
Available online www.jsaer.com

Journal of Scientific and Engineering Research

1

Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Design of Hamming Encoder and Decoder Circuits For (64, 7) Code and (128, 8) Code

Using VHDL

Adham Hadi Saleh

Department of Electronic engineering, University of Diyala, Iraq

Abstract In this paper, we have described how we can generate redundancy bit for (64 and 128) information

data bits. These redundancy bits are to be interspersed at the bit positions (n = 1, 2, 4, 8, 16, 32, 64 and 128) of

the original data bits, So to transmit 64 bit information data we need 7 redundancy bit to make 71 bit data string

and 8 redundancy bit to make 136 bit data string. At the destination receiver point, the data may be corrupted

due to noise. In Hamming technique the receiver will decide if data have an error or not, so if it detected the

error it will find the position of the error bit and corrects it. This paper presents the design of the transmitter and

the receiver with Hamming code redundancy technique using VHDL for (64 and 128) input data. The Xilinx

ISE 10.1 Simulator was used for simulating VHDL code for both the transmitter and receiver sides.

Keywords Hamming code, error correction, error detection, even parity check method, Redundancy

bits, VHDL language, Xilinx ISE 10.1 Simulator

1. Introduction

The theory of linear block codes is well established since many years ago. In 1948 Shannon's work showed that

any communication channel could be characterized by a capacity at which information could be reliably

transmitted. In 1950, Hamming introduced a single error correcting and double error detecting codes with its

geometrical model [1].

In telecommunication, Hamming code as a class of linear block codes is widely used, Hamming codes are a

family of linear error-correcting codes that generalize the Hamming (7,4)-code. Hamming codes can detect up to

two-bit errors or correct one-bit errors. By contrast, the simple parity code cannot correct errors, and can detect

only an odd number of bits in error. Hamming codes are perfect codes, that is, they achieve the highest possible

rate for codes with their block length and minimum distance 3 [2-3].

Due to the limited redundancy that Hamming codes add to the data, they can only detect and correct errors when

the error rate is low. This is the case in computer memory (Error Checking & Correction, ECC memory), where

bit errors are extremely rare and Hamming codes are widely used. In this context, an extended Hamming code

having one extra parity bit is often used. Extended Hamming codes achieve a Hamming distance of 4, which

allows the decoder to distinguish between when at most one bit error occurred and when two bit errors occurred.

In this sense, extended Hamming codes are single-error-correcting (SED) and double-error-detecting (DED).

The ECC functions described in this application note are made possible by Hamming code, a relatively simple

yet powerful ECC code. It involves transmitting data with multiple check bits (parity) and decoding the

associated check bits when receiving data to detect errors. The check bits are parallel parity bits generated from

XORing certain bits in the original data word. If bit error(s) are introduced in the codeword, several check bits

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Hamming%287,4%29

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

2

show parity errors after decoding the retrieved codeword. The combinations of these check bit errors display the

nature of the error. In addition, the position of any single bit error is identified from the check bits [2,4].

Error detection and correction codes are used in many common systems including: storage devices (CD, DVD,

and DRAM), mobile communication (cellular telephones, wireless, and microwave links), digital television, and

high-speed modems. Hamming codes is a Forward Error Correction (FEC), as a fundamental principle of

channel coding techniques, provides the ability to correct transmission errors without requiring a feedback

channel for a correct retransmission. The exact correction capability of an FEC code varies depending on the

coding schemes used [5,6].

The basic idea for achieving error detection is to add some redundancy bits to the original message to be used by

the receivers to check consistency of the delivered message and to recover the correct data. Error-detection

schemes can be either systematic or non-systematic: In a systematic scheme the transmitter sends the original

data and attaches a fixed number of check bits. That is derived from the data bits by some deterministic

algorithm. If only error detection is required a receiver can simply apply the same algorithm to the received data

bits and compare its output with the received check bits if the values do not match an error has occurred at some

point during the transmission. In a system that uses a non-systematic code the original message is transformed

into an encoded message that has at least as many bits as the original message. Error correction & detection

Hamming code may perform using Even parity or Odd parity [7,8].

2. Error Detection and Correction

For a given practical requirement, detection of errors is simpler than the correction of errors. The decision for

applying detection or correction in a given code design depends on the characteristics of the application. When

the communication system is able to provide a full duplex transmission (that is, a transmission for which the

source and the destination can communicate at the same time, and in a two way mode, as it is in the case of

telephone connection, for instance), codes can be designed for detecting errors, because the correction is

performed by requiring a repetition of the transmission [3,8].

These schemes are known as automatic repeat request (ARQ) schemes. In any ARQ system there is the

possibility of requiring a retransmission of a given message. There are on the other hand communication

systems for which the full-duplex mode is not allowed. An example of one of them is the communication system

called paging, a sending of alphanumerical characters as text messages for a mobile user. In this type of

communication system, there is no possibility of requiring retransmission in the case of a detected error, and so

the receiver has to implement some error-correction algorithm to properly decode the message. This

transmission mode is known as forward error correction (FEC) [3,8].

3. Hamming Code

Hamming code is a linear error-correcting code named after its inventor, Richard Hamming. Hamming codes

can detect up to two simultaneous bit errors, and correct single-bit error. By contrast, the simple parity code

cannot correct errors, and can only detect an odd number of errors. In 1950 Hamming introduced the (7, 4)

code. It encodes 4 data bits into 7 bits by adding three parity bits. Hamming (7, 4) can detect and correct single –

bit errors. With the addition of overall parity bit, it can also detect (but not correct) double bit errors. Hamming

code is an improvement on parity check method. It can correct 1 error bit only [9].

Hamming code used two methods (even parity and odd parity) for generating redundancy bit. The number of

redundancy bits depends on the size of information data bits as shown below [8,9,10,11]:

 2r ≥ m + r +1 (1)

Where r = number of redundancy bit.

m = number of information data bits.

According to (1), 7 redundancy bits required for a 64 input data bits and 8 redundancy bits required for 128

input data bits. Hamming-based codes are widely used in memory systems for reliability improvements. The

algorithm consists of two phases: encoding and decoding. Hamming encoding involves deriving a set of parity

check bits over data bits. These parity check bits are concatenated or merged with the data bits. These extra bits

are called redundancy bits. We add these redundancy bits to the information data at the source end and remove

at destination end. Presence of redundancy bit allows the receiver to detect or correct corrupted bits. The

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

3

concept of including extra information in the transmission for error detection is a good one. But in place of

repeating the entire data stream, a shorter group of bits may be added to the end of each unit. This technique is

called redundancy because the extra bits are redundant to the information [8,12,13,14].

Figure 1: Hamming Code Generation for 64 Bits

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

4

4.Hamming Encoder with (64, 7) Code and (128 ,8) Code

In communication system need two main part one of them is the source for sending data and another is the

destination to receive the transmitted data. Even parity check method count the number of one`s if number of

one`s are even it adds zero (0) otherwise it adds one (1) [8].

At the transmitter the 64 bit information data needs 7 redundancy bit according to equation (1). Suppose, these

redundancy bits are R(1),R(2),R(4),r(8),R(16) R(32),R(64),and to calculate these redundancy bits easily done by

XORing operation of the original data bit positions as shown below:

R(1) = D1⊕ D2 ⊕ D4⊕ D5 ⊕ D7 ⊕ D9 ⊕D11 ⊕ D12⊕ D14 ⊕ D16 ⊕ D18 ⊕ D20 ⊕ D22 ⊕ D24 ⊕

D26 ⊕ D27⊕ D29 ⊕ D31 ⊕ D33 ⊕ D35 ⊕ D37 ⊕ D39 ⊕ D41 ⊕ D43 ⊕ D45 ⊕ D47 ⊕ D49 ⊕ D51 ⊕

D53 ⊕ D55 ⊕ D57 ⊕ D58 ⊕ D60 ⊕ D62⊕ D64 (2)

R(2) = D1⊕ D3 ⊕ D4⊕ D6 ⊕ D7 ⊕ D10 ⊕D11 ⊕ D13⊕ D14 ⊕ D17 ⊕ D18 ⊕ D21 ⊕ D22 ⊕ D25 ⊕

D26 ⊕ D28⊕ D29 ⊕ D32 ⊕ D33 ⊕ D36 ⊕ D37 ⊕ D40 ⊕ D41 ⊕ D44 ⊕ D45 ⊕ D48 ⊕ D49 ⊕ D52 ⊕

D53 ⊕ D56 ⊕ D57 ⊕ D59 ⊕ D60 ⊕ D63⊕ D64. (3)

R(4) = D2⊕ D3 ⊕ D4⊕ D8 ⊕ D9 ⊕ D10 ⊕D11 ⊕ D15⊕ D16 ⊕ D17 ⊕ D18 ⊕ D23 ⊕ D24 ⊕ D25 ⊕

D26 ⊕ D30⊕ D31 ⊕ D32 ⊕ D33 ⊕ D38 ⊕ D39 ⊕ D40 ⊕ D41 ⊕ D46 ⊕ D47 ⊕ D48 ⊕ D49 ⊕ D54 ⊕

D55 ⊕ D56 ⊕ D57 ⊕ D61 ⊕ D62 ⊕ D63⊕ D64. (4)

R(8) = D5⊕ D6 ⊕ D7⊕ D8 ⊕ D9 ⊕ D10 ⊕D11 ⊕ D19⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕

D26 ⊕ D34⊕ D35 ⊕ D36 ⊕ D37 ⊕ D38 ⊕ D39 ⊕ D40 ⊕ D41 ⊕ D50 ⊕ D51 ⊕ D52 ⊕ D53 ⊕ D54 ⊕

D55 ⊕ D56 ⊕ D57. (5)

R(16) = D12⊕ D13 ⊕ D14⊕ D15 ⊕ D16 ⊕ D17 ⊕D18 ⊕ D19⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕

D25 ⊕ D26 ⊕ D42⊕ D43 ⊕ D44 ⊕ D45 ⊕ D46 ⊕ D47 ⊕ D48 ⊕ D49 ⊕ D50 ⊕ D51 ⊕ D52 ⊕ D53 ⊕

D54 ⊕ D55 ⊕ D56 ⊕ D57. (6)

R(32) = D27⊕ D28 ⊕ D29⊕ D30 ⊕ D31 ⊕ D32 ⊕D33 ⊕ D34⊕ D35 ⊕ D36 ⊕ D37 ⊕ D38 ⊕ D39 ⊕

D40 ⊕ D41 ⊕ D42⊕ D43 ⊕ D44 ⊕ D45 ⊕ D46 ⊕ D47 ⊕ D48 ⊕ D49 ⊕ D50 ⊕ D51 ⊕ D52 ⊕ D53 ⊕

D54 ⊕ D55 ⊕ D56 ⊕ D57. (7)

R(64) = D58⊕ D59 ⊕ D60⊕ D61⊕ D62 ⊕D63 ⊕ D64. (8)

The value of redundancy bits can be calculated using an even parity check method. The value of redundancy bit

can be calculated by XORing of different locations of information data bits, as shown in Figure 1.

The calculation of redundancy bit of Hamming encoder is done by VHDL code written in Xilinx ISE 10.1

project navigator window as shown in Figure 2.

Suppose, we want to transmit 64 information data bit is

“01” which equal in Hexadecimal

"5555555555555555".Calculation for redundancy bits, by XORing input bit, according to hamming code with

even parity redundancy the transmitted data will be 71 bits “0100 1011 0101 0100 1010 1010 1010 1011 0101

0101 0101 0101 0101 0101 0101 0101 1010 101” which equal in Hexadecimal "25AA5555AAAAAAAA55"

as explained in Figure 1.

The simulate of Hamming code generation code for VHDL code by using Xilinx ISE 10.1 Simulator for source

end shown in given below Figure 3, Figure 4.

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

5

Figure 2: Hamming Encoder in VHDL Using ISE 10.1

Figure 3: Hamming Code Generation for 64 Bits in Hexadecimal Form

Figure 4: Hamming Code Generation for 64 Bits in Binary Form

In the same way we generated (128,8) code as 128 bit information data needs 8 redundancy bit according to

equation (1). Suppose, these redundancy bits are R(1),R(2),R(4),r(8),R(16) R(32),R(64) and R(128) to calculate

these redundancy bits easily done by XORing operation of the original data bit positions as shown below:

R(1) = D1⊕ D2 ⊕ D4⊕ D5 ⊕ D7 ⊕ D9 ⊕D11 ⊕ D12⊕ D14 ⊕ D16 ⊕ D18 ⊕ D20 ⊕ D22 ⊕ D24 ⊕

D26 ⊕ D27⊕ D29 ⊕ D31 ⊕ D33 ⊕ D35 ⊕ D37 ⊕ D39 ⊕ D41 ⊕ D43 ⊕ D45 ⊕ D47 ⊕ D49 ⊕ D51 ⊕

D53 ⊕ D55 ⊕ D57 ⊕ D58 ⊕ D60 ⊕ D62⊕ D64 ⊕ D66⊕ D68⊕ D70⊕ D72⊕ D74⊕ D76⊕ D78 ⊕

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

6

D80⊕ D82⊕ D84⊕ D86⊕ D88⊕ D90 ⊕ D92⊕ D94⊕ D96⊕ D98⊕ D100⊕ D102⊕ D104 ⊕D106⊕

D108⊕ D110⊕ D112⊕ D114⊕ D116⊕ D118 ⊕ D120⊕ D121⊕ D123⊕ D125⊕ D127 (9)

 R(2) = D1⊕ D3 ⊕ D4⊕ D6 ⊕ D7 ⊕ D10 ⊕D11 ⊕ D13⊕ D14 ⊕ D17 ⊕ D18 ⊕ D21 ⊕ D22 ⊕ D25 ⊕

D26 ⊕ D28⊕ D29 ⊕ D32 ⊕ D33 ⊕ D36 ⊕ D37 ⊕ D40 ⊕ D41 ⊕ D44 ⊕ D45 ⊕ D48 ⊕ D49 ⊕ D52 ⊕

D53 ⊕ D56 ⊕ D57 ⊕ D59 ⊕ D60 ⊕ D63⊕ D64⊕ D67⊕ D68⊕ D71⊕ D72⊕ D75⊕ D76⊕ D79⊕

D80⊕ D83⊕ D84⊕ D87⊕ D88⊕ D91⊕ D92⊕ D95⊕ D96⊕ D99⊕ D100⊕ D103⊕ D104⊕ D107⊕

D108⊕ D111⊕ D112⊕ D115⊕ D116⊕ D119⊕ D120⊕ D122⊕ D123⊕ D126⊕ D127 (10)

R(4) = D2⊕ D3 ⊕ D4⊕ D8 ⊕ D9 ⊕ D10 ⊕D11 ⊕ D15⊕ D16 ⊕ D17 ⊕ D18 ⊕ D23 ⊕ D24 ⊕ D25 ⊕

D26 ⊕ D30⊕ D31 ⊕ D32 ⊕ D33 ⊕ D38 ⊕ D39 ⊕ D40 ⊕ D41 ⊕ D46 ⊕ D47 ⊕ D48 ⊕ D49 ⊕ D54 ⊕

D55 ⊕ D56 ⊕ D57 ⊕ D61 ⊕ D62 ⊕ D63⊕ D64 ⊕ D69⊕ D70⊕ D71⊕ D72⊕ D77 ⊕ D78⊕ D79⊕

D80⊕ D85⊕ D86⊕ D87⊕ D88⊕ D93 ⊕ D94⊕ D95⊕ D96⊕ D101⊕ D102⊕ D103⊕ D104⊕ D109⊕

D110⊕ D111⊕ D112⊕ D117⊕ D118⊕ D119⊕ D120⊕ D124⊕D125⊕ D126⊕ D127 (11)

R(8) = D5⊕ D6 ⊕ D7⊕ D8 ⊕ D9 ⊕ D10 ⊕D11 ⊕ D19⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕ D25 ⊕

D26 ⊕ D34⊕ D35 ⊕ D36 ⊕ D37 ⊕ D38 ⊕ D39 ⊕ D40 ⊕ D41 ⊕ D50 ⊕ D51 ⊕ D52 ⊕ D53 ⊕ D54 ⊕

D55 ⊕ D56 ⊕ D57 ⊕ D65 ⊕D66⊕ D67⊕ D68⊕ D69⊕ D70⊕ D71⊕ D72⊕ D81⊕ D82⊕ D83⊕ D84⊕

D85⊕ D86⊕ D87⊕ D88⊕ D97⊕ D98⊕ D99⊕ D100⊕ D101⊕ D102⊕ D103⊕ D104⊕ D113⊕ D114⊕

D115⊕ D116⊕ D117⊕ D118⊕ D119⊕ D120⊕ D128 (12)

R(16) = D12⊕ D13 ⊕ D14⊕ D15 ⊕ D16 ⊕ D17 ⊕D18 ⊕ D19⊕ D20 ⊕ D21 ⊕ D22 ⊕ D23 ⊕ D24 ⊕

D25 ⊕ D26 ⊕ D42⊕ D43 ⊕ D44 ⊕ D45 ⊕ D46 ⊕ D47 ⊕ D48 ⊕ D49 ⊕ D50 ⊕ D51 ⊕ D52 ⊕ D53 ⊕

D54 ⊕ D55 ⊕ D56 ⊕ D57⊕ D73 ⊕ D74⊕ D75⊕ D76⊕ D77⊕ D78⊕ D79⊕ D80⊕ D81⊕ D82⊕

D83⊕ D84⊕ D85⊕ D86⊕ D87⊕ D88⊕ D105⊕ D106⊕ D107⊕ D108⊕ D109⊕ D110⊕ D111⊕

D112⊕ D113⊕ D114⊕ D115⊕ D116⊕ D117⊕ D118⊕ D119⊕ D120 (13)

R(32) = D27⊕ D28 ⊕ D29⊕ D30 ⊕ D31 ⊕ D32 ⊕D33 ⊕ D34⊕ D35 ⊕ D36 ⊕ D37 ⊕ D38 ⊕ D39 ⊕

D40 ⊕ D41 ⊕ D42⊕ D43 ⊕ D44 ⊕ D45 ⊕ D46 ⊕ D47 ⊕ D48 ⊕ D49 ⊕ D50 ⊕ D51 ⊕ D52 ⊕ D53 ⊕

D54 ⊕ D55 ⊕ D56 ⊕ D57⊕ D89⊕ D99⊕D100⊕ D101⊕ D102⊕ D103⊕ D104⊕ D105⊕ D106 ⊕

D107⊕ D108⊕ D109⊕ D110⊕ D111⊕ D112⊕ D113⊕ D114⊕ D115⊕ D116⊕ D117⊕ D118⊕ D119⊕

D120 (14)

R(64) = D58⊕ D59 ⊕ D60⊕ D61⊕ D62 ⊕D63 ⊕ D64 ⊕ D65 ⊕ D66⊕D67⊕ D68⊕ D69⊕ D70⊕

D71⊕ D72⊕ D73⊕ D74⊕D75⊕ D76⊕ D77⊕ D78⊕ D79⊕ D80⊕ D81 ⊕ D82⊕D83⊕ D84⊕ D85⊕

D86⊕ D87⊕ D88⊕ D89⊕ D90⊕D91⊕ D92⊕ D93⊕ D94⊕ D95⊕ D96⊕ D97⊕ D98⊕D99⊕ D100⊕

D101⊕ D102⊕ D103⊕ D104⊕ D105⊕ D106⊕ D107⊕ D108⊕ D109⊕ D110⊕ D111⊕ D112⊕ D113 ⊕

D114⊕ D115⊕ D116⊕ D117⊕ D118⊕ D119⊕ D120 (15)

 R(128) = D121⊕ D122⊕ D123⊕ D124⊕ D125⊕ D126⊕ D127⊕ D128 (16)

The value of redundancy bit can be calculated by XORing of different locations of information data bits, as

shown in Figure 5.

When the sender is transmit 128 information data bit is which equal in Hexadecimal

"00000000000000001111111111111111".Calculation for redundancy bits, by XORing input bit ,according to

hamming code with even parity redundancy the transmitted data will be 136 bits which equal in Hexadecimal

"0100000000000000002222222222222211" as explained in Figure 6.

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

7

Figure 5: Hamming Code Generation for 128Bits

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

8

Figure 6: Hamming Code Generation for 128 Bits in Hexadecimal Form

The design summary of Hamming Encoder with (64, 7) Code and (128, 8) Code is shown in Table 1 and Table 2

respectively.

Table 1: Hamming Encoder Design Status with (64, 7) Code

Table 2: Hamming Encoder Design Status with (128, 8) Code

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

9

5. Hamming Decoder with (64, 7) Code and (128, 8) Code

At the receiver side 71 bit information data is received, 64 bit encrypted information data and redundancy 7 bits.

At the destination, the receiver receives 71 bit encrypted data and check for any error that may occurred. If any

error is occurred, receiver find the error location and corrects it. Hamming decoder detect the error by EXORing

data and corrected it by a NOT gate
(8)

.Then the receiver removes the redundancy bit and get the original data

information, if there are no error the result of even parity check was (0000000) else it detect the location of error

bit as shown in Figure 7.

Figure 7: Hamming Code Detection Method for 64 Bits with no Error State

In the same way at the Hamming code (128, 8) receiver 136 bit information data was received, 128 bit encrypted

information data and 8 bit is the redundancy which transmit by transmitter at source end as shown in Figure 8.

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

10

Figure 8: Hamming Code Detection Method for 128 Bits with no Error State

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

11

The detection and correction of single error bit by Hamming decoder is done by VHDL code written in Xilinx

ISE 10.1 project navigator window.

So according the supposed example of (64, 7) code the received data with no error (noise less channel) will be

“0100 1011 0101 0100 1010 1010 1010 1011 0101 0101 0101 0101 0101 0101 0101 0101 1010 101” which

equal in Hexadecimal "25AA5555AAAAAAAA55", where 'ded means detection error' and 'ne means no error'

is as shown in Figure 9 and Figure 10.

Figure 9: Hamming of (64,7) code with a Single Error in Hexadecimal Form (With no error state)

Figure 10: Hamming of (64,7) code with a Single Error in Binary Form (With no error state)

Suppose, transmitter of source end transmit data is “0100 1011 0101 0100 1010 1010 1010 1011 0101 0101

0101 0101 0101 0101 0101 0101 1010 101” which equal in Hexadecimal "25AA5555AAAAAAAA55" and at

destination receiver received error data is “0110 1011 0101 0100 1010 1010 1010 1011 0101 0101 0101 0101

0101 0101 0101 0101 1010 101” which equal in Hexadecimal "35AA5555AAAAAAAA55", Hamming

decoder at first detect the error location by even parity checking method and corrected it as shown in Figure 11.

According to Hamming detection method take even parity check to get the address of error location is =

0000011 (the third bit at the input data) .after getting the location of error bit receiver correct that error bit by

replacing zero by one and one by zero. And we get actual encrypted data is transmitted by transmitter at source

end.

NO ERROR

ERROR

ERROR

NO ERROR

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

12

Figure 11: Hamming Code Detection Method for 64 Bits with Error State

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

13

We write VHDL code to find the error bit location, correction it and decrypt this encrypted data. Simulated

results for destination end shown in Xilinx ISE 10.1 Simulation window which shows 71 bit receives encrypted

data string and 64 bit actual error free information data string after correction the error, as shown in Figure 12

and Figure 13.

Figure 12: Hamming (64,7) Decoder for a Single Error with Error Received Data (Error at Third Bit) in

Hexadecimal Form

Figure 13: Hamming (64,7) Decoder for a Single Error with Error Received Data (Error at Third Bit) in Binary

Form

In the same way Hamming Decoder with (128, 8) Code will find the error bit location, correction it as shown in

Figure 14 with no error and Figure 15 with error state.

Figure 14: Hamming Code Error Detection and Correction for a (128,8) Code (With no error state)

Error position Detect Error

Detect Error

Error position

NO ERROR

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

14

Figure 15: Hamming Code Error Detection and Correction for a (128, 8) Code (Error at the 127
th

 Bit)

The design summary of Hamming Decoder with (64, 7) Code and (128 , 8) Code is shown in Table 3 an Table 4

respectively.

Table 3: Hamming decoder design status with (64, 7) Code

Table 4: Hamming decoder design status with (128, 8) Code

Error position

Detect Error

Sleh AH et al Journal of Scientific and Engineering Research, 2015, 2(1):1-15

Journal of Scientific and Engineering Research

15

6. Conclusion

As a conclusion, Hamming code error detection and correction with even parity check method can be design

using (64 and 128) bits data string in VHDL and can be implemented in FPGA. it speed up the communication

as we can encode the total data bits as a whole and send as soon, so there are no need for data splitting, therefore

more combination (more information in a single frame) of data can be transmitted easily. The complexity of

circuit also reduced for regenerating actual information data from encrypted corrupt received data at destination

end by using of the same method at the source end, so the original data can be correctly recovered.

References

1. Gomes, J., & Mishra, B. K. (2010). Double Error Correcting Long Code. International Journal of

Computer Networks and Communications, 2(5), 58-69.

2. en.wikipedia.org/wiki/Hamming code.

3. Moon, T. K. (2005). Error correction coding. Mathematical Methods and Algorithms. Jhon Wiley

and Son.

4. Tam, S. (2006). Single error correction and double error detection. Xilinx Application Note.

5. Gupta, B. K. (2013) Novel Hamming code for error correction and detection of higher data bits

using VHDL. International Journal of Scientific & Engineering Research, 4(4), 272-275.

6. Faraj, P., Leibrich, J., & Rosenkranz, W. (2003). Coding gain of basic FEC block-codes in the

presence of ASE noise. In Transparent Optical Networks, 2003. Proceedings of 2003 5th

International Conference on (Vol. 2, pp. 80-83). IEEE.
7. Singh, J. (2012, January). A comparative study of error detection and correction coding techniques.

In Advanced Computing & Communication Technologies (ACCT), 2012 Second International

Conference on (pp. 187-189). IEEE.

8. Forouzan, A. B. (2006). Data Communications & Networking (sie). Tata McGraw-Hill Education.

9. Gupta, B. K., & Dua, R. L. (2011). 30 Bit Hamming Code for Error Detection and Correction with

Even Parity and Odd Parity Check Method by using VHDL. International Journal of Computer

Applications, 35(13).

10. Gupta, B. K., & Dua, R. L. Communication by 31 Bit Hamming Code Transceiver with Even

Parity and Odd Parity Check Method by Using VHDL. Editorial Board, 278.

11. Kumar, U. K., & Umashankar, B. S. (2007, February). Improved hamming code for error detection

and correction. In Wireless Pervasive Computing, 2007. ISWPC'07. 2nd International Symposium

on. IEEE.

12. Mirzoyan, D. (2009). Fault-tolerant memories in FPGA based embedded systems. Skolan för

informations-och kommunikationsteknik, Kungliga Tekniska högskolan.

13. Gupta, B. K., & Dua, R. L. (2012). Various Methodologies Used For 25 Bit Information Data

String Communication Through Hamming Code. International Journal of Applied Information

Systems. 2(2), 57-65.

14. Baloch, S., Arslan, T., & Stoica, A. (2005, March). Efficient Error Correcting Codes for On-Chip

DRAM Applications for Space Missions. In Aerospace Conference, 2005 IEEE (pp. 1-9). IEEE.

