табылады. Ми инфарктасы бар 20 науқастарына Цитоколин (Дифосфоцин) препаратының тиімділігі зерттеуі өткізілген. Препарат 14 күн ағымында күніне 2 рет 1000, 0 мг дозасында венаішілік тамшылай түрінде тағайындалды. Олардың арасында 12 еркек және 8 әйел болды. Науқастардың орташа жас шамасы 38-50 жас боллы

Дифосфоцин сананың қалыпқа келуіне, өмірге қажетті функциялар қызметтерінің қалыпқа келтірунне, шектіліктердің қозғалыстарын жақсартуына, координаторлық және сезгіш бұзылуларды түбегейлі төмендуіне, сананың қалпына келуіне мүмкіндік туғызды.

Түйін сөздер: ми инфарктісі, Цитоколин (Дифосфоцин).

РЕЗЮМЕ

Инфаркт мозга и его лечение

Инсульт — одна из наиболее важных медико — социальных проблем и служит причиной смерти, а также часто является причиной инвалидизации больных.

Проведено исследование эффективности Цитоколин (Дифосфоцин) у 20 больных с ирфарктом мозга. Препарат назначался в дозе 1000,0 мг внутривенно капельно 2 раза

в день в течение 14 дней. Среди них было 12 мужчин и 8 женщины. Средний возраст больных был 38 - 50 лет

Дифосфоцин способствовал восстановлению сознания, нормализации функции жизненоважных функций, улучшению движений в паретичных конечностях, значительное уменьшение координаторных и чувствительных расстройств, нормализация сознания.

Ключевые слова: инфаркт мозга, Дифосфоцин.

SUMMARY

Cerebral infarction and its treatment

Stroke - one of the most important medical - social problems and causes of death, and is often the cause of disability of patients.

A study of the effectiveness of Tsitokolin (Difosfotsin) in 20 patients with brain irfarktom. The drug was administered at a dose of 1000.0 mg intravenously 2 times a day for 14 days. Among them were 12 males and 8 females. The average age of patients was 38 - 50 years

Difosfotsin contributed to the restoration of consciousness, normalization of zhiznenovazhnyh functions, improve movement in the paretic limbs, a significant decrease koordinatornyh and sensory disorders, normalization of consciousness.

Keywords: cerebral infarction, Diphosphocin)

УДК 616.831-005.1 - 08:616.4

МОЗГОВОЕ КРОВООБРАЩЕНИЕ У БОЛЬНЫХ С ГИПЕРТОНИЧЕСКОЙ ДИСЦИРКУЛЯТОРНОЙ ЭНЦЕФАЛОПАТИЕЙ И ГИПОТИРЕОЗОМ

О.Е. Коваленко^{1,2}, Е.В.Литвин¹

Государственное научное учереждение «Научно-практический центр профилактической и клинической медицины» Государственного Управления делами, г. Киев¹, Украина

Национальная медицинская академия последипломного образования имени П.Л. Шупика², г. Киев, Украина

Ведущее место в структуре заболеваемости и смертности населения Украины являются сердечно-сосудистые заболевания, которыми в 2010 году было обусловлено 66,6% всех смертей [1]. Дисфункция щитовидной железы (ЩЖ) является одним из факторов риска сердечно-сосудистых осложнений, тиреоидная патология в структуре эндокринных заболеваний в Украине занимает первое место - 46,67% [6]. Распространенность гипотиреоза среди населения постоянно возрастает. У взрослого населения показатель среди женщин составляет от 1,4 до 2% и 0,2% среди мужчин. В Украине на 01.01.2012, зарегистрировано 90 920 тыс. больных с гипотиреозом (1999 — 53 тысяч), показатель заболеваемости населения в 2011г. составил 22,1 на 100 тыс. населения. Наибольшая распространенность гипотиреоза наблюдается в возрастной группе старше 60 лет. Так, среди обследованных (без заболевания ЩЖ в анамнезе), процент больных гипотиреозом достигает 6% среди женщин и 2,5% у мужчин [5, 6].

Поражение сердечно-сосудистой системы наблюдается у 70-80% больных с гипотиреозом и часто является первым проявлением заболевания [2, 3, 4]. Установлена связь между повышением уровня тиреотропного гормона (ТТГ) и атерогенной дислипидемией, нарушением системной гемодинамики, эндотелиальной дисфункцией и развитием гиперкоагуляции [7, 8,]. Клиническим подтверждением проявления эндотелиальной дисфункции у больных гипотиреозом является дисциркуляторная энцефалопатия (ДЭ) — церебральная патология, развивающаяся в результате острых или хронических метаболических и сосудистых расстройств [15].

Известно, что при продолжительной артериальной гипертензии развивается комплекс деструктивных, репара-

тивных и адаптационных процессов в сосудах, в том числе, мозговых. Патологические изменения, которые происходят в сосудистой системе головного мозга, приводят к реорганизации мышечной стенки, изменению просвета артерий, деформации магистральных артерий головы и шеи [16].

В современной научной литературе встречаются работы, посвященные изучению отдельных сторон метаболизма и гемодинамики при гипотиреозе [5, 7, 8, 16], однако наблюдается дефицит информации об особенностях мозгового кровообращения при артериальной гипертензии в условиях дефицита тиреоидных гормонов. Представленное исследование, прежде всего, исходит из клинических наблюдений амбулаторной практики - у части больных гипертонической дисциркуляторной тией (ГДЭ) наблюдалось усугубление неврологического дефицита при корригированной и непрогрессирующей АГ. Поэтому изучение вероятности усугубления церебральной дисфункции при наличии артериальной гипертензии и гипотиреоза является важным и новым в современной медицине для обоснования последущих мероприятий по профилактике и лечению сочетанной патологии.

Целью исследования было изучение особенностей мозгового кровообращения у больных с гипертонической дисциркуляторной энцефалопатией и сопутствующим гипотиреозом с использованием ультразвукового дупплексного сканирования брахиоцефальных сосудов.

Материалы и методы

Проведено клинико-неврологическое обследование 97 больных с гипертонической дисциркуляторной энцефалопатией, 60 из них имели сопутствующий гипотиреоз. Возраст больных варьировал от 42 до 66 лет (средний возраст 58,9±0,08). Среди обследованных пациентов - 88 (90,7%)

женщин, 9 (9,3%) мужчин. Все пациенты с ГДЭ были разделены на две группы, статистически сопоставимые по основному заболеванию, полу и возрасту. Первая группа (основная) состояла из больных (60 человек) с сопутствующим гипотиреозом. Вторая группа (контрольная) включала 37 человек без гипотиреоза. Стадии дисциркуляторной енцефалопатии были установлены согласно общепринятым критериям диагностики [9,10,11,12,14].

Гипотиреоз у пациентов основной группы был обусловлен аутоиммунным тиреоидитом - 39 человек, последствиями операции на ЩЖ - 9 человек, у 12 пациентов возник спонтанно.

Таблица 1 - Характеристика груп в зависимости от ДЭ и ГБ

Стадия ДЭ	Степень ГБ	I група (n=60) n, %	II група (n=37) n, %	p
ДЭІ	ГБ І,	5(8,33%)	2 (5,41%)	0,57
	ГБ II	4 (6,67%)	3 (8,11%)	0,86
Всего		9 (15,0%)	5 (13,56%)	0,89
ДЭII	ГБ І,	18 (30,0%)	5 (13,51%)	0,08
	ГБ II	33 (55,0%)	27 (72,97%)	0,08
Всего		53 (85,0%)	32 (86,48%)	0,79

Как видно из таблицы, распределение по основному заболеванию — дисциркуляторной энцефалопатии - критерию, по которому и был произведен отбор больных,

в процентном соотношении было достоверно однородным в обеих группах, однако, обращал на себя внимание факт, что стадии гипертонической болезни, патогенетически связанной с церебральными расстройствами, отличались: в группе с гипотиреозом при более тяжелой форме мозговой патологии (ДЭ II) у 30,0% пациентов наблюдалась ГБ I, в то же время подобная ситуация имела место только у 13,5% больных без гипотиреоза, что косвенно может свидетельствовать о том, что усугубление церебральной недостаточности у части больных возникает при наличии дополнительных причин — вероятно, гипотиреоза, что и подлежит доказательству.

Органические и функциональные изменения в экстракраниальных артериях и состояние церебральной гемодинамики исследовались с помощью дуплексного сканирования сосудов больных обеих клинических групп [17,18,19]. Используя спектральный анализ допплеровских сигналов, изучали среднюю пиковую систолическую скорость циркуляции (Vps), диастолическую скорость циркуляции (Ved), индекс периферического сопротивления (Pourcelot, RI – resistive index) и индекс пульсации (Gosling, PI - pulsatility index). По результатам обследования оценивался гемодинамический диапазон функциональных возможностей артериального русла мозга, степень тяжести расстройства, цереброваскулярная реактивность и состояние функционального регулирования мозгового кровотока.

Результаты

Показатели УЗДГ у больных I и II клинических групп приведены в таблице 2

Таблица 2 - Показатели УЗДГ у больных I и II клинических групп

Сосуды	Показатели	ГДЭ з гипотирео	зом (n=60) М±m	ГДЭ без гипотиреоза (n=37) М±m		
Сосуды	Показатели	dextra	sinistra	dextra	sinistra	
Общая сонная артерия	V ps см/с	78,52±2,31*	72,85±2,55	71,35±2,37	74,78±2,05	
1 1	V ed см/с	20,68±0,62	20,70±0,98	19,54±0,91	$21,65\pm0.73$	
	RI	0,70±0,01*	0,70±0,01	0,73±0,01	$0,71\pm0,01$	
	PI	1,13±0.09	1,1±0,1	1,39±0,021	1,47±0,32	
Внутренняя сонная	V ps см/с	65,10±2,24	67,12±2,23	70,46±2,55	74,22±3,09	
артерия	V ed cм/c	27,28±1,03	27,15±1,48	29,54±2,17	28,59±1,88	
Средняя мозговая	V ps см/с	99,83±3,87	102,42±3,54	105,76±5,73	98,70±4,32	
артерия	V ed см/с	43,35±2,60	52,90±3,74	45,46±2,87	43,70±2,29	
•	RI	0,57±0,01	0,59±0,03	0,57±0,01	$0,57\pm0,01$	
	PI	2,11±0,10*	2,02±0,09	1,8±0,11	1,89±0,11	
Позвоночная артерия	V ps см/с	53,53±2,20	52,63±2,14*	60,38±2,79	59,86±2,67	
(V4)	V ed см/с	21,98±1,33*	20,35±1,34*	27,95±1,49	26,16±1,28	
	RI	0,60±0,01*	0,61±0,01*	0,57±0,01	$0,57\pm0,01$	
Позвоночная артерия	V ps см/с	38,05±1,02*	39,62±1,01	33,46±1,58	38,03±1,54	
(V1 - V3)	V ed см/с	12,15±0,40	14,41±0,51	12,89±0,61	14,82±0,81	
	RI	0,65±0,01**	0,62±0,01*	0,61±0,01	$0,65\pm0,01$	
A.basilaris	V ps см/с	67,33±2,83		68,57±3,94		
	V ed см/с	30,15	±1,32	27,59±1,88 0,59±0,01		
	RI	0,57±	-0,01			

Примечание:

Известно, что увеличение периферического сопротивления сосудов головного мозга происходит в результате патогенетических механизмов развития системной АГ. При исследовании периферического сопротивления (RI) в общей сонной артерии и позвоночных артериях, пульсационного индекса (PI) в средней мозговой артерии у больных с ГДЭ и сопутствующим гипотиреозом, по сравнению с пациентами с ГДЭ без сопутствующего гипотиреоза, обнаружено увеличе-

ние RI и PI в соответствующих артериях при отсутствии достоверных изменений пиковой скорости систолического кровообращения. Это указывает на снижение упругости и структурные изменения общей сонной артерии и позвоночных артерий и, соответственно, уменьшение церебральной реактивности.

Пиковая систолическая скорость кровотока в артериях обследованных пациентов увеличивается (p<0,05) в правой общей сонной артерии, левой позвоночной

^{* -} достоверная разница (р<0,05) между показателям групп.

^{** -} достоверная разница (р<0,001) между показателям групп.

артерии на уровне V4 и правой позвоночной артерии на экстракраниальном уровне (V1-V3). Пиковая диастолическая скорость кровообращения увеличивается (p<0,05) в правой и левой позвоночных артериях на уровне V4.

В ходе обследования пациентов с ГДЭ и сопутствую-

щим гипотиреозом наблюдалась корреляционная зависимость (коэффициент корреляции 0,31-0,37) между уровнем тиреотропного гормона гипофиза в крови обследованных пациентов и показателями средней пиковой систоличесной скорости циркуляции (Vps), и диастолической скорости кровотока (Ved) в общей сонной артерии (табл. 3).

Таблица 3 - Характеристика корреляционной зависимости между уровнем гормонов щитовидной железы и показателями дуплексного сканирования сосудов мозга

		Гормоны щитовидной железы							
Сосуды	Показатели	ТТГ		Т3 св.		Т4 св.		АТ-ТПО	
		dextra	sinistra	dextra	sinistra	dextra	sinistra	dextra	sinistra
Общая сонная артерия	V ps см/с	0,31	0,22	0,00	0,07	0,08	0,04	0,07	0,11
	V ed cм/c	0,20	0,37	0,06	0,12	0,23	0,23	0,25	0,27
	RI	0,11	0,18	0,00	0,03	0,10	0,24	0,03	0,15
Внутренняя сонная артерия	V ps см/с	0,14	0,01	0,21	0,16	0,00	0,06	0,07	0,16
	V ed cм/c	0,16	0,05	0,05	0,00	0,06	0,09	0,28	0,28
Средняя мозговая артерия	V ps см/с	0,02	0,01	0,02	0,10	0,05	0,00	0,00	0,10
	V ed cм/c	0,20	0,13	0,06	0,04	0,21	0,05	0,08	0,12
	RI	0,21	0,20	0,07	0,15	0,26	0,03	0,18	0,10
	PI	0,10	0,04	0,01	0,06	0,00	0,08	0,03	0,05
Позвоночная артерия (V4)	V ps см/с	0,12	0,04	0,02	0,01	0,05	0,08	0,05	0,02
	V ed cм/c	0,03	0,04	0,08	0,06	0,12	0,11	0,07	0,00
	RI	0,04	0,07	0,05	0,27	0,07	0,06	0,17	0,01
Позвоночная артерия (V1	V рs см/с	0,00	0,02	0,05	0,04	0,15	0,18	0,07	0,14
- V3)	V ed cм/c	0,08	0,03	0,01	0,01	0,00	0,17	0,04	0,02
	RI	0,12	0,21	0,09	0,11	0,04	0,08	0,02	0,00
A.basilaris	V рs см/с	0,	07	0,0)2	0	,00),09
	V ed cм/c	0,06		0,09		0,00		0,11	
	RI	0.	07	0,0	01		,02),09

Таким образом, недостаточность тиреоидных гормонов (гипотиреоз) у больных с гипертонической дисциркуляторной энцефалопатией приводит к достоверному снижению упругости и структурным изменениям общей сонной и позвоночной артерий и, соответственно, уменьшению церебральной реактивности. Полученные данные позволяют улучшить раннюю диагностику и разработать комплекс лечебно-профилактических мер по снижению коморбидных проявлений гипертонической дисциркуляторной энцефалопатии и сопутствующего гипотиреоза.

выводы

- 1. У больных с гипертонической дисциркуляторной энцефалопатией и сопутствующим гипотиреозом по данным дуплексного сканирования сосудов головного мозга и шеи происходит достоверное снижение мозгового кровотока и структурные изменения с уменьшением эластичности стенок общих сонных и позвоночных артерий и, соответственно, снижение церебральной реактивности.
- 2. У больных с ГДЭ и сопутствующим гипотиреозом достоверно повышется систолическая и диастолическая скорости кровотока по позвоночным артериям, что косвенно может быть связано с анатомо-физиологическими особенностями вегетативного обеспечения ЩЖ и позвоночных артерий.
 - 3. Изменения кровотока

СПИСОК ЛИТЕРАТУРЫ:

- 1.Коваленко В.М. Регіональні особливості рівня здоров'я народу України (Аналітично-статистичний посібник) // В.М.Коваленко, В.М. Конацький Київ: СПД ФО Коломіцин В.Ю., 2011. С.36-46.
 - 2. Gallowitsch H.J. Thryoid and cardiovascular system /

- *H.J. Gallowitsch // Wien Med. Wochenschr.* 2005. *Vol.155*, №19-20. *P.436-443*.
- 3.Impact of subclinical thryoid disorders on coronary heart disease, cardiovascular and all-cause mortality: A meta-analysis // S. Singh, J. Duggal, J. Molnar [et. al] // Int. J. Cardiol.-2008.- Vol.125, №1. P.41-48.
- 4.Luboshitzky R. Risk Factors for Cardiovascular Disease in Women with Subclinical Hypothyroidism/ R. Luboshitzky, A.Aviv, P.Herer, L. Lavie // Thyroid. − 2002.- Vol.12, №5. − P.421-425.
- 5. Паньків В.І. Синдром гіпотиреозу // Международный эндокринологический журнал. 2012. 5 (45). С. 54-57.
- 6. Аналіз діяльності ендокринологічної служби в Україні у 2010 році та перспективи розвитку медичної допомоги хворим з ендокринною патологією // О.С.Ларін, В.І.Паньків, М.І. Селіваненко, О.О.Грачова // Міжнародний ендокринологічний журнал 2011.- № 3 935). С.10-19.
- 7. Hak A.E., Pols H.A., Visses T.J. et al. Subclinical hypothyroidism is an independent risk for atewrosclerosis and myocardial infarction in erderly women: the Rotterdam study// Ann. Intern. Med. 2000, 132, N 4, 270-278.
- 8. Мітченко О.І., Романов В.Ю., Логвиненко А.О. та ін. Серцево-судинний ризик на тлі дисфункції щитоподібної залози // Український кардіологічний журнал. Матеріали XII Національного конгресу кардіологів України (Київ, 2011) Додаток 1, 81-88.
- 9.Дамулин И.В., Парфенов В.А, Скоромец А.А., Яхно Н.Н. Дисциркуляторная энцефалопатия. Болезни нервной системы. Руководство для врачей. М.:- Медицина, 2005; 1:275-85.
- 10. Шмидт Е. В. Классификация сосудистых поражений головного и спинного мозга // Журн. невропатол. и психиатр. 1985, с. 1281-1288.

- 11. Мищенко Т.С. Дисциркуляторная энцефалопатия: устаревший термин или клиническая реальность? // Здоров'я України. 2012. № 4 (23). С.18-19.
- 12. Яхно Н.Н., Штульман Д.Р. Болезни нервной системы. Руководство для врачей. М.: 2007.
- 13. Кравченко А.М., Коваленко О.Є., Вознюк В.В., Оводюк Н.М., Литвин О.В. Визначення оптимального рівня артеріального тиску при проведенні антигіпертензивної терапії у хворих з неврологічними розладами // Інформаційний лист про нововведення в системі охорони здоров'я №141-2011.
- 14. Коваленко О.€., Кравченко А.М., Литвин О.В., Оводюк Н.М., Закрутько Л.І. Хронічні цереброваскулярні захворювання, зумовлені артеріальною гіпертензією та церебральним атеросклерозом // Методичні рекомендації. Київ. 2012р. 33 с.
- 15. Товаржнянська О.Л., Григорова І.А., Тихонова Л.В. Клінічні особливості та патогенетичні механізми формування неврологічних синдромів при первинному гіпотиреозі // Міжнародний неврологічний журнал. 6 (36) 2010. С.73.
- 16. Михайленко О.Ю., Зубкова С.Т. Структура і гемодинаміка екстра краніальних відділів сонних артерій у хворих на гіпотиреоз // Ендокринологія. — Том 17. - №1/ 2012. — С 32-36
- 17. Baron H.C., Wayne M.G., Santiago C. et al. treatment of severe chronic venosus insufficiency using the subfascial endoscopic perforator vein procedure // Surg. Endosc. 2005. 19. 126-129.

- 18. Takase S., Pascarella L., Lenord L. et al. Venous hypertension, inflammation and valve remodeling // Eur. J. Vase. Endovasc. Surg. 2004. 28. 484-493.
- 19. Коржелецький О.С. Клінічні аспекти доплерографії // Журнал «Внутренняя медицина». 1-2 (13-14). 2009.

РЕЗЮМЕ

Мозговое кровообращение у больных с гипертонической дисциркуляторной энцефалопатией и гипотиреозом

Рассматриваются вопросы особенностей мозгового кровообращения у больных с гипертонической дисциркуляторной энцефалопатией и сопутствующим гипотиреозом.

Ключевые слова: гипертоническая дисциркуляторная энцефалопатия, гипотиреоз, дуплексное сканирование сосудов, церебральная реактивность, тонус мозговых сосудов.

SUMMARY

Features of brain circulation within patients with dyscirculatory encephalopathy and hypothyroidism

The problems about features of brain circulation within patients with hypertensive dyscirculatory encephalopathy and hypothyroidism are being considered.

Key words: hypertensive dyscirculatory encephalopathy, hypothyroidism, duplex doppler ultrasound, cerebrovascular reactivity, rheovasography, the tone of cerebral vessels.

УДК 616.8-00

ТРАНЗИТОРНЫЕ ИШЕМИЧЕСКИЕ АТАКИ - АНАЛИЗ ЭТИОЛОГИЧЕСКИХ ФАКТОРОВ У ПАЦИЕНТОВ МОЛОДОГО ВОЗРАСТА

Кузина Л.А., Кайшибаева Г.С., Байдаулетова А.И., Мурзахметова Д.С.

НПЦ «Институт неврологии имени Смагула Кайшибаева», Медицинский центр «Сункар», г. Алматы, Казахстан

Транзиторные ишемические атаки (ТИА) - это остро возникшие приступы очаговых или общемозговых неврологических расстройств, обусловленных нарушением церебрального кровообращения, продолжительностью от нескольких минут до 24-х часов. Понятие «транзиторная ишемическая атака», в клиническом плане, на настоящий момент остается дискутабельным. «Правило 24 часов», было принято Всемирной Организацией которое Здравоохранения в 1988 году, основывалось исключительно клинических проявлениях цереброваскулярных расстройств. С 2002 года было предложено учитывать в диагностике ТИА не столько временной интервал развития и разрешения неврологической симптоматики, сколько сам факт формирования патологических ишемических изменений ткани мозга, выявляемый при проведении Было нейровизуализации. предложено следующее определение: «ТИА – это кратковременный эпизод неврологической дисфункции, обусловленный очаговой мозговой или ретинальной ишемией, проявляющийся клинической симптоматикой обычно на протяжении менее чем 1 ч и не имеющий признаков инфаркта мозга» [8]. Такой подход позволяет более четко разграничить ТИА и мозговой инсульт, что имеет колоссальное значения для дальнейшего эпидемиологического анализа, определения стратегии в отношении госпитализации, обследования и лечения пациентов. В настоящий момент в Республике

Казахстан в рабочей классификации придерживаются определения ТИА, данного в национальном руководстве Российской Федерации по неврологии от 2010 года-ТИА определяется как острое нарушение мозгового кровообращения с кратковременным (не превышающим 24 часа) нарушением функций головного мозга в виде очаговой и/или общемозговой симптоматики с последующим полным регрессом симптомов и отсутствием по данным нейровизуализации признаков инфаркта мозга [6].

Несмотря на кратковременность, ТИА является грозным симптомом и должна рассматриваться как предвестник возможной мозговой катастрофы в виде инсульта. Тем не менее, в литературе имеются данные, которые указывают на «положительную» роль ТИА в плане последующего развития мозгового инсульта. Некоторые авторы рассматривают ТИА как разновидность адаптации к ишемии, формирующуюся по механизму «ишемического прекондиционирования». Высказывается предположение о том, что короткие эпизоды ишемии в последующем могут защитить мозг от фатальной ишемии и способствовать формированию меньших объемов инфаркта мозга [1,12,13]. Однако, большая часть исследователей все же придерживается иной точки зрения и указывает на высокий риск развития мозгового инсульта в первые месяцы у пациентов с предшествующей ТИА [2]. Так в первые двое суток риск инсульта возрастает на 4-10 %, по данным