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1. Introduction and Main Results
The classical Morrey spaces M DA have been introduced by Morrey in [26] to study the local behavior of

solutions of second order elliptic partial differential equations (PDEs). Later, there are many applications of
Morrey space to the Navier-Stokes equations (see [24]), the Schrodinger equations (see [32]) and the elliptic
problems with discontinuous coefficients (see [2, 29]).

We recall the definition of classical Morrey spaces M pa 88

A
MM(R”): f:”f”Mp’l[Rn) = supr p”f”Lp(B(x,r)) <o

xeR",r>0
where f € L'gC(R”), 0<A<nand1<p<co.
Note that M ), =L (R") and M =L, (R").1f A<0or A>n, then M , =©, where ®
is the set of all functions equivalentto 0 on R".

We also denote by WM, , =WM  , (R") the weak Morrey space of all functions f eWL'SC(R")

for which

A
sup r P|f|
n

<o,
WL (B(x,r))
xeR",r>0 P

” f ”WM o E” f ”\/\/Mpyﬂ(R”) -

where WL, (B(X, 1)) denotes the weak L, -space of measurable functions f for which

=
4N

N
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”f”WLp(B(X,I’)) EH f)(B(X,r) WLp(Rn)

=suptl{y e B(x,r){ f (y) > t}

t>0

= sup tl/p (f;t/B(x N )‘(t) < oo,

0<t<IB(x,r)|

1/p

where g* denotes the non-increasing rearrangement of a function g .

Throughout the paper we assume that X € R" and r >0 and also let B(X,r) denotes the open ball
centered at X of radius I, B®(X,r) denotes its complement and | B(X, r) | is the Lebesgue measure of the
ball B(X,r) and | B(X,r)|=Vv,r", where v, =| B(0,1)].

For the boundedness of the Hardy-Littlewood maximal operator, the fractional integral operator and
the Calderdn—Zygmund singular integral operator on these spaces, we refer the readers to [1, 5, 31]. For further
properties and applications of classical Morrey spaces, see [6, 7, 14, 17] and references therein.

After studying Morrey spaces in detail, researchers have passed to generalized Morrey spaces.

Mizuhara [25] has given generalized Morrey spaces IVIW considering gp(r) instead of r” in the above

definition of the Morrey space. Later, Guliyev [12], Guliyev et al. [13] and Karaman [22] have defined the
generalized Morrey spaces M Do with normalized norm as follows:

Definition 1 (Generalized Morrey space) Let ¢(X,r) be a positive measurable function on
R" x(0,00) and 1< p < oo. We denote by M b0 =My, (R") the generalized Morrey space, the space of

all functions f e L';C(R”) with finite quasinorm

B!
[, = sup @O *IBOOIP[f] g0, <

xeR",r>0
Also by WM 0o =WM pY(p(R") we denote the weak generalized Morrey space of all functions
f eWL';C(R") for which

1
”f”wmpm = sup (p(X, r)_l| B(X’ I’)| p”f”WLp(B(X,r)) <.

xeRn,r>0

According to this definition, we recover the Morrey space M p,, and weak Morrey space WM 0.

A-n

under the choice @(X,r)=r P
M pa = M

During the last decades various classical operators, such as maximal, singular and potential operators have been
widely investigated in generalized Morrey spaces (see [8, 12, 13, 18, 22, 28, 34] for details).

Suppose that S"™ is the unit sphere on R" (N> 2) equipped with the normalized Lebesgue measure

. ' S
do. Let Qel (Sn 1) with 1< s<oo be homogeneous of degree zero. We define S = —— for any

e
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s>1. Suppose that T,, ,, @ € (0, n) represents a linear or a sublinear operator, which satisfies that for any

f e L,(R") with compact support and X & suppf

Motk 1 1O ly)'| () Iy, a

where C, is independent of f and X.
For a locally integrable function b on R", suppose that the commutator operator TQ’M , X E (O, n)

represents a linear or a sublinear operator, which satisfies that for any f e Ll(R") with compact support and
X ¢ suppf
| Q(x—y)]|
| Towe FOVIC [ D) =b(Y) | | £(y) ldy, (L2)
RN | X—y |
where C, is independent of f and X.

We point out that the condition (1.1) in the case of Q=1, & =0 has been introduced by Soria and
Weiss in [35]. The conditions (1.1) and (1.2) are satisfied by many interesting operators in harmonic analysis,
such as fractional Marcinkiewicz operator, fractional maximal operator, fractional integral operator (Riesz
potential) and so on (see [23], [35] for details).

In 1971, Muckenhoupt and Wheeden [27] defined the fractional integral operator with rough kernel

-I_-Q,a by

Toaf(X)= j QXY fydy  O<a<n
-y
and a related fractional maximal operator with rough kernel MQ’a is given by

]
Mo, f0O=supl B " [ [alx-y)If(y)ldy 0<a<n,

B(x.t)

where Qe L (S™) with 1<s<oo is homogeneous of degree zero on R" and also Tow and Mg,
satisfy condition (1.1).

If =0, then M, =M, is the Hardy-Littlewood maximal operator with rough kernel and T 0
also becomes a Calderén-Zygmund singular integral operator with rough kernel. It is obvious that when Q =1,
M la = Ma and fl,a E'I_'a are the fractional maximal operator and the fractional integral operator,
respectively.

In recent years, the mapping properties of 'FQ,Q on some kinds of function spaces have been studied in

many papers (see [4, 9, 10, 27] for details). In particular, the boundedness of -I_-Q,a in Lebesgue spaces has been
obtained.

Lemmal[4,9,27] Let 0<a<n, 1< p<ﬂ and lzl—ﬁ.ﬁQeL(S“*), s>
a q p n n—«a

then we have

W
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Faut],_<cltl,

Corollary 1 Under the assumptions of Lemma 1, the operator M, , is bounded from L, R") to
n
L,(R"). Moreover, we have
M. 1], <cll,

Proof. Set
T |9 f|)()—J'| y)||f(Y)|dy 0<a<n,

where QQ € LS (Sn 1)(S > 1) is homogeneous of degree zero on R". It is easy to see that, for .. , Lemma 1

T [0«
is also hold. On the other hand, for any t > O, we have

T \n\ (M)( X) 2 I y)||

f (y)|dy
xt)l

1

B(x,t)

Taking the supremum for t > 0 on the inequality above, we get
1~ na
MQ,a f ( ) Cn aT |9« q f|)(X) Cn,a = |B(0’1) n

For be L°(R"), the commutator [0, T ] of fractional integral operator (also known as the Riesz
potential) is defined by

[0,To1f (X) =b(X)T o f (X) =T« (bf )(X) = jb(xxz;ybn(?f(y)dy 0<a<n

3 Ix-y]

for any suitable function f .

The function b is also called the symbol function of [D,T«]. The characterization of (Lp, Lq)-

boundedness of the commutator [b,fa] of fractional integral operator has been given by Chanillo [3]. A well

known result of Chanillo [3] states that the commutator [D,T ] is bounded from L,(R") to L,(R"),

l_«
1< p<qg<ow, ——==— ifand only if b € BMO(R") . There are two major reasons for considering the

problem of commutators. The first one is that the boundedness of commutators can produce some
characterizations of function spaces (see [3, 15, 16, 20, 30, 33]). The other one is that the theory of commutators
plays an important role in the study of the regularity of solutions to elliptic and parabolic PDEs of the second
order (see [6, 7, 34]).

Many authors are interested in the study of commutators for which the symbol functions belong to

BMO(R") spaces, see [3, 13, 18, 19, 20, 22, 30] for example.

Let us recall the defination of the space of BMO(R") (bounded mean oscillation).

W
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Definition 2 Suppose that b € L°(R"), let

1
* = p |b(y)_b X,r |dy<OO;
| " rs0| B(X, )|B(L> Bl

where

[ b(y)dy.

X,r)

by
(r) —
SNT-TCN]] B(X M) g
Define

BMOR") ={be L**(R"):|b], <oo}.
If one regards two functions whose difference is a constant as one, then the space BMO(R") is a Banach

space with respect to norm |||| .

Remark 1 [22] (1) The John-Nirenberg inequality [21]: there are constants C,, C, >0, such that
forall be BMO(R") and >0
[{x e BIb(x)—b, [> B} <C,|B|e 2", vBcR",
(2) The John-Nirenberg inequality implies that

1

p
I |b(y)_b3(x,r) |p dy} (1.3)

| 1
xeR" r>O | B( )lB(x,r)

for 1< p<oo.

(3) Let be BMO(R") . Then there is a constant C > 0 such that

o5 s ~ o | <Clb]. In % for0<2r<t, (1.4)

where C is independentof b, X, r and t.

Remark 2 [22] Note that L (R") is contained in BMO(R") and we have
ol < 2JblL.
Moreover, BMO contains unbounded functions, in fact the function log |X| on R",isin BMO but it is not

bounded, so L, (R") = BMO(R").

BMO

Let b be a locally integrable function on R", then for 0 < <n and f is a suitable function, we

define the commutators generated by fractional integral and maximal operators with rough kernel and b as
follows, respectively:

[0, T ] F (9 =600 T 0 £ () T (61 )) = [0 - b(y)]% (),

Rn

4
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Mas, (1)) =s0p1B.OT ™™ | b()-bly) k- y)I F ()] dy

B(x,t)
satisfy condition (1.2). The proof of boundedness of [b,fQ,a] in Lebesgue spaces can be found in [9] (by
taking W =1 there).

Theorem 1 [9] Suppose that €2 e LS(SH), 1< s<oo, is homogeneous of degree zero and has
n-1 n 1 1l « n .
mean value zeroon S" . Let 0<a<n,1l<p<—,and —=——— and be BMO(R") .1f s < p or
(04 q p n

g <, then the operator [, T o« ] is bounded from L,(R") to Lq( ”).

Remark 3 Using the method in the proof of Corollary 1 we have that
= n-a
Moo F(X)<CLI0Tial(f(¥)  C,.=[BOL) . (15)
By (1.5) we see that under the conditions of Theorem 1, the consequences of (Lp, Lq )—boundedness still hold

for Mg, -

Remark 4 [33] When Q) satisfies the specified size conditions, the kernel of the operator fQ,a has no
regularity, so the operator -I_-Q,a is called a rough fractional integral operator. In recent years, a variety of
operators related to the fractional integrals, but lacking the smoothness required in the classical theory, have

been studied. These include the operator [b,fQ,a]. For more results, we refer the reader to [3, 9, 10, 11, 15,
18, 19].

There are many papers discussing the conditions on ¢@(X, ) to obtain the boundedness of operators on
the generalized Morrey spaces. For example, in [28] by Nakai the following condition has been imposed on

o(X,r):

c (X, 1) < (X, t) <cp(x,r) (1.6)
whenever I <t < 2r, where ¢(>1) doesnotdependon t, r and X € R", jointly with the condition:
T a q dt p
ftrp(x.t) —<Coxn)’", (L7)
N n 1 1 «
where C(>0) does not depend on r and XeR", 1< p<ow, 0<ag<—, —=——— . Under the

P g p N

above conditions, in [28] has been obtained the boundedness of the operator T is bounded from M np 1O

M,, for p>1andfrom M, to WM_  for p=1. Later, Guliyev [12] has shown that the boundedness

of the operator T, from M__ to M___for p>1 and from |\/|1’(pl to WM,

Py a0.2 , for p= 1 by considering

P
the following condition (1.8) instead of conditions (1.6) and (1.7)

3 =N
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o0

dt
Jraxn—=<Co(xn),
r
n 1 1 « ,
where C does not dependon X and r, 1< p<oo, 0<a <—, —=———_ But, Guliyev’s results [12]
P g pn
are different from the main results in [28] as the definitions of generalized Morrey spaces of Guliyev and Nakai
are different from each other. On the other hand, in [13], Guliyev et al. have introduced a weaker condition for
the boundedness of certain sublinear operators, including fractional integral operators, and their commutators

under generic size conditions on generalized Morrey spaces. It can be formulated to their main results as
follows:

n 1_1 « . -
Theorem 2 [13] Let 1< p<oo, 0<a<—, —=———, and the pair (@, @,) satisfies the
p g p n

condition

n
0

_ P
,[ essmft<f<wn(ﬂl(xl )T dt <Cg,(x,r),

—+1

tq
where C does not depend on X and I . Let Ta be a sublinear operator satisfying condition (1.1) (by taking

r

Q=1 there), bounded from L (R") to L (R") for p>1, and bounded from L,(R") to WL (R") for
p =1. Then the operator T is bounded from M by 1O MW2 for p>1 and from Mlvw1 to WMWZ for

p =1. Moreover, we have for p>1

T fh, s
9,09 Py

and for p=1
”Taf”WMq Sn:f”rvll '
Py P
n 1 1 « n )
Theorem 3 [13] Let 1< p<oo, 0<a<—, —=———, beBMO(R") and the pair
P qQ n

(¢, 9,) satisfies the condition

; . dt <Cg,(x,r)

—+1
t q

T(l_i_ In EJ eSSinft<r<oo¢1(X’ Z-)’[B

where C does not depend on X and I . Let Tb'a be a sublinear operator satisfying condition (1.2) (by taking

Q=1 there) and bounded from L (R") to L,(R"). Then the operator T, , is bounded from M by 10

M G0y Moreover, we have

., <k

Py

*

.

—

Journal of Scientific and Engineering Research

151

(1.8)

(1.9)



GURBUZ F Journal of Scientific and Engineering Research, 2017, 4(2):145-163

Remark 5 If the pair (@, @,) satisfies condition (1.8), then (¢, ¢,) satisfies condition (1.9). But the

opposite is not true. In general, condition (1.9) does not imply condition (1.8). For example, see Remark 5.6. in
[13].

After the establishment of the generalized Morrey boundedness of T, under generic size conditions in
Theorem 2, a natural question is: Can this result be generalized? In other words, what properties does the more
general operators TQ’a under generic size conditions have on the generalized Morrey space? We give an answer

as follows:

Theorem 4 (Our main result) Suppose that Qe L (S"™), 1<s<oo, is homogeneous of degree

n 1 1 « . o ”
zero.Let 0<a<n,l<p<—, —=——— Let TQla be a sublinear operator satisfying condition (1.1),

a ( p n
bounded from L (R") to L,(R") for p >1, and bounded from L, (R") to WL, (R") for p =1. Letalso,

for s < p, the pair (¢,,,) satisfies the condition
n

. P
esmnfkm;gol(x,r)r dt <Co, (X, 1), (1.10)

—+1

tq
and for q <'s the pair (¢, ®,) satisfies the condition

0

= —

n
o0

I essinf,_ . @ (X, r)rB

r

n

dt <Ceg, (x,r)rs, (1.11)

where C does not depend on X and I .

Then the operator T, , is bounded from M b 10 M , for p>1 and from Mly(p1 to WMW2

a0
for p =1. Moreover, we have for p>1

Mool =Itl,

andfor p=1

Mo, =T, -
) M
WMqv¢72 lv(Pl

Corollary 2 Suppose that Qe LS(SH), 1<s<oo, is homogeneous of degree zero. Let

n 1 .
O<a<n,l<p<— and —=——— . For s < p the pair ((01,(p2) satisfies condition (1.10) and for
a g p n

q <S the pair ((/)1,%) satisfies condition (1.11). Then the operators MQV& and -FQ,Q are bounded from

M_ to sz for p >1 and from M1,¢lt0 WMW2 for p=1.

p.oy

—
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On the other hand, the result of Theorem 3 can also be generalized. We can state the BMO estimates

for the commutator operators T, , , under generic size conditions on the generalized Morrey space as follows:

Theorem 5 (Our main result) Suppose that €2 € L, (S n’l), 1< s <00, is homogeneous of degree

zeroand T, , is a sublinear operator satisfying condition (1.2) and bounded from L (R") to L (R"). Let

1<p<ow O0<a< ﬂ 1.1« and b e BMO(R”). Let also, for S < P the pair (¢,,@,) satisfies
P9 p N
the condition
© i P
j(1+ In Ej essmengol(x, o) dt <Cep,(x,r), (112)
g r —+1

tq

and for q < the pair (¢, ®,) satisfies the condition

n

- : B n

J.[1+ In %) essmf‘“ff"?l(x' i dt <Ceg,(x,r)rs, (1.13)
——+1

r tq S

where C does not depend on X and I .

Then, the operator Ty, ,, , is bounded from M to M 4.0, - Moreover

!
Mosafly =l
LU

Corollary 3 Suppose that Qe LS(SH), 1<s<oo, is homogeneous of degree zero. Let

n 1_1 :
l1<p<w O<a<-—, =22 and beBMO(R”). If for S < p the pair (¢, ¢,) satisfies the
n

P q p
condition (1.12) and for ¢ <'S the pair (¢,,,) satisfies the condition (1.13). Then, the operators M, ,

*

l,,

and [b, T .. ] are bounded from M by 10 MW2 :

Inspired by [18], in this paper we consider the boundedness of sublinear operators with a rough kernel
generated by fractional integrals and give BMO space estimates for commutators with rough kernel on

generalized Morrey spaces.
Finally, we present a relationship between essential supremum and essential infimum.

Lemma 2 (see [41] page 143) Let f be a real-valued nonnegative function and measurable on E .
Then

(essinf

xeE

f(x))™" = esssup, %x) (1.14)

By A<B we mean that A<CB with some positive constant C independent of appropriate
quantities. If A< B and B < A, we write A~ B and say that A and B are equivalent.

3 =N
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2 Proof of theorems

To prove the theorems (Theorems 4 and 5), we need the following lemmas.

Lemma 3 [15] Suppose that Qe LS(S"’l), 1<s<oo, is homogeneous of degree zero. Let
n 1 1 « . L .
O<a<n,l1<p<—, —=———.Let T,, beasublinear operator satisfying condition (1.1), bounded
a p n '
from L,(R") to L,(R") for p>1, and bounded from L,(R") to WL, (R") for p=1.
If p>1 and s < P, then the inequality

Ne N

- —
HTQ,afHLq(B(XO’r))S re ert q ||f||Lp(B(XOYt))dt 2.1)

holds for any ball B(X,,r) and forall f e L';C(R”).
If p>1and q<Ss, then the inequality

nnehnn

D heoh N,
Mot oy ST ° | .S L A

2r

holds for any ball B(XO, r) and forall f e L'SC( ”).

Moreover, for p=1<(q <'s the inequality

e
TRLal R U

holds for any ball B(X,,r) and forall f e L'fc( ”).

HTQva f HWLq (B(x

0’

Lemma 4 Suppose that £2 € LS (S n’1), 1< s <o, is homogeneous of degree zero. Let 1< p < oo,
nl1 1 «a n ) i L .
O<a<—,—=—-—be BMO(R ) and T, , is a sublinear operator satisfying condition (1.2) and
p g p n o
bounded from L, (R") to L,(R"). Then, for S < p the inequality
t), o
1+In F t ||f||Lp(B(xo,t)) dt

N o

HTQ,b,a f HLq(B(xO,r)) S ”b”* r ’ é[

holds for any ball B(X,,r) andforall f I_'S°(R").
Also, for q <'S the inequality

LU t nn,
”TQ,b,a f HLq(B(XO'r» S ”b”* rq ) J‘(l_'_ In _]t S ” f ”Lp(B(xO,t)) dt

2r r
holds for any ball B(X,,r) and forall f € L';C(R") :

Proof. For X € B(X,,t), notice that © is homogenous of degree zero and Qe L (S™™), s>1.
Then, we obtain

3 =N
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1 1

dpcoto] | oere]

1

j |Q(z)|sdz]S
B(O,t+‘x—x0‘)

IA

IA
—_—
2
N
S
w
o
N
|

B(0,2t)
1
(] 1o ool e |
0gn-1
1
= c||Q||LS(Sn_1)|B(x0,2t)€. (2.2)

n 1 1 «o
Letl< p<oo, 0<@<—and ===——_Forany X, €R", set B= B(Xo,r) for the ball centered at
p g p n

X, and of radius  and 2B = B(X,,2r). We represent f as
f=1f+f, f(y)=f (y)lzB(y)’ fz(y) = f (y);((zs)c (y) r>0

and have
HTQ,b,a f HLQ(B) < \Fa,b,a flqu(B) +HTvav“ fZHLq(B)

From the boundedness of T, , from L (R") to L, (R") (see Theorem 1) it follows that:

”Tanﬂ leLq(B) < ”TQ,b’a leLq(Rn)
S LI, o) = BLIE], oy

It is known that X B, y E(ZB)C, which implies %|X0 - y| £|X—y| £g|xo —y|. Then for X € B, we

have
Qx
T B0 22 Yty )y
an [X=Y]
o
L[ eyl y)| (y)—=b(x)| f (y)d.
ZBC|0 y|

Hence we get

o . %J[ [ —b<xx|f<yxdyj dx]q

7 Journal of Scientific and Engineering Research
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AN

JJ'{ J' |QX Y)| _b ”f y]dy]q

e o=y

n J'( J‘ |QX y) b||f y)dy]q

e o=y
=J,+J,.

: 1 1 1
We have the following estimation of Jl. Whens <pand —+—+—= 1, by the Fubini’s theorem
7

J, ~rq _[ ok |y) y)—bg| f (y)dy
X_

oro j lx-y)bly) by (y)] [ -2

(28)C %o~ V\

] ] byl -bl iy

r<‘x07y‘st

dt
<0re I j 1Q(x—y)o(y)-Dbg| f (y]dym holds.

2rB(xy t

Applying the Holder’s inequality and by (1.3), (1.4), (2.2) we get

=r | jot-y)bi)- (yxdytff_a

2rB x0

I |QX y)| y)dy n+1—

BXO

o O

smrEﬂp(-—ymLS(B Tl o e
2r

] Xt»nfnL Bl x“itn%
<. J(mn jn e
In order to estimate J, note that
S CORLY) . J vy

C |X0

By (1.3), we get

‘Vi‘é

\\
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n Qx—
sl [ 12y

(2B)C [%0 |
Applying the Holder’s inequality, we get
Tleb- ),
(2B)C |X0 - y|nfa
< Lot
s EJ?”f||Lp(B(x0,t))||Q(X—')||Ls(3(x0,t))|B(Xo't)|l P e (23)
Thus, by (2.2) and (2.3)
a7 dt
B30T JIFIL (o)
2r tq
Summingup J, and J,, forall p e (1,oo) we get
o t dt
V%mﬁﬂwmswm”i@+m;ww%wmmﬁﬂ-
Finally, we have the following
a7 t dt
et o ST e (101, o
2r tq

On the other hand, we have

2 T odt
”f”Lp(ZB) ~ rq”f”Lp(ZB)J. n,
Zrtq

n
o f dt
g
S L A
2r tq
By combining the above inequalities, we obtain

L)

n t Ny
Mol g ST [0 T, 8

2r

Let 1< q<s. Similarly to (2.2), when Yy € B(Xo,t), it is true that

. 1
s | 3.\°
( [ (x-y) dy} <clel, o B(XO,Etj‘. 4

B(xo,r

1

a g
de

dt
[ f(y)j(x- yldym

When ( < S, by the Fubini’s theorem and the Minkowski inequality, we get
A

J;s %l T (I tJb(y)—ba(xo,t)

2rBlx,,
N
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+{J. J. bB<XO’ ) e dx}
B|2r B XO
< T o) =bag | MY, (o ) e
2rB(x0,t)
dt
f(y)jeat y)|| rrery
2r B XO
117
sfles] | Jb(y)—bs<x0 N, ) e
2rB(x0,t
117
+[BJa™s [, FONL=Y, o) e
2r B x0
Applying the Holder’s inequality and by (1.3), (1.4), (2.4) we get
e 3.\ dt
= z'[ (b(‘)_bB(XO't))f‘ L (B(x.t) B(XO'Etj tn-e
1
- 3. \s dt
+rd J. Xo (XO Etj 0
2r tq
. 2 dt
<or (b<~>—b5<x0,t>JLp|(B(Xo,t))nfan(B(Xo,t»t &
+ ra s I by B(xy.t) ” f ||Lp(B< 0 t))t 9
2r tq
s||f||*rqu[1+ln tjts 1], gt
2r

1 11
Let — =—+—, then for J,, by the Fubini’s theorem, the Minkowski inequality, the Holder’s inequality and

<l Xl

from (2.4), we get
<LJ.J J- | y]” ym dy n+la

Q|

o

dt
[ ] (M0 -elelx =)y ooz

2rB x0

2rB XO
§ I [1OR0-bal, g2t W
2rB XO
AN
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nne

119
slol. /Bl [ [ [f(yfiet-y), dytm_
2rB(x .t
1
3.)s dt
<|b *rq s f B(X ,—tj‘ T
” ” Jr” ||L1(B(x0,t)) 05 £

T s t
Slbl.re {1t el gt

2r
By combining the above estimates, we complete the proof of Lemma 4.

The Proof of Theorem 4. Since f e M by’ by (1.14) and the non-decreasing, with respect to t, of

the norm ||f||L (o

. xo,t))' we get

L

essinfy .., ..o (X,,7)7 "

L )
< €SSSUPyct<r <00 —n
o, (X, )z’
L
< €SSSUPy<; <00 —n
@ (X, )P

<l

For S < p<oo,since (¢, ¢,) satisfies (1.10), we have

T 2 dt
_!-”f”Lp(B(xo t)) e

n

<T || f ||Lp(B(x0,t)) essinf.__ ¢ (X,,7)7° dt
< n n t
"essinf___ ¢ (X,,7)r" te

n

o0

J- ssmftq@gol(x ,7)r’ dt
t

<Clfl,,
r tq
<t o061

Then by (2.1), we get

1
Mol = sup g0 1) " 1B0G N1 Mo T, fog, )

erRn,r>O

A
28

s

As
)
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<C sup @,(%,r) _[||f|| It Wt
%9eR",r>0 t
<cf ],

For the case of p=1<(<S, we can also use the same method, so we omit the details. This completes the

proof of Theorem 4.

The Proof of Theorem 5. The statement of Theorem 5 follows by Lemma 4 and (1.14) in the same
manner as in the proof of Theorem 4.

Now, we give the applications of Theorem 4 and Theorem 5 for the Marcinkiewicz operator.

Suppose that € satisfies the following conditions.
(a) Q is the homogeneous function of degree zero on R" \{0}, that is,

Q(ux) = Q(x), forany 2 >0,x eR"\{0}.
(b) Q has mean zero on S™ thatis,

j Q(x)do(X) =0,

gh-1

. X
where X =|— forany X #0.
X

(c) Qe Lipy(S"_l) , 0 <y <1, that iis there exists a constant M > 0 such that,
|Q(X)-Q(Y) KM | X —y | forany x,y €S"™".
In 1958, Stein [36] defined the Marcinkiewicz integral of higher dimension ¢, as

ug(f)(X){II (DEOF dt}
where

Fo (N0 = [ 229 £ (y)ay,

x-yl<t [ x=y["™
Since Stein’s work in 1958, the continuity of Marcinkiewicz integral has been extensively studied as a research
topic and also provides useful tools in harmonic analysis [37, 38, 39].
The Marcinkiewicz operator is defined by (see [40])

ug,a(f)(x):(ﬂ Faar (DO dt}

where

Fone(D00= W f(ydy.

x—yl<t
Note that o, T = g1, T .

The sublinear commutator of the operator L4, , is defined by

[b. 410, 1(F)(x) = UlFm(fonz dtj ,

=
q‘\\
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where

Fousn (DW= [ 20 000 b1 (1o
Ix-ylst

dt
2 )1/2<oo} Then, it is clear that

We consider the space H ={h ||h|| = (I | h(t) |
0
Ho, (F)(X) = HFQ,a,t (X)H :
By the Minkowski inequality, we get

ﬂga(f)(x)<j| LRI j? dy _cj%
[x=yl

| £(y)|dy.

Thus, i, satisfies the condition (1.1). It is known that for be BMO(R ) the operators i, , and

[b, 14, ] are bounded from L (R") to L (R") for p>1, and bounded from L,(R") to WL, (R") for
p =1 (see [40]), then from Theorems 4 and 5 we get

Corollary 4 Suppose that Qe LS(SH), 1<s<oo, is homogeneous of degree zero. Let

n 1 « : _ - "
O<a<n,1l<p<— and —=———. Letalso, for S < p the pair (¢,,¢,) satisfies the condition
o g P n

(1.10) and for g <'S the pair (gol,(pz) satisfies the condition (1.11) and Q satisfies conditions (a)—(c). Then

U, , s bounded from MW1 to MW2 for p>1 and from Mly(plto WMW2 for p=1.

Corollary 5 Suppose that Qe LS(S”’l), 1<s<oo, is homogeneous of degree zero. Let

1<p<w,0<a< ﬂ 1.1 @« and b e BMO(R ) Let also, for S < p the pair (¢,,@,) satisfies

P g pn
the condition (1.12) and for q <S the pair (¢,,¢,) satisfies the condition (1.13) and Q satisfies the

conditions (a)—(c). Then the operator [B, £, ,] is bounded from M b, 10 Mq]{p2
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