. 

For the multi-layered strata we have introduced a special new type of spline [39] - [41]. We used this new type 

spline for multi-layer system: [21] - [24]. We use CAM for solving such problems for wide class of direct [15], 

[16], [67] – [82], [85] and inverse [17] and [25] - [55], [60] – [63] problems for partial differential equations 

with discontinuous coefficients. 

I give modified description of integral parabolic spline and employ this spline for some groundwater (or other 

fluids) flows and pollution problems in layered stratum. Proposed method differs from methods traditionally 

used by mathematical modelling of groundwater pollution [8] - [14], [56] – [58] or other transport processes in 

natural or artificial porous media. This method as outcome gives little bit more complicated mathematical 

model, but it allows describing broader spectrum of physical phenomena and wider variety of geometrical and 

physical parameters. By the way, we give a new representation for classical cubic spline [42]. The new form of 

cubic spline is given in papers [42], [43]. We finish paper with generalization of  Green function method for 

non-canonical domain [79], [85], [86].  
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2. Short Hystory of Conservative Averaging Method 

2.1. Classical Paper 

The history of conservative averaging method started with paper [1] of Kneser. The Journal Rendiconti del 

circolo matematico di Palermo was very important at beginning of 20
th

 century. In the Editors were: E. Bertini, 

E. Borel, C. Caratheodory, U. Dini, R. Forsyth, I. Fredholm, J. Hadamard, D. Hilbert, F. Klein, T. Levi –Civita, 

A. Liapounoff, G. Mittag – Leffler, F.Osgood, E. Picard, C. Segre, W. Stekloff, Ch. De la Vallee Poussin and e. 

a.  

In year 1914 Kneser Adolf in this reputation journal publishes paper [1] about loaded integral equations with 

concentrate mass: 

  

         
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0m n m n
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In the second integral the function  M a  is positive. He called such integral equations with this equality as 

loaded orthogonal. In his paper Kneser A. investigate boundary problem: 
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  (1) 

Important is moment that in the right boundary condition we have the second derivative relatively to time 

argument as in the main equation. 

Samarskii Alexander in his paper [2] looked on slab, which was heated from left end with the furnace. 

Samarskii gives such mathematical model. Hi introduces two different temperatures, between whom a 

temperature jump is possible: 

   
( ), 0, .,

( , )
( , ), 0 , .

U t at x furnacetemp
U x t

u x t at x l slabtemp


 

 
   (2) 

This allow to use 
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   (3) 

Heat exchange between furnace and slab is given by following formula (4): 
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    (4) 

The definition (2) allows formulating ordinary derivative relative to t  in (4). In formulas (3), (4) we have in the 

point 0x   two temperatures: (0 0, ), (0, ).U t U t  Accordingly, we have two conditions – the last one in 

(3) and (4). 

Next interesting paper is in year 1950 written by Tikhonov A. N. [3]. In papers of Kneser and Samarskii in 

boundary condition (BC) the derivative relative to t  is in the main equation and in BC (1), (4). In paper the 

derivative in BC is higher than in main differential equation (heat equation):  
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In paper [3] the existence and uniqueness of problem is investigated. 

The books [4], [5] look at different mathematical models and authors also consider the condition of non-ideal 

thermal contact between two different materials. Authors states that “temperature has discontinuity when 

passing through the boundary of non-ideal contact, with the height of the step being proportional to the heat 

flow, i.e.  

                  , , ,
k T

T x y z S
n


 


, 

where the coefficient of contact heat transfer   is associated with the contact conditions” [5]. In our papers 

[16], [17] was found, that coefficient   can be expressed trough physical and geometrical properties of the 

interlayer: 

                              0k



 . 

Here 0k  is heat conductivity coefficient of interlayer and   is interlayer thickness. 

2.2. Praxis in the Petroleum Output 

In time after Second World War was very important to raise oil output, especially by thermal methods. The 

books [8] - [10], [56] - [58] and the paper [6] are good examples. The pumping hot or cold water in the 

petroleum layer was investigated in [6]. Lauwerier assumed that in oil layer heat conductivity in orthogonal 

direction   is equivalence to infinity, but in the horizontal direction   in the oil layer and in neighborhood 

material heat conductivity is zero. The first assumption means that in oil layer the temperature in vertical 

direction is constant. This supposition allows us to get from second partial differential equation a new BC with 

highest derivative in time. The mathematical model looks like this: 
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In this case the non-dimensional solution is in the form: 

            ( , , ) .u erfc
 

     
 


 


  (6) 

In our paper [35] were looked at Lauwerier solution with different, third type boundary condition. It gives 

continuity of solution in the corner point and can be represented as Lauwerier solution plus function which is 

going to zero as 
1


 for each fixed point. 

In the paper [7] authors looked at tertiary method of oil production: the simplest possible initial value problem 

of heat conduction with a free boundary moving within the concentrate capacity. In the porous layer a non-

isothermal incompressible fluid flow is accompanied by a phase change: the melting of paraffin sediments in oil 

saturated media by means of hot liquid injection. The mathematical model is generalizing of the Lauwerier’s 

scheme with heat conduction in the oil layer. The mathematical model is following: 
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The main equation must be added boundary and initial condition, which we omit. Important is to see in this 

model the second equation, which is boundary conditions, with higher derivative according argument t . 

 

 2.3 Temperature fields in petroleum layers 

All our papers were written in Russian in the 1960-1980-ies and were not known in English speaking countries. 

Here we give short overlies for part of these investigations. 

The Latvian University Computing Center from Moscow at the end of 1950ties had received computer BESM-2 

(large electronic big mainframe computer). One of the most important problems was the extraction of oil in 

multi-layer systems, if the in hot water injection is used. A typical oilfield was in Westernn Kazakhstan – Usen 

deposit. There was quite a lot of paraffin in oil layer, which sets hard around 40 ° C. These many layers in the 

system could lead to the fact that lower permeably layers are blocked [51], [52], [13], [14]. The second 

important property was high viscosity of petroleum in comparison with water viscosity. The Latvian University 

Computing Center in second part of 60-ies had research agreement with All-union of Petroleum and Gas 

Investigation Institute about thermal methods in the multi-layered petroleum stratum of petroleum investigation 

in the West Kazakhstan Usen deposit. A. Buikis was leading researcher in this agreement. Main results were 

published in the articles [51] - [54]. A. Buikis in these papers solved the Buckley-Leverett equation [56] - [58] 

for immiscible two phase fluids flow in the multi-layered system. The Buckley-Leverett equation with artificial 

viscosity has the form: 
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Here  ,x t  is the saturation of the two phase fluid, the   is Buckley function, the  is viscosity of water 

and oil ratio and  ,T x t is temperature field.  

The Buckley-Leverett equation was approximated by difference scheme: 
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  , s is saturation jump and 0T  is initial temperature field. The disappeared 

diffusivity was calculated from inequality: 
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In the papers was evaluated the procedures and calculation results for non-isothermal two phase flow for cold 

and hot water injection.  This immiscible two phase fluids flow in the multi-layered system for cases with given 

filtration velocities and for given pressure field between injection and production holes. On the basis of this 
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investigation atom power station was built to produce hot water. Some years later two dimensional for 

immiscible two phase fluids flow when one of fluids - petroleum has non-Newtonian properties [54] were 

numerically calculated. The temperature field in the multilayered system was calculated by Lauwerier solution, 

modified by “additive formula” [14]. Temperature in separate layer was calculated as sum of other layers. If the 

sum was greater as maximal temperature the “additive formula” gives the maximal temperature. We have 

calculated the error which was about 30%. After we think about this problem and later we introduce the integral 

splines, see section 4.  

 In this time it was popular to think about underground nuclear explosions to intensify petroleum and gas 

outcome [59]. We investigate two dimensional gas movements in the papers [60]-[62]. The mathematical 

models were constructed in polar system of co-ordinates with very big non-homogeneousness: permeability 

changed 
310  times. In all our papers some averaging procedures were made. 

In the paper [25] was investigated heat transfer by conduction and convection in porous media (layer), if we 

distinguish the temperature of the fluid  2 ,u x t  and the temperature of the matrix 1 2( , , )v x x t : 

 The temperature of the layer itself, averaged by the density of the layer (co-ordinate 1x ) with the 

method of conservative averaging, approximated with a constant; 

 Heat transfer in layer and surrounding media in the direction of convection (co-ordinate 2x ) is not 

taken into account; 

 The layer itself is considered as two temperatures in medium: porous matrix and the liquid that is 

flowing threw it.  

In nature two mathematical models are investigated 
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 (8) 

In mathematical model the averaging of the temperature regarding to averaged thermal qualities are carried out 

(index “0” refers to liquid, index “1” refers to porous matrix). 
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If we investigate the layer as homogeneous media (with averaged thermal qualities), then this kind of problem is 

also called the Lauwerier scheme  2 ,Lu x t  (see formula (6)). In the same layer the temperature is defined with 

equation 

                     

1 2

.
v v v

w
t x x


  

 
  

   

The values of coefficients , w   depend on the physical and geometrical qualities of porous media and the 

quantity of filtration velocity. In this work is shown (with the help of analytical formulae’s and method of finite 

difference) that both approaches give fundamentally different results. 

One of the authors of the articles [49], [50] dealt with the problem of the heat water-oil fluid and the layer 

porous matrix when temperatures are different. Mathematical model of the problem with formulation in the 
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conditions of concentrated heat capacity, and its solution is obtained with the Laplace integral transform 

method. The solution of the problem shows that the problem of the homogeneous layer is the same as the 

problem of cracked porous layer.  The temperature fronts are in completely different positions, and it was 

substantial to the influence of temperature to the field of porous oil.  

In paper [28] is considered the heat transfer in the way of heat conduction and convection in multi layered 

porous system, if temperature of separate layers is averaged by the density of corresponding layer (assumptions 

are similar as in previous paper – without the second component). In the paper finite difference scheme with 

energy conservation is offered. Further stability theorem of the scheme in C metrics is formulated and an 

economic, factorization type algorithm for solution for three point schemes (on coordinate perpendicular to 

depth of layers) is offered [26], [27]:  
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    Boundary and initial conditions are evident for the 

difference schemes. We give the most important difference equations: 
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Theorem 1. If for
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then difference scheme (8) is stable in C  norm. The difference scheme with 
   
1 2 1

k k
   is absolutely 

stable. 

In paper [27] is considered the heat transfer in the way of heat conduction and convection in two dimensional 

multilayered porous – fractured systems, if temperature that separates layers is averaged conservatively by the 

width of corresponding layer (consumptions as in papers [28]):  
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In paper there is shown the scheme of finite differences with scales. In the new moment of time the equation of 

liquid is switched off and a classical type algorithm is offered [32], [33].  

In paper [34] two dimensional heat transfer in the way of heat conducting and convection in multilayered porous 

system, witch contains sub-layers between any of two basic layers is inspected.  

Averaging via corresponding depth of layer is carried out, and the analogue of Lauwerier model for multi-

layered system is obtained:   
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For this kind of equation system a difference scheme with weights is offered. The stability term in steady 

metrics (analogue of theorem 1) for difference scheme and algorithm for the solution of difference scheme is 

formulated.  Also the statement for multi – fractured system (the extension of short material [26]) is examined as 

well as the exclusion of difference equation for liquid from the system of equations. At the end of the paper 

calculations are given, which show that the assumption about the linearity of temperature in intermediate layer 

made in monographers’ [18], [20], cannot fulfill if the depth of layer is thick enough.  

In paper [26] is considered the heat transfer in the way of heat conduction and convection in two dimensional 

multilayered porous or porous – fractured systems, if temperatures that separate layers are averaged 

conservatively by the depth of corresponding layer. In the end of the paper there are given concrete calculations, 

which show that the assumption about the linearity of the temperature in sub-layers can not fulfill: the solution 

can be with the inner minimum.  

In paper [31] with the help of the method of conservative averaging the problem of convection – diffusion of 

ground – waters is considered. For the obtained non-classical problem a finite difference scheme with scales is 

constructed, the sufficient parameter of stability in steady metrics is obtained, as well as  considerations about 

the reduction of numerical diffusion in calculations are expressed. The results are in graphics, they show the 

placement of convective front in the end of calculations: after 27.5 years.  

In author’s paper [31] mathematical model for two layered system with diffusion crosswise the elongated 

direction of the layer, when the coefficients of both layers varies greatly, is inspected. With the help of 

averaging process, the differential equation of second layer is excluded, and it transfers to non – classical border 
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condition. Vast correlation of diffusion coefficients is considered. Full statement is given; other solutions: 

constant in the layer with major, IPS there in and both layers IPS. For the new statement the difference scheme 

is offered, with the help of maximum principle a criteria of stability for difference scheme is extracted and a 

version of calculations is offered. So in paper [31], the transfer of substance transverse (by the depth of layer), 

diffusion and convection by the longitudinal line of the layer in two dimensional multi layered, porous, isolated 

media is considered.        

Two dimensional difference schemes are offered. Afterwards, the statement with conservative averaging by 

layer, in which the coefficient of diffusion is bigger, is examined; as the result we obtain problem for one layer 

with non-classical border condition and corresponding difference scheme, as in [26]. Further approximation 

with polynomial of second degree is considered and for this model a difference scheme is offered. Finally, a 

version with approximation with second degree polynomial (IPS) in both layers is examined, and also in this 

case a difference scheme is offered. At the end of the paper the results of calculations with different parameters 

(when the coefficients of diffusion differ 20 times and 5 times) are compared.  

In papers [30]-[33] is given a mathematical model of transfer for two dimensional multi layered system with 

sub-layers, when diffusion takes place crosswise the elongated direction of the layer, when the diffusion 

coefficients and speed of convection of both layers varies. In sub-layers linear approximation is used. With the 

help of generalized IPS in irregular mode system of one dimensional equation is obtained, and there is shown 

that the obtained system differs from classical scheme [11], which does not allow the depth of sub-layers to be 

equal to zero. Two layer systems with one interlayer were described by system: 

      
 

2 2

012 2

, 0,1; 1 .

i i
i i j i

i i

H k
x y

H f i j i


    

     
  

   

    (10) 

Index 0,1i   is for layers, but 1/ 2i   - for interlayer (aquitard).  

For classical scheme
1

01 1/ 2 1/ 2k H  , our statement gives [44]: 

             

1

0 1/ 2 1
01

0 1/ 2 13 3

H H H

k k k




 
   
 

 .            (11) 

It is easy to see, that system (9) are degenerated for 1/ 2 0H  , but with coefficient 01  the system of 

differential equations is correct. 

 

3. Conservative Averaging Method with Hyperbolic Function 

In all situations there were two or more sub-domains. Now we describe case, in which only one domain 

exists. In this case the character scale in one direction is smaller than in other direction. In our publications [15] 

– [24], [21] – [24] were only the first case was examined: with two or more sub-domains. 

Let it be given a continuous function ( ), [0, ]U x x l  and positive constant k . This function is unknown, but 

we have information about averaged value: 

                     
1

0

( )

l

u l U x dx  .             (12) 

Additionally is known boundary conditions in points 0,x x l  . 

We will approximate the function ( )U x in the form (parameter   is free constant): 



Buikis A                                                     Journal of Scientific and Engineering Research, 2017, 4(4):176-197 

 

Journal of Scientific and Engineering Research 

184 

 

          

 

 

2

0
2

0

sinh
2

( )

2sinh
2

sinh
2

,

sinh
2

sinh

1 , .
cosh 1

l
x

U x u ml
l

l
x

eG A
l

l

llA G
l k














  
  

     
 
 
 

   
   

   
  

  
  

 


   

This form fulfills the equality (11). Two independent coefficients ,m e  we can determine from boundary 

conditions. 

We start with first type BC: 

                  0 1(0) , ( )U U l  .                (13) 

From BC we obtain: 

 
0 1 0 1 0

0

2 2
, 1 .

2 1 2

u
e m u

G A l l

       
     

  
 

For the second type BC: 

0 1(0) , ( )U U l    . 

Similarly we obtain: 

0 1 0 1tanh , tanh .
2 2

l l
m e

l G

 

 

      
    

   
 

Third type BC: 

   0 0 1 1(0) (0) , ( ) ( ) .U U U l U l        

 

4. Integral Spline 

In this section we shortly describe integral parabolic spline from papers [39] - [39], [7] – [10]. Spline with 

integral values in the recent years is often in scientific publications [63]. This spline is important because it 

helps solving mathematical models with mechanical or physical content [65] as this was for integral parabolic or 

rational spline [41]. The article [32] deals with the problem for layered media that can be solved with averaged 

integral parabolic or averaged integral rational spline. 

Second part of this section is non-traditional representations of classic cubic spline [42], [43] and monograph 

[65]. 

4.1. Integral parabolic spline 

Let it be given a continuous, piecewise-smooth function ( ), [ , ].U x x a b  Further, let it be given, that the first 

derivative ( )U x has a finite jump in the inner points ix :  

       1 ( 0) ( 0), 1,..., .i i i ik U x kU x i N
        (14)       

Here , 0,...,ik i N are known (given) strongly positive coefficients. We additionally have following 

continuity equalities in the same points: 

          ( 0) ( 0), 1,..., .i iU x U x i N              (15) 
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Let’s additionally be given the average integral values iu  of the function ( )U x over the all sub-segments 

1 0 1[ , ], 0,..., , , :i i Nx x i N x a x b        

           1 , 0,..., .i i iH x x i N               (16) 

The goal of the interpolation problem is to (approximately) reconstruct the function ( ),U x  being based on 

conditions (14)-(16) and following general boundary conditions (BC) on the interval end points x a  and 

x b : 

            
0 0 0 0

1 1 1

( ) ( ) ,

( ) ( ) .N

k U a U a

k U b U b

 

 

   

   
          (17, 18)                      

Such form of BC is typical for the ordinary or partial differential equations. In papers [7]-[10] it was proved, 

that this interpolation problem can be solved by second order polynomial spline of following form: 

 

 

2

1

( )
( ) ( ) , (19)

12

/ 2, / 0.

i i
i i i i

i i

i i i i i i

x x G
S x u m x x e

k H

x x x G H k

 
     

 

   

 

This form of spline exactly fulfills the integral equalities (3) for all real values of unknown coefficients , .i im e  

For the determination of 2( 1)N   free coefficients; we have exactly the same number of equations (13), (14), 

(16) and (17). In papers [37], [38], [21]-[24] it was shown, that all coefficients im can be represented through 

coefficients ie  and we obtain the system of linear algebraic equations for 1, 1i N  . 

We propose in thesis a different normalized form for the calculation of the spline coefficients ie : 

      
1 1

1 1

(1 )

, 1,..., 1.

i i i i i i i

i i i i i i

a e a b e b e

f u f u f u i N

 

 

 

    

   
         (20)             

Additionally we use other from [21]-[23] form for the first and last equations of the system of linear algebraic 

equations: 

    

0 0 0 0 1 0 1 0 0 0 1

1

1 1

(1 ) ,

(1 )

.

N N N N N

N N N N N N

a b e b e f u f u f u

a e a b e

f u f u f u

 





 

 

     

   

 

 (21) 

Here i i if f f   and 

    

   

   

1 1 1 1

1 1

/ , / ,

3/ , 3/ .

i i i i i i i i

i i i i i i

a G G G b G G G

f G G f G G

   

 

 

   

   
 

Instead of (21) here we also propose other form of the explicit representation for coefficients ie . This 

representation shows in explicit form the influence of the BC type and its right hand side on the spline: 

    

0 1 1
(0) (1)

0

,

0, .

N N

N

i i i ij j
j

f u f ue u

i N

   
 



  





(22) 

The coefficients in the representation (22) are determinates from following systems of linear algebraic 

equations: 

a) the system for 
(0)

i : 
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(0) (0)

0 0 0 0 1

(0) (0) (0)

1 1

(0) (0)

1

(1 ) 1,

(1 ) 0,

1,..., 1,

(1 ) 0;

i i i i i i i

N N N N N

a b b

a a b b

i N

a a b

 

  

 

 



   

    

 

   

                (23) 

b) the system for 
(1)

i : 

        

(1) (1)

0 0 0 0 1

(1) (1) (1)

1 1

(1) (1)

1

(1 ) 0,

(1 ) 0,

1,..., 1,

(1 ) 1.

i i i i i i i

N N N N N

a b b

a a b b

i N

a a b

 

  

 

 



   

    

 

   

        (24) 

b) and 1N   systems ( 0,...,j N ) for ij : 

        

0 0 0, 0 1,

1, 1,

1, , 1,

1, ,

(1 ) 0,

(1 )

, 1,..., 1,

(1 ) 0.

j j

i i j i i ij i i j

j i j j i j j i j

N N j N N N j

a b b

a a b b

f f f i N

a a b

 

  

  

 

 

 

 



   

    

   

   

 (25) 

We would like to draw reader’s attention to several important aspects of this new type of integral spline. Firstly, 

this spline interpolates exactly the average integral value (16) of the function ( ).U x Secondly, it fulfills exactly 

both conjugations conditions (17), (18). Thirdly, the new type of representation (22) has interesting and very 

important property in application to differential equations. As reader can see, the components of the vector 

( ) ( )

0( ) , {0,1}k k N

i i k    and of the matrix , 0( )N

ij i j    depend on the location of grid points ix , 

coefficients  ik and type of BC (17), (18), but they are independent from averaged integral values a iu and right 

hand sides’ values 0 1,  of BC. This property implies that for fixed grid points and coefficients ik we need to 

calculate the components of the two vectors 
( )k and the matrix  only once. After this calculation, for the 

construction of the integral parabolic spline we need only to compute the finite sum (22). This representation 

(22) is very important by utilizing this spline for the differential equations with discontinuous coefficients. The 

approximation error of the IPS can be estimated as follows. 

Theorem 2. If the continuous, piecewise smooth function ( ), [ , ]U x x a b fulfills the conditions (14)-(17): 

1( 0) ( 0), ( 0) ( 0),i i i i i iU x U x k U x kU x
        

1

11,..., , ( ) ,
i

i

x

i i

x

i N u H U x dx


    

then the interpolation with the IPS can be estimated with following inequality:  

   

 

2
( ) ( )( ) ( ) ,

0,1,2; max , , .

p
p p

p N N

N i N N
i

U x S x C

p G U



 



  

    



 
 (26) 

Here  is continuity modulus of corresponding function on the grid:                                       

, [ , ]

( , ) max ( ) ( ) .
h

x x h a b

U U x h U x


 


 

     
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This type of splines was used in different papers [21]-[34] of filtration processes in the multi-layered systems. 

The paper [63] is devoted to the field transistor technology. The mathematical model with integral parabolic 

spline allows reducing the two-dimensional problem to the system of one-dimensional system of partial 

differential equations. 

 

4.2. New representation for classic cubic spline 

The classical interpolation problem for function  u x is formulated as follows. Let it be given the values 

( ), 0,...,i iu u x i N   on the grid  0 1 1: ... , .N i i ia x x x b H x x          Interpolation by 

classical cubic spline 
2

3( ) [ , ]S x C a b for sub segment 1[ , ]i ix x x   regarding the normalized argument 

  /i it x x H  reduces to determination of the cubic spline of second derivatives 
3 ( )i iM S x  [64]. The 

second derivative of the cubic spline is linear function: 

        

     "

3 1 1

1
,

0, 1.

i i i i

i

S x M x x M x x
H

i N

 
     

 
 

The integrating gives [42]: 

     
2 2'

3 1 1 1

1

2
i i i i

i

S x M x x M x x C
H

 
      
 

 
The integrating ones more give the representation for the spline with two constants: 

    
     

3 3

3 1 1

1 2

1

2
i i i i

i

S x M x x M x x
H

C x C

 
    
 

 

 

Both two constants can be easy calculates in the points 
3 ( )i iM S x  and 1ix x  : 

             

2

1 0

2

1 1 1 0 1.

/ 6 ,

/ 6

i i i i

i i i i

H M C x C u

H M C x C u  

  

  
 

Subtracting from the second equality the first one we obtain: 

               1
1 1 .

6

i i i
i i

i

u u H
C M M

H





     

With this value of constant we can rewrite the first derivative in the form: 

   

     

 

2 2'

3 1 1

1
1

1

2

.
6

i i i i

i

i i i
i i

i

S x M x x M x x
H

H u u
M M

H

 




     
 


  

 

The continuity for the first derivative in the point :ix  

   

   

' 1
3 1

' 1 1 1
3 1

1

0 ,
2 6

0 .
2 6

i i i i i
i i i

i

i i i i i
i i i

i

M H H u u
S x M M

H

M H H u u
S x M M

H




  





     


    

The equality of both equations gives: 
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1 1
1 1

1 1

1

6 3 2

.

i i i i
i i i

i i i i

i i

H H H H
M M M

u u u u

H H

 
 

 




  

 


       (27) 

We can rewrite last system of linear equations in the following form [42]: 

              

1 1

1 1

2

, 1,..., 1.

i i i i i

i i i i i i

a M M b M

f u f u f u i N

 

 

 

  

   
 

The 3-diagonal system of linear algebraic equations for calculation of the coefficients iM is identical with the 

system (20). The formulae for the coefficients for cubic spline are as follows: 

      

   1 1 1

2 2

1

/ , / ,

6 / , 6 / .

i i i i i i i i

i i i i i i

a H H H b H H H

f a H f b H

  

 



   

 
  

We can see that we have following equality: 

                    
1.i ia b 

 
It means that system of linear equations (27) is equivalent with system for integral parabolic spline (20). We 

confine ourselves to two of most frequently used types of BC: 

1) Is given first derivative on both end points: 

         3 0 3( ) , ( ) ;NS a u S b u    
                     (29’) 

2) In both end points are given second derivative: 

          3 0 3( ) , ( ) .NS a u S b u    
          (29’’) 

We write them in the common form: 

       

0 0 1 0 1 0 0

1 1

2 ( ) ,

2 ( ) .N N N N N N N

M b M f u u F

a M M f u u F





 

   

   
               Here coefficients of the equations (29’), (29’’) 

have following expressions: 

1)         
0 0 0 0

1

1, 6 / , 1,

6 / ;

N

N N N

b F u H a

F u H 

   


           (30) 

2)           
0 0 0 00, 2 ,

0, 2 .N N N N

b f F u

a f F u





  

  
             (31) 

For the coefficients iM  of the cubic spline instead of representation (22) for integral parabolic spline we have 

following expression:  

       

0

(0) (1)

0

, 0, .N

N

i i i ij j
j

M F F u i N  


   
  (32)  

For the coefficients we have following systems of the linear algebraic equations. Firstly for the two coefficients

(0) (1),i i  : 

       

(0) (0)

0 0 1

(0) (0) (0)

1 1

(0) (0)

1

2 1,

2 0, 1,..., 1,

2 0.

i i i i i

N N N

b

a b i N

a

 

  

 

 



 

    

 
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(1) (1)

0 0 1

(1) (1) (1)

1 1

(1) (1)

1

2 0,

2 0, 1,..., 1,

2 1.
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Finally for the 1N  systems for coefficients ij :  
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This gives interesting new explicit formula for classical cubic spline [42], [43]: 

2

3 1 0

(0)
( ) (1 ) (1 )

6
3(i

i i i

H
S t u t u t t t F

     


  

(1)
1,

0

) (1 ) ] .[(2 )N

N

i ij ji j
j

F t ut   



  



      

Cubic spline explicit formula on the according argument x is following [42]: 
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4.3. On recurrence equation-based solution for the cubic spline 

In the paper [66] was written cubic spline in the form that is similar to (28): 
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The author Peter Revesz did not use the possibility to write boundary conditions in the form (30). He looked for 

special cases 0 0NM M   or iH H .  

But formula (34) is more efficiency as algorithm from paper [64] or books [65], [66].  

 

5. The development of conservative averaging method in the last years 

In the last years we together with colleagues have developed conservative averaging method. We approximated 

spline with exponential (hyperbolic) function [47]. This form of approximation allowed us good approximation 

of non-monotone solution [45] – [47].  

In the last 20 years we use conservative averaging method for system with fins or complicated systems [67] – 

[82]. 

Green functions have long been used to create integral representations for boundary value problems [83]. The 

method is usually Green function method for canonical domains. We had to use this method for the non-

canonical adjoining domains. We generalize the Green function method by conjugation conditions for non-
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canonical domains. This generalization is being used for elliptic, parabolic and hyperbolic types of partial 

differential equations. We demonstrate the idea of this method for two hollow cylinders [84], [85]. For the first 

cylinder we have partial differential equation: 
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For the second cylinder which can be of different material: 
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  

 

We formulate the conjugations conditions as ideal thermal contact for  0 1,r R R :  

0
0 00 0
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z l z l
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z z   
   
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The boundary conditions we assume as third type. The initial conditions for the both cylinders are assumed in 

following form: 

0 0 000 0
( , , ), ( , , ).

t t
U U r z U U r z 

 
                

The solution for three-dimensional problem for the wall is in following form with Green function [85]: 
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        (33) 

The function   , , ,H r z t  is dependent from boundary conditions. The combination of conjugations 

conditions gives such third type boundary condition: 
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The solution in three-dimensional problem for the fin is in following form [85]: 
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The solution in three-dimensional problem for the fin is in following form: 
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The combination of conjugations conditions gives such third type boundary condition: 
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Unfortunately, the representation (33) is unusable as solution for the fin because of the unknown function

( , , )F r t , i.e. temperature in the wall ( , , , )U r z l t  and derivative of temperature. From equation (35) we 

can write the combination 0( , , )F r t .  
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 Similarly we do with equations (23) and (18): 
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From equation (23) we can write the combination ( , , )F r t : 
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As the last step we substitute the combination 0( , , )F     from (33):  
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in the equation (29):                
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Finally we obtain following non-homogeneous Fredholm integral equation of 2
nd

 kind [87] : 
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Knowing the function ( , , )F r t we can calculate the solution for the fin from (34) and know the function 

0( , , )F    we have solution (33) for the wall. 

 

6. Conclusions  

 We have shortly reconstructed history of conservative capacity boundary conditions in the last 100 years. We 

have given short history of oil output investigation. In paper we propose new hyperbolic approximation for 

conservative averaging method. This approximation is not in the form of polynomial. The new representation 

for classical cubic spline is given. 

In this paper and papers [41] – [43] we construct conservative averaging method. This method interpolates 

exactly the average integral value of the function. Secondly, it fulfills exactly both conjugations or (and) 

boundary conditions. 

In other words: The main idea for the method of conservative averaging is to fulfill in the simplified problem 

formulation the conservation of energy or mass. All of main differential equations fulfill energy or mass 

conservation. The conjugations conditions fulfill energy exchange between two neighboring sub-domains or 

boundary conditions fulfill the energy conservation between object and surrounding media.  
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