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Abstract Dengue fever is an important vector-borne disease. In this paper, a branching process model of dengue 

fever epidemics is presented.  In this study, a retrospective analysis of a data set on reproduction numbers 

estimated by Chowell et al (2007) is carried out. To obtain the offspring distribution, we first fitted a Poisson 

distribution to the data set and subsets and secondly estimated the offspring distribution with a kernel density 

function. The model was simulated using both forms of the offspring distribution. The objectives are, first, to 

compare the solutions of the model for these two different offspring distributions and, secondly, to predict the 

disease spread in any population with the same scenario. The solution of the model with Poisson offspring 

distribution performs is the same as the solution of the same model with kernel offspring distribution to the 

nearest whole numbers. The results further reveal that any population with similar pattern of reproduction 

numbers has no guarantee of elimination of the disease at population level. However, elimination of the disease 

can be achieved in those localities of which their reproduction numbers are below one. Based on the findings of 

this study, it is therefore recommended that intervention measures such as vector killing be intensified in any 

supercritical area. 

Keywords dengue fever, branching process, Galton-Watson process, offspring distribution, parametric 

estimation, kernel density estimation. 

Introduction 

Dengue fever viruses belong to the genus Flavivirus and family Flaviviridae [1-2]. Dengue fever is regarded as 

an important infectious disease threatening about 2.5 billion people all over the world, especially in tropical 

subtropical countries. Some 50 to 100 million new infections are estimated to occur annually worldwide [3]. 

Around 500,000 people are estimated to be infected by hemorrhagic dengue fever each year. Dengue fever has 

become a major epidemic disease in Southeast Asia. Such an epidemic arises from climate change and is made 

worse by the population’s lack of knowledge about and awareness of dengue fever, so that dengue fever may 

become endemic [1-2]. 

Symptoms of dengue fever include headache, backache, general malaise, rash, a sharp rise in temperature, a 

flushed face, retro-orbital pain on eye movement or eye pressure, photophobia, pain in the muscles and 

joints/bones. The other common symptoms include anorexia and altered taste sensation, constipation, colicky 

pain and abdominal tenderness, dragging pains in the inguinal region, sore throat and general depression. These 

symptoms usually persist from several days to a few weeks. It is noteworthy that these symptoms and signs of 

dengue fever vary markedly in frequency and severity [1]. 

Outbreaks exert a huge burden on populations, health systems and economies in most tropical and subtropical 

countries of the world [3]. 

For the transmission of dengue virus between humans to occur, the female mosquito (Aedes aegypti) must, first 

of all, bite and ingest blood meal from an infected human. Within 8 -12 days after the female mosquito feeds on 

an infected human, it can transfer the virus to another human [1,4]. 

There is no specific treatment, neither vaccine available for dengue fever; rather the symptoms are given 

appropriate medical care to save the lives of the patients with more serious dengue hemorrhagic fever. The most 

effective way to prevent dengue virus transmission is to combat the disease-carrying mosquitoes [1]. 
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Chowell et al (2007) estimated the transmissibility of dengue fever during the 2002 dengue epidemic in the 

Mexican state of Colima using two different methods and municipal epidemic data to investigate the impact of 

spatial heterogeneity. The first method employs a standard dengue epidemic model with the assumptions of 

fixed incubation periods in both hosts and vectors, an exponentially distributed infectious period in hosts and 

pure initial exponential epidemic growth to estimate the reproduction number. The second approach employs an 

epidemic model to estimate the reproduction number via trajectory matching to case notification data [5]. 

The plan of this paper is as follows. Introductory part of the work is presented in section 1. Branching processes 

(discrete Galton-Watson branching process in particular) are presented in section 2. Section 3 is devoted to 

materials and methods. Simulations are carried out in section 4. Discussion and conclusive remarks are passed 

in sections 5 and 6 respectively. 

 

Branching Processes and Galton-Watson Process 

Branching processes are stochastic processes describing the dynamics of a population of individuals which 

reproduce and die independently, according to some probability distributions. Branching processes have a wide 

variety of applications: electron multipliers, family names, neutron chain reactions, population growth, survival 

of mutant genes, changes in DNA and chromosomes, cell cycle, cancer cells, chemotherapy, network and 

epidemiology. There are many types of branching processes. These include discrete time (Galton-Watson) 

branching processes, continuous time with exponential lifetime distributions (Markovian branching process) or 

general lifetime distribution (age-dependent, Bellman-Haris branching process), single type or multitype (with 

finitely or infinitely many types), population size-dependent branching process, to mention a few [7-9].  

 

Materials and Methods 

In this paper, we apply a discrete single type Galton-Watson branching process to predict the number of cases of 

dengue disease in a population on generation basis. 

We denote the number of index cases in the zeroth generation by 𝑍𝑜 . Then  𝑍1,𝑍2, … , 𝑍𝑛−1, 𝑍𝑛  represent the 

numbers of infections in the first, second,…, (n-1)th and nth generations respectively. 

We make the following assumptions about the branching process. 

i. Every infected individual has an independently and identically distributed stochastic random variable X 

representing the number of secondary cases produced in generation n, 

ii. Environmental stochasticity and immigration/emigration are ignored, 

iii. The pattern of secondary transmissions follows a discrete probability distribution 

𝑝𝑘 = Pr 𝑋 = 𝑘 , 𝑘 = 0, 1, 2, … 

Let X be a non-negative integer-valued random variable with distribution 𝑝 𝑥 . Then, 

𝐺 𝑠 = 𝑝 0 + 𝑝 1 𝑠 + 𝑝 2 𝑠2 + ⋯ = 𝑝 𝑘 𝑠𝑘 = 𝐸𝑠𝑋  is the probability generating function of X 

We should note that if 𝑍0 = 1(i.e. only one index case, the Galton-Watson process has the following identity: 

𝐺0 𝑠 = 𝑠, 

 𝐺1 𝑠 = 𝐺 𝑠 =  𝑝𝑘𝑠
𝑘

∞

𝑘=0

 

𝐺𝑛+1 𝑠 = 𝐺𝑛 𝐺(𝑠) = 𝐺(𝐺𝑛 𝑠) . 

We employ the data in Table 1 to estimate the basic reproduction numbers.  We first suppose that the offspring 

distribution is a Poisson distribution with a constant parameter, 𝑅 so that the conditional distribution of 

observing 𝑍𝑛+1 cases, given 𝑍𝑛  cases, follows a Poisson distribution: 

𝑍𝑛+1
 𝑍𝑛 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑍𝑛 , 𝑅0 ; and secondly we suppose that the offspring distribution can be estimated by a kernel 

density function. Details of Poisson distribution and its applications can be obtained in Stirzaker (1999) and 

Chowell and Nishiura (2007) [10-11]. For details of kernel density estimation, see Shalizi (2015) [12]. 

Table 1: Estimates of the reproduction numbers, the number of epidemic weeks of the cumulative number of 

dengue notifications 𝑡∗ used in the estimation, and other related parameters obtained from the two different 

methods from the foregoing 

Municipality Method I Method II 

 𝒕∗𝒘𝒌𝒔 𝒓 𝟗𝟓% 𝑪𝑰 𝒑𝒆𝒓 𝒘𝒌 𝑹𝒑(𝟗𝟓% 𝑪𝑰) 𝑪𝒃𝒗 𝑪𝒃𝒉 𝑰𝒗(𝟎) 𝑰𝒉𝟏(𝟎) 𝒕∗𝒘𝒌𝒔 𝑹𝒑(𝟗𝟓% 𝑪𝑰) 

Whole state 12 0.25 (0.22, 0.27) 3.09(2.34,3.84) 1.46 0.04 4.68 64.60 16 2.0(1.75,2.23) 

Manzanillo 13 0.24 (0.22, 0.26)       3.26(2.70,3.82) 0.81 0.08 5.89   17.66 16 2.30(2.00,2.59) 

Colima 16 0.14 (0.12, 0.15) 1.84(1.62,2.06) 1.36 0.01 1.58 7.34 14 1.08(0.46,1.70) 

Villade 

Alvarez 

17 0.12 (0.09, 0.14) 1.67(1.46,1.89) 0.36 0.06 0.99 2.84 17 1.07(0.45,1.70) 

Tecoman   10 0.33 (0.27, 0.39) 4.22(2.90,5.54) 0.63 0.09 1.20 0.93 13 3.30(1.63,4.97) 
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Cuauhtemoc 22 0.11 (0.09, 0.13) 1.64(1.44,1.83) 2.68 0.004 0.68 5.16 13 0.54 (0.0, 1.48) 

Coquimatlan 21 0.05 (0.04, 0.06)         1.24(1.15,1.33) 2.64 0.003 1.64 17.14 19 0.49(0.0, 0.99) 

Source: Chowell et al (2007) 

Simulation 

We performed the following simulations to determine some possible realizations.  

Simulation 1: kernel 

Table 2: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 3 4 3 8 10 15 28 52 101 195 

2 1 2 6 13 16 28 44 83 153 291 584 

3 1 2 5 12 20 39 67 139 270 502 944 

4 1 2 4 3 5 10 26 64 118 259 497 

5 1 1 3 9 18 34 67 125 253 453 891 

6 1 3 4 12 24 50 105 230 294 696 1334 

7 1 4 13 36 74 148 268 536 998 1925 3593 

8 1 1 3 6 9 17 42 82 150 306 608 

9 1 4 9 13 27 41 60 114 224 425 812 

10 1 2 6 13 22 33 63 115 231 473 901 

 

Simulation 2: Poisson 

Table 3: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 3 9 13 27 56 98 165 311 569 1067 

2 1 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 

4 1 1 2 5 15 27 48 103 191 348 671 

5 1 2 3 5 14 27 48 95 169 311 582 

6 1 1 4 5 11 31 59 108 209 388 734 

7 1 2 6 8 13  19 37 77 164 318 564 

8 1 4 7 9 18 30 50 72 133 252 481 

9 1 1 3 5 10 17 29 56 91 177 328 

10 1 2 6 14 23 43 82 157 297 516 960 

 

Simulation 3: kernel 

Table 4: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 2 2 4 7 6 10 21 27 46 61 

2 1 1 1 4 2 3 6 9 10 14 31 

3 1 1 0 0 0 0 0 0 0 0 0 

4 1 3 4 3 2 3 4 5 6 10 9 

5 1 3 3 6 10 12 13 18 32 42 70 

6 1 0 0 0 0 0 0 0 0 0 0 

7 1 2 1 2 2 4 6 12 19 26 37 

8 1 4 6 12 16 23 34 49 65 83 129 

9 1 2 6 13 20 36 51 78 123 181 287 

10 1 2 4 5 12 25 28 41 54 74 115 

Simulation 4: Poisson 

Table 5: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 0 0 0 0 0 0 0 

3 1 1 1 1 3 5 4 6 6 4 5 

4 1 2 7 12 15 15  20 27 39 45 56 

5 1 2 4 2 2 2 1 2 0 0 0 

6 1 3     7 9 11 22 21 36 55 81 122 

7 1 3 5 9 12 20 34 52 80 114 183 
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Simulation 6 : Poisson 

Table 7: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 4 9 23 54 132 295 689 1574 3578 8229 

2 1 4 5 9 19 49 127 290 650 1511 3473 

3 1 1 2 5 12 30 57 133 313 736 1684 

4 1 1 4 13 29 72 171 419 992 2257 5242 

5 1 0 0 0 0 0 0 0 0 0 0 

6 1 2  3 7 15 38 95 211 490 1148 2669 

7 1 4 12 25 52 118 268 593 1378 3113 7253 

8 1 1 2 4 8 16 36 83 202 521 1181 

9 1 2 6 17 49 116 266 616 1446 3379 7854 

10 1 3 7 13 24 56 119 287 659 1488 3406 

        

 

Simulation 7 : kernel 

Table 8: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 1 0 0 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 1 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 

4 1 1 1 1 0 0 0 0 0 0 0 

5 1 0 0 0 0 0 0 0 0 0 0 

6 1 0 0 0 0 0 0 0 0 0 0 

7 1 1 0 0 0 0 0 0 0 0 0 

8 1 1 1 0 0 0 0 0 0 0 0 

9 1 1 1 0 0 0 0 0 0 0 0 

10 1 0 0 0 0 0 0 0 0 0 0 

 

8 1 1 3 8 14 24 28 40 59 94 160 

9 1 0 0 0 0 0 0 0 0 0 0 

10 1 2 5 4 7 9 12 16 16 12 16 

 

Simulation 5 : kernel 

Table 6: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 4 9 20 51 121 266 594 1331 3039 6999 

2 1 3 7 17 44 108 239 568 1315 3076 7061 

3 1 3 12 29 67 147 343 783 1791 4112 9585 

4 1 1 4 6 14 31 73 185 422 965 2230 

5 1 1 1 2 4 9 23 46 111 256 589 

6 1 3 8 16 34 72 170 399 903 2089 4863 

7 1 1 1 1 3 7 14 34 85 181 417 

8 1 2 3 9 18 43 110 258 608 1425 3355 

9 1 2 3 7 17 33 73 182 442 1038 2389 

10 1 1 2 5 11 28 74 175 414 936 2225 

Simulation 8 : Poisson 

Table 9: The following table shows the results of 10 simulations of the branching process 

simulation 𝒁𝟎 𝒁𝟏 𝒁𝟐 𝒁𝟑 𝒁𝟒 𝒁𝟓 𝒁𝟔 𝒁𝟕 𝒁𝟖 𝒁𝟗 𝒁𝟏𝟎 

1 1 1 1 0 0 0 0 0 0 0 0 

2 1 1 1 0 0 0 0 0 0 0 0 

3 1 1 1 0 0 0 0 0 0 0 0 

4 1 1 0 0 0 0 0 0 0 0 0 

5 1 0 0 0 0 0 0 0 0 0 0 

6 1 1 1 0 0 0 0 0 0 0 0 

7 1 0 0 0 0 0 0 0 0 0 0 
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Figure 1: Graph showing the mean numbers of secondary transmissions up to the 10th generation for all Rs in 

methods I and II 

 

Figure 2: Graph showing the mean numbers of secondary transmissions up to the 10th generation for all Rs in 

method I 
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Figure 3: Graph showing the mean numbers of secondary transmissions up to the 10th generation for all Rs in 

methods II 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Graph showing the mean numbers of secondary transmissions up to the 10th generation for all Rs<1 

Discussion 

In this paper, a branching process model of dengue fever epidemics is studied. A data set on the estimated 

reproduction numbers by Chowell et al (2007) was used [5]. The essence is to predict the spread of the disease 

in any population or subpopulation with the same scenario. The results of this study are shown in Tables 2 

through 9 and Figures 1 through 4. The numbers of infectives for ten generations for the dataset and subsets are 

shown in Tables 2 through 9. The sample paths for the mean numbers of infectives can be seen in Figures 1 

through 4. The results show that the mean sample path for the branching process model with a kernel estimated 

offspring distribution is almost the same as the mean sample path for the same model with a Poisson estimated 

offspring distribution. The results further reveal that the number of new cases increases generation by generation 

in any population or subpopulation where the reproduction number is greater than one. However, elimination of 

the disease can be achieved in a population or subpopulation where the reproduction number is less than one. 

 

Conclusion 

In this paper dengue fever epidemic process is modeled as a discrete Galton-Watson branching process. This 

branching process is presented in section 2. We simulated the branching process to determine the number of 

cases in the chain up to the 10
th

 generation. The findings of the study show that in any population or 

subpopulation where the reproduction number is above one, there can be a major dengue fever outbreak. It is 

further stressed that efforts be intensified to kill the disease carrying mosquitoes, thereby reducing the 

reproduction number below one and stopping outbreaks. 
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