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Abstract: We report here a new possible two formulas for obtaining the length of irregular arc ℓ in terms of their base b and 

height h. The first formula is obtained by applying the law of cosines and intersecting chord theory and ℓ is given by
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. While the other is obtained by applying Pythagorean theory and ℓ 

is given by Khbh 
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4 with an error of  
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)2( bhK  , where K is a constant and equal 0.313165528 and 

can be used only in case of  2h   < b. Finally, the earth circumference is calculated by using the two formulas and their values 

are 39910.0252 Km and 39999.5504 Km, which is consistent with the reported elsewhere (39992.1984 km). 
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1. Introduction 

The arc length ℓ has been considered for a portion of the 

circumference of a regular circle and it is given by (ℓ = θr in 

radian, ℓ = θ πr/180 in degree), where θ is the central angle 

and r is the radius. But a rectification is normally taken as the 

length of an irregular arc curve. Archimedes had pioneered a 

way for finding the area beneath a curve as an irregular arc, 

but few researches believed that it is impossible for the 

curves to have definite length, as well as straight lines. So, 

the researchers began to inscribe polygons within the curves 

and they are able to compute the length of the sides for a 

somewhat accurate measurement of the length. By using 

more segments, and by decreasing the length of each 

segment, they could obtain more accurate approximation 

[1,2]. In particular, by inscribing a polygon of many sides in 

a circle, they find approximate values of π.  

Although, a lot of methods have been used for obtaining the 

length of some specific irregular curves, the advent of 

infinitesimal calculus led to general integral formulas that 

provide a closed form solutions in most of cases [1]. 

However, a rectification has been obtained by geometrical 

methods of several transcendental curves such as logarithmic 

spiral, cycloid, and catenaries [1-5]. After that, Williams 

credited Neale's discovery for the first rectification of a 

nontrivial algebraic curve which is called semicubical 

parabola [2]. During this period, Van Heuraet obtained the 

length of irregular arc (a semicubical parabola) by using an 

integral form in terms of the area under a curve [3]. Similar 

results are obtained Fermat by applying a general theory on 

the curved lines [4]. Unfortunately a specific integration is 

necessary for the arc length as follows [5-8];  

  2
1

2
)(1

t
t

dx

dy
   for Cartesian coordinates, 

mailto:sedky1960@yahoo.com
http://www.mathopenref.com/circumference.html
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Archimedes
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/Pi_%28mathematical_constant%29
http://en.wikipedia.org/wiki/Infinitesimal_calculus
http://en.wikipedia.org/wiki/Closed-form_expression
http://en.wikipedia.org/wiki/Transcendental_curve
http://en.wikipedia.org/wiki/Logarithmic_spiral
http://en.wikipedia.org/wiki/Logarithmic_spiral
http://en.wikipedia.org/wiki/Cycloid
http://en.wikipedia.org/wiki/Catenary
http://en.wikipedia.org/wiki/Algebraic_curve
http://en.wikipedia.org/wiki/Semicubical_parabola
http://en.wikipedia.org/wiki/Semicubical_parabola
http://en.wikipedia.org/wiki/Arc_length#cite_note-2


European Journal of Academic Essays 1(9): 35-38, 2014 

63 
 

  2
1

2
)(

2t
t

d

dr
r


  for polar coordinates, 

  2
1

2
)(

2
)(

22
)(

t
t

dt

dz

dt

d
r

dt

dr 
 for 

cylindrical coordinates and

  2
1

2
)(

22
)(

2
sin

22
)(

t
t

dt

d

dt

d

dt

d 






     

for spherical coordinates. 

As discussed above, we could not find a simple formula for 

obtaining the length of irregular arc. Therefore, we report 

here new possible formulas for obtaining the length of 

irregular arc in terms of their base and height. The first 

method is obtained by applying the law of cosines and 

intersecting chord theory, while the other is obtained by 

applying Pythagorean theory.  

2. Mathematical Results 

2.1. First Method 

   

 

 

 

 

 

 

 

 

 

                  

 

 

 

 

Figure 1: Irregular curve of base b and height h 

 

Let us consider irregular arc curve of length ℓ = BAC, base b 

= BC and height h = AD as shown in Figure 1. This arc 

should be started with minimum value and then increased up 

to optimum value, and it descends again to the minimum. 

Assuming BC = 2AD = 2R = b, AD = h, and applying the 

law of cosines and intersecting chord theorem [9-11], we 

found that;  
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Substituting about r and ϴ from equation (2) in equation (3), 

we find that:  
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By using equation (4), one can calculate the length of 

irregular arc curve in terms of their base and height.  

2.2. Second Method 

 
Figure 2:  The regular arc length with base and height 

  

 

 

 

 

 

 

 

             

 

 

 

 

Figure 3:  The irregular arc length with base and height  

 

As shown in Figure 3, and according to Pythagorean 

theory[12,13],
2

)(
2

)( BDADAB   ,    

2
)(

2
)( CDADAC                 (5) 

 

 

B C 
D 

A 

ϴ 

B C 
D 

A 

B C 

A 



European Journal of Academic Essays 1(9): 35-38, 2014 

63 
 

By assuming that  
2

BC
DCBD   , therefore, 

2
)(

2
)(4 BCADACAB                  (6) 

By applying equation (6), the length of irregular arc ABC is 

given in Table 1. It is clear from Table 1 that the difference 

between (ABC Arc) - (AB + AC) is given by Kr, where K is 

constant and equal 0.313165528 or (π - 2√2).  

Table 1: Arc length, lengths of triangle ABC and the 

difference between them 

 r = AD =  

BC/2 

1  

cm 

2 

cm 

3 

cm 

4 

cm 

  Arc length 

ABC 

3.14 cm 6.28 

cm 

9.42 cm 12.57 cm 

(AB + AC) 2.83 cm 5.66 

cm 

8.49 cm 11.31 cm 

(ABC Arc) - 

(AB + AC) 

0.31 cm 0.62 

cm 

0.93 cm 1.26 cm 

 

Based on the above calculations, the irregular arc length can 

be written as; 
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22
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It is found from equation (7) that the error Kh is gradually 

decreases to zero as the diameter b increases up to 2h. This is 

represented by a straight line, see Figure 4.  

 

 

 

 

 

            

 

 

 

 Figure 4:  The error versus the base b of the arc  

 

Based on the above Figure, the slope can be given by the 

difference between any two points which helps us for 

obtaining the error as follows; 

Consider the three points are (x, y), (x1,y1) and (x2,y2) as 

(x,y), (0,Kh) and (2h,0). Therefore, the slope must be 

constant, and it is given by the following;   
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Equation (8) can be rewritten as;  

KxhKy  22 , where x = b and y is the error.  

The error is given by,  

2
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Then, equation (7) can be rewritten as; 
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It is clear that the error is tends to zero when b = 2h as shown 

in Figure 4. Therefore, the error can be used only in case of 

2h   < b. 

To clarify the above results, we are used the formulas for 

calculating the earth circumference which is 24850 miles = 

39992.1984 km as reported (1mile = 1.609344 Km) [14]. 

However, we takes the base b = D1= 12756.26 Km, where D1 

is the diameter measured along the equator, and h = D2/2 = 

6357 Km, where D2 is the diameter measured across the 

poles. The values of the earth circumference are 39910.0252 

Km by using the first formula and 39999.5504 Km by using 

the other. For more sure to our formulas, we are calculated 

the earth circumference in terms of the following Ramanujan 

approximation for the circumference of ellipse; 
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      with a = 

D1/2 and b = D2/2. It is found that the earth circumference is 

40024 Km. 

3. Conclusion 

A possible two formulas for obtaining the length of irregular 

arc ℓ in terms of their base b and height h are investigated. 

The length of irregular arc is given by  
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for the first formula, and by Khbh 
22

4 with an 

error of  
2

)2( bhK   for the other; where K is constant 

and equal 0.313165528, and can be used only in case of  2h   

  < b.  By using the present formulas, the earth circumference 

values are 39910.0252 Km and 39999.5504 Km, which is 

consists with the reported elsewhere (39992.1984 km). 
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