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1. Introduction

  The genus Anentome contains carnivorous snails in the Family 

Nassariidae, one of the largest and most biologically successful 

families worldwide. This genus consists of 6 species: Anentome 

helena(A. helena), Anentome combojiensis, Anentome spinosa, 

Anentome jullieni, Anentome scalarina and Anentome wykoffi. A. 
helena is widely distributed throughout Southeast Asia, including 

Cambodia, Indonesia, Malaysia and especially in northern 
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Thailand[1]. A. helena is commonly known as the “assassin snail” 

and tend to live on soft, muddy bottoms[2–4]. While A. helena is 

popular in aquariums, its biology remains unclear. Thus, there is 

increasing apprehension about what would happen if this species was 

introduced outside its native range[5]. Moreover, A. helena in Chiang 

Mai province was infected with echinostome metacercariae[6]. 

The parasites from the Family Echinostomatidae can infect the 

gastrointestinal tract of a variety of animals and humans, which 

leads to a disease called echinostomiasis. The disease has been 

generally found in north and northeastern parts of Thailand[7]. 

Since the disease may be transmitted to humans by ingesting raw or 

partially cooked snails, there is substantial interest in understanding 

echinostome metacercariae infection in snail populations in order to 

control potential echinostomiasis cases in humans[8]. 

  The taxonomic relationships among the members of Anentome are 

ambiguous. Traditional taxonomic classification of gastropods is 

commonly based on shell morphological characteristics, including 

shape, size and surface sculpture[1,9]. A review by Brandt[1] 

examined Thai freshwater snails and synonymised 7 species 

with Clea helena only based on shell morphology and noted that 

their shell was extremely variable with regard to size, shape and 

costulation. However, environmental factors can greatly affect A. 
helena shell morphology[10]. Thus, given the flourishing interest in 

this species across various disciplines, the taxonomy of this snail 

needs to be robustly explored.

  Molecular phylogeny offers a framework to clarify organism 

classification[11]. During the previous decades, this technique 

has been used to resolve systematics and evolution issues when 

morphological and physiological characteristics prove ambiguous[12]. 

Studies on freshwater snail phylogeny using molecular DNA 

sequences are potentially useful, and the most common genes 

utilized in these studies are mitochondrial cytochrome oxidase 

subunit I (COI) and 16S rRNA[13–16]. Ambiguities in the species 

emphasize the need for rigorous morphological analyses 

accompanied by molecular comparisons to clarify the species 

boundaries of A. helena and determine the parasitic infection of 

this snail. This research will provide useful information that may 

be valuable for developing public health prevention strategies for 

echinostomiasis and conservation management of A. helena in the 

future.

2. Materials and methods

2.1. Sampling and identification

  A. helena s.l. samples were collected throughout northern 

Thailand  by using the count per minute method (samples collected 

every 10 minutes per sampling by 5 collectors). Specimens were 

identified based on shell morphology and compared with original 

descriptions[1]. 

2.2. Shell and radula study

  One hundred empty shells of each A. helena morphotype were 

investigated. Weight was determined using an electronic scale with 

0.01 g precision. Shell height, shell width, aperture height and 

aperture width were measured with vernier calipers. In order to 

detect variations in shell morphology between the 2 morphotypes, 

the mean values of linear measurements (shell or aperture sizes) 

were compared by t-test (P<0.05) using IBM SPSS Statistics ver. 

22.0[17].

  At least 30 radulae of each morphotype were examined. The 

radulae were extracted from the snail buccal cavity using a 

stereomicroscope, boiled in 5% sodium hydroxide for 5 min and 

then washed with distilled water. Dehydration was performed by 

immersing the radulae in increasing alcohol concentrations (10%, 

30%, 50%, 70%, 80% and 95%, respectively). Subsequently, the 

specimens were mounted on stubs with the help of a sharp-tipped 

needle on carbon conductive adhesive tapes. The stubs were then 

coated with gold and observed using a scanning electron microscope 

(JSM 5910 LV) at the Electron Microscope Research and Service 

Center, Faculty of Science, Chiang Mai University.

2.3. DNA extraction, PCR amplification and sequencing 

  Genomic DNA was extracted from foot tissues of 15 individuals 

using 150 μL of Chelex 100 and 3 μL of proteinase K. Samples 

were incubated at 55 曟 for 1 h, 95 曟 for 30 min and then stored 

at -20 曟 until use. COI and 16S rRNA mitochondrial genes 

were amplified using the following primers: LCOI490 (5 ꞌ-
GGTCAACAAATCATAAAGATATTGG-3 ꞌ) and HCO2198 

(5ꞌ-TAAACTTCAGGGTGACCAAAAAATCA-3ꞌ) for the COI 
gene[18] and 16sar (5ꞌ-CGCCTGTTTATCAAAAACAT-3ꞌ) and 

16sbr (5ꞌ-CCGGTCTGAACTCAGATCACGT-3ꞌ) for the 16S 
rRNA gene[19]. PCR was performed in 20 μL reactions with 5 μL 

2× Illustra Hot Start Master Mix (GE Healthcare), 1 M each primer, 

deionized water and approximately 10 ng DNA template. For COI, 
thermal cycling was: 94 曟 for 2 min, 36 cycles of 94 曟 for 30 s, 

42 曟 for 2 min and 72 曟 for 2 min, and a final extension step of 

72 曟 for 5 min. For 16S rRNA, thermal cycling was performed in the 

same way as for COI except the annealing temperature was changed to 49 

曟 for 30 s. The amplified products were checked with 1% (w/v) agarose 

gel electrophoresis using 0.5伊 TBE buffer. Gels were run at 100 V for 45 

min and visualised with RedSafe nucleic acid staining solution and UV 

transillumination. PCR products were purified and sequenced using 

BigDye® Terminator v3.1 cycle sequencing kit chemistry and 1st 

BASE DNA Sequencing Services (Applied Biosystems).

2.4. Phylogenetic analysis

  The taxonomic sampling scheme used herein included 17 
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individuals identified as A. helena sensu lato, 6 related species[16] and 

6 specimens of Nassodonta dorri[3]. Chromatograms were visually 

inspected and edited as necessary with ClustalW[20] as implemented 

in MEGA 7.0[21]. COI was translated to check for amino acid 

sequence, stop codons and frameshift mutations. All newly generated 

sequences have been deposited in GenBank (Table 1). Phylogenetic 

trees were constructed using neighbour joining (NJ), maximum 

likelihood (ML) and Bayesian inference (BI). The phylogenetic trees 

were rooted on the genus Nassodonta since it has been suggested 

to represent close relatives of Anentome[3,16]. jModeltest 0.1.1[22] 

was used to evaluate the best evolutionary substitution model under 

Akaike Information Criterion[23]. NJ analysis was performed using 

PAUP* v4.0[24] based on appropriate models (16S: GTR+I+G; COI: 
GTR+G; concatenated dataset, Kimura 2-parameter (K2P)). One 

thousand replicates of bootstrap resampling[25] were performed to 

assign support to branches in the NJ tree. ML was performed using 

PhyML v.3[26], with randomised stepwise addition parsimony trees 

(number seed = 13) and with 1 000 bootstrap replicates[25,27]. BI 

analysis was performed using MrBayes v3.1.2[28], where the tree space 

was explored using 4 chains for 2 runs of a Markov chain Monte Carlo 

algorithm. The BI analysis was run for 7 000 000 generations with 

heating parameter set at 0.095, sampled every 100 generations, burn-

in set at 25%, and the last remaining trees were used to determine 

posterior probabilities of the BI tree. Convergence was observed by 

verifying that the average standard deviation of the split frequencies 

(between 2 runs) was below 0.01[29].

2.5. Parasitic infection

  Infection of A. helena with trematode larva was examined by the 

crushing method. Metacercariae were covered with a cover slip and 

observed under a light microscope. The shape, size and cyst wall 

structure were used for characterisation of the metacercariae. The 

presence of collar spines was highly indicative of the echinostome-

metacercaria type. Different numbers of arranged collar spines have 

been reported before raging from a minimum of 31 to a maximum 

of 51. The number of collar spines presented in each echinostome 

species can be used for identification[6]. So, the numbers of collar 

spines on the oral collar were counted[6,30]. The metacercaria were 

compressed, fixed in 5% formalin and stained with haematoxylin. 

They were dehydrated in ascending grades of alcohols, cleared 

in xylene and mounted in Permount for permanent slides. Two 

measures were calculated: prevalence of the parasite species as 

percentage of hosts infected by that species; intensity of the infection 

as the mean number of parasite larvae per infected host.

3. Results

3.1. Morphology

  A total of 325 A. helena were collected throughout Thailand (Figure 

1, Table 1). A. helena represents one of the most widespread species 

of Anentome. We collected the snail throughout northern Thailand. 

The A. helena shell was conical in shape and had dark brown 

and yellowish-tan bands around the whorls. The morphological 

examination of A. helena specimens revealed 2 distinct morphotypes. 

Morphotype A exhibited 2 elongated shell forms, while morphotype 

B exhibited globate shells (Figure 2A, C). As previously observed, 

A. helena were anatomically cryptic due to large shell structure 

variation. Average shell dimensions for morphotype A (Figure 2A) 

were 1.889 cm (range 1.600-2.300 cm) in height and 0.847 cm (range 

0.700-1.000 cm) in width; average aperture sizes were 0.659 cm (range 

0.590-0.720 cm) in height and 0.341 cm (range 0.300-0.380 cm) in 

width. For morphotype B (Figure 2C), average shell height was 1.996 

cm (range 1.800-2.400 cm) and width was 0.928 cm (range 0.900-

1.200 cm); aperture height was 0.753 cm (range 0.660-0.830 cm) and 

aperture width was 0.350 cm (range 0.30-0.44 cm). The shell and 

aperture widths were statistically significantly different (P敿0.05) 

(Table 2). 

Table 1 
List of localities and GenBank accession numbers of samples.

No. in 

map
Locality Codes Latitude/Longtitude

Accession numbers

COI 16S

1 Chiang Rai (Phan) CR1-5
19º35'31.7''N 

99º43'50.4''E

MH256030

MH256031

MH256032

MH256033

MH256013

MH256014

MH256015

MH256016

2
Phayao 

(Mae Chai)
PY1-5

19º21'50.6''N 

99º48'49.1''E
- -

3
Chiang Mai 

(San Kamphaeng)
IN1-3

18º46'05.1''N 

99º07'08.9''E
MH256026 MH256009

4
Chiang Mai 

(Mae Rim)
C3-4,7

18º57'16.5''N 

98º56'27.9''E

MH256027

MH256028

MH256029

MH256010

MH256011

MH256012

5
Chiang Mai (Chom 

Thong)
C10-12

18º24'59.5''N 

98º°40'44.2''E

MH256018

MH256019

MH256020

MH256001

MH256002

MH256003

6 Lamphun (Meuang) LN1-5
18º35'28.0''N 

98º58'55.9''E
MH256034 MH256017

7
Lampang (Ngao)

LG1-5
18º43'07.7''N 

99º56'49.2''E

MH256021

MH256022

MH256023

MH256004

MH256005

MH256006

8 Phrae (Long) PE1-5
18º05'43.6''N 

99º51'59.8''E
MH256024 MH256007

9 Nan (Wieng sa) NN1-5
18º34'05.1''N 

100º°45'23.6''E
MH256025 MH256008

  

  A. helena radulae were examined using a scanning electron 

microscope (350× magnification; Figure 2B, D). The radula was 

a stenoglossan type with a general formula of 1:1:1, each row of 

radula teeth consisted of 1 central tooth and 1 lateral tooth on each 

side. Examination of radular morphology also revealed differences 
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between morphotypes (Figure 2B, D). Radulae of morphotype A 

(Figure 2B) consisted of approximately 6 cusps (range 5-8 cusps) 

of the central tooth and 3 cusps on each side of the lateral teeth. 

The secondary cusp of the lateral tooth was triangular in shape 

and narrower and shorter than the other cusps. Comparatively, 

morphotype B had a much more rounded cusp on the central part 

of the lateral tooth that was similartin shape to the other cusps, but 

with more convex bases compared to morphotype A. There were 

approximately 8 cusps (range 6-11 cusps) of the central tooth (Figure 

2D). The outermost lateral teeth were similar between morphotypes.

Table 2
Shell measurements of A. helena morphotypes.

Morphotypes
Shell Aperture

Height Width Height Width

Morphotype A 1.889 ±0.302 0.847 ±0.018 0.659±0.800 0.341±0.005 

Morphotype B 1.996 ±0.240 0.928 ±0.010 * 0.753 ±0.010 0.350 ±0.007*

* Significant difference in width between the two morphotypes at P<0.05. 

km

0 100

Laos

Thailand

Cambodia

Figure 1. Sampling locations for specimens of A. helena in northern part of 

Thailand. 

A. helena morphotype A: No. 5: Chiang Mai, Chom Thong district ; No. 7: 

Lampang, Ngao district;  No. 8: Phrae, Long district; No. 9: Nan, Wieng Sa 

district. A. helena morphotype B: No. 1: Chiang Rai, Phan district ; No. 2: 

Phayao, Mae Chai district; No. 3 Chiang Mai, San Kamphaeng and No. 4 

Mae Rim districts; No. 6. Lamphun, Meuang district.

3.2. Phylogenetic analyses

  The COI and 16S rRNA-derived phylogenetic trees shared similar 

topologies that principally referred to relationships between the 2 

morphotypes and division of the outgroup and other related species. 

All trees showed comparable evolutionary patterns with moderately 

high statistical support for each clade. The phylogenetic tree (Figure 

3) was separated into 2 main clades: clade 1, all Anentome spp. and 

clade 2, outgroup (Nassodonta spp.). Clade 1 was also divided into 

2 subclades: clade A, all Anentome spp. in Thailand and clade B, 

Anentome spp. from other countries; there was 100, 100 and 1.00 

bootstrap support, respectively, from the NJ, ML and posterior 

probability of the BI method. Both morphotypes were placed in 

clade A and were further separated into clade A1 (morphotype A) 

and A2 (morphotype B) with moderately high statistical support and 

61, 75 and 0.98 bootstrap support (NJ, ML and BI, respectively).

A B

C D
1 cm 50 毺m

50 毺m1 cm

Figure 2.  A. helena morphotype A and B.

A) Shell of A. helena morphotype A; B) Radula of A. helena morphotype A; 

C) Shell of  A. helena morphotype B; D) Radula of A. helena morphotype B.

3.3 Epidemiology 

  The prevalence of echinostome metacercariae in A. helena was 

examined from northern Thailand (Figure 4). Metacercariae type 

was identified by morphology. The 37 collar spines echinostome 

metacercariae were found and resembled members of Echinostoma 

group[6]. Infected snails were only recorded in San Kamphaeng 

district, Chiang Mai Province. The highest prevalence (7.5%) was 

found in A. helena. The highest intensity was noted in the same 

locality with (1.670依0.577) metacercariae per snail. 
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LG5
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Nassodonta_dorri_3
Nassodonta_dorri_4

0.02

Figure 3. The ML tree obtained from sequence analysis of the concatenated 

COI and 16S rRNA dataset (1 178 bp).

Numbers above branches are bootstrap percentages of NJ method, ML 

method and posterior probability of BI method, respectively.

0.3 mm

Figure 4. Echinostome metacercariae infected in A. helena from San 

Kamphaeng district, Chiang Mai Province.

4. Discussion 

  The molecular relationships among species of the genus Anentome 

are ambiguous[16]. Furthermore, the taxonomy of A. helena is unclear. 

Originally, this species had the combination name Melania helena (von 

dem Busch, 1847)[31], but subsequent alternative representation led to 

it being recognised as Clea (now Anentome) helena (von dem Busch, 

1847)[1] and also combined with many synonyms. Subsequently, 

Strong et al.[16] suggested that many taxa belonged to the genus Clea. 

Based on the morphology and molecular phylogeny evidence, they 

suggested that the species should be recognised as A. helena because of 

morphological differences in the shell, operculum and radula from Clea 

nigricans, the type species of Clea. 

  This study initially demonstrated cryptic diversity based on shell 

morphology in A. helena collected from different populations in 

northern Thailand. Phylogenetic analysis showed moderate support 

that A. helena morphotype A formed a sister group to morphotype 

B. The morphotypes exhibited different shell and aperture sizes as 

well as radular structure. Shell characteristics, including shape, size, 

colour pattern, sculpture and number of whorl have been used to 

identify the different Anentome species[1]. However, morphological 

classification based on a snail’s shell is occasionally misleading 

for accurate species delimitation[32,33]. In many cases, shell 

morphological variations may be caused by phenotypic plasticity 

in response to environmental conditions[32,33]. Our results showed 

significant differences between the two morphotypes that were 

supported by both morphological characteristics and phylogeny. The 

molecular results supported the recognition of two A. helena lineages 

from northern Thailand. A. helena morphotype A was recovered from 

sites in Chiang Mai (Chom Thong district) Lampang (Ngao district), 

Phrae (Long district) and Nan (Wieng Sa district; No. 9 on map), 

while A. helena morphotype B was recovered from sites in Chiang 

Rai (Phan district), Phayao (Mae Chai district), Chiang Mai (San 

Kamphaeng and Mae Rim districts) and Lamphun (Meuang district). 

This occurrence may be caused by allopatric speciation related to 

geographic isolation (most likely due to river systems in northern 

Thailand). Moreover, the current distribution of these populations 

may reflect the great drainage connectivity across the Chiang Mai 

and Lumpang river system[34] and/or may be accidental.

  While both lineages received high support from analyses 

of the mitochondrial and concatenated datasets, specimens 

identified here as species from northern Thailand displayed high 

K2P average pairwise distances for COI and 16S (COI, 0.080; 

16S, 0.036–0.086) when compared with species from eastern 

Thailand and Malaysia . Thus, the geographic scale of this species 

complex, the morphological distinctiveness of the lineages and the 

molecular evidence are provided here. This study has uncovered an 

unrecognised radiation within A. helena from northern Thailand that 

was formerly recognised as a single species. Thus, comprehensive 

revision of snail systematics is needed. However, another 

complicating influence is that the freshwaters in Southeast Asia 

are affected by human impacts, including habitat loss, agriculture, 
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pollution and impoundment, and many snail species are believed 

to already be extinct[35]. Nevertheless, the validity of the currently 

discovered species remains to be tested.

  Our study provided epidemiological data of echinostome 

metacercariae in A. helena from northern Thailand between February 

2017 and January 2018. Based on morphological characteristics, 

the worms showed a prominent head collar with 37 collar spines 

arranged in a double row. In this case, they were identified as 

genus Echinostoma. In this survey, we found different prevalence 

in echinostome metacercariae infection. Only the San Kamphaeng 

district, Chiang Mai Province contained A. helena infected with 

echinostome metacercariae; prevalence and intensity were 7.5% 

and 1.670依0.577 metacercariae per snail, respectively. The diverse 

ecosystem in the agricultural area of San Kamphaeng district may 

provide suitable ecological conditions that allow for the distribution 

of trematodes in the snails that differ from other localities[6]. The 

overall prevalence and intensity of metacercarial infection were 

0.92% and 1.670依0.577, both of which are considered low infection 

rates when compared to other snail species (e.g., Filopaludina spp. 

and Lymnaea spp). These species were reported to act as the first 

and second most common intermediate hosts of trematodes in the 

family Echinostomatidae[6,8,36]. Parasite infection patterns are often 

related to host dispersal and gathering of parasites, principally 

during larval stages[37,38]. Moreover, reports have revealed an effect 

of parasite infection on the population structure, including death, of 

intermediate host snails[39]. Detection of this infection in this area 

is important for public health control with regard to monitoring 

dispersion; echinostomes can be easily transmitted to humans 

through eating raw or partially cooked snails. Coordinated parasite 

control strategies across the region are of great importance.
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