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1. Introduction

  Malaria and leishmaniasis are among the most important infections 

transferred by protozoa parasites. These infections are both vector-

borne and any effort to lower the rate of infections is usually focused 

on controlling the resources and reservoirs. 

  Malaria is highly prevalent in equatorial sites of the world[1-3]. World 

Health Organization (WHO) reported 214 million malaria cases 

in 2015 among which, 434 000 deaths were observed universally. 

Objective: To determine whether permutation scan statistics was more efficient in finding 

prospective spatial-temporal outbreaks for cutaneous leishmaniasis (CL) or for malaria in 

Fars province, Iran in 2016. Methods: Using time-series data including 29 177 CL cases 

recorded during 2010-2015 and 357 malaria cases recorded during 2010-2015, CL and 

malaria cases were predicted in 2016. Predicted cases were used to verify if they followed 

uniform distribution over time and space using space-time analysis. To testify the uniformity 

of distributions, permutation scan statistics was applied prospectively to detect statistically 

significant and non-significant outbreaks. Finally, the findings were compared to determine 

whether permutation scan statistics worked better for CL or for malaria in the area. Prospective 

permutation scan modeling was performed using SatScan software. Results: A total of 5 359 

CL and 23 malaria cases were predicted in 2016 using time-series models. Applied time-

series models were well-fitted regarding auto correlation function, partial auto correlation 

function sample/model, and residual analysis criteria (Pv was set to 0.1). The results indicated 

two significant prospective spatial-temporal outbreaks for CL (P<0.5) including Most Likely 

Clusters, and one non-significant outbreak for malaria (P>0.5) in the area. Conclusions: 
Both CL and malaria follow a space-time trend in the area, but prospective permutation scan 

modeling works better for detecting CL spatial-temporal outbreaks. It is not far away from 

expectation since clusters are defined as accumulation of cases in specified times and places. 

Although this method seems to work better with finding the outbreaks of a high-frequency 

disease; i.e., CL, it is able to find non-significant outbreaks. This is clinically important for 

both high- and low-frequency infections; i.e., CL and malaria.
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Malaria has got the first rank of mortality among infectious diseases, 

and almost 90% of deaths occur in Africa. The related symptoms are 

recurrent fever, chills, convulsion, nausea and dizziness, abdominal 

pain, and coma and death in severe cases. There are four types 

of malaria, including Plasmodium falciparum, Plasmodium ovale, 

Plasmodium malariae, and Plasmodium vivax. Malaria is transmitted 

by female Anopheles mosquito bites. The incubation period relies 

on the type of malaria and ranges from 12 to 28 days from getting 

bitten by the insect to the onset of fever as the most common sign 

of infection. The risk factors of getting infected are race, sex, age, 

job, temperature, humidity, and life style including utilization of 

insecticides and webs in open areas[4]. Located on the northern 

hemisphere of the earth, Iran is supposed to have malaria under 

control, but the incidence rate of the disease has been reported to be 

100 to 1 000 cases per a million inhabitants. Besides, 90% of malaria 

cases occur in southern parts of Iran, including Fars province. Vivax 

is responsible for almost 80% of these cases[5]. 

  The second most considerable vector-borne protozoa disease 

is leishmaniasis. There are two types of leishmaniasis, including 

cutatious leishmaniasis (CL) and visceral leishmaniasis. Humans and 

animals are reservoirs of leishmaniasis, but it has been reported that 

humans are the only source for CL. CL is transmitted by sandflies 

and usually causes ulcers on open parts of body mostly on face, 

hands, and feet. Sometimes, the ulcer is so massive that deforms the 

infected organ. It is not usually lethal but imposes large burdens on 

the society. CL is prevalent in tropical sites, such as Saudi Arabia, 

Iran, Pakistan, and Afghanistan[2,6-12]. Currently, 350 million 

people are at risk of getting infected by sandflies in 88 countries. In 

addition, 12 million new infections are reported annually from which 

1 500 000 cases are CL[13-15]. In Iran, 19 000 new cases occurred 

yearly among which 3 000 cases belonged to Fars province. One-

third of the 6 000 reported cases in Fars province occurred in urban 

areas and two-thirds in rural parts. The incidence rate of CL was 

1 070-1 440 cases per 1 000 000 people in Fars province[10].

  Malaria and leishmaniasis are potential time- and space-related 

infections, and investigation of their temporal or spatial features 

could help disease prediction and prevention resulting in final 

improvement of people’s health status[16]. The classical way 

of considering a space- and time- related phenomenon used is 

to categorize in space dimension, do the investigation in time 

dimension, and interpret the results in space categories, or vice 

versa. However, the new method of investigating spatial-temporal 

outcomes; i.e., malaria and CL, could detect more reliable facts 

about diseases. 

  A key use of time-series methods is estimation and also prediction 

of data in future. Offering informative and analytical graphs derived 

from time-series analysis is another key stone in exploring time, 

seasonality, and residual trends of estimated and predicted data, 

and also an efficient tool to assess the goodness of fit criteria. This 

methodology works really well in evaluating time-dependent data.

  The classic way of assessing time and space related data was to 

categorize on one dimension i.e. time, do the analysis on another 

dimension i.e. space and interpret the results on time categories. It 

could be a time taking strategy and also interpreting the results in 

categories could be sometimes cumbersome and puzzling.

  Permutation scan statistics, as a new method in analyzing a 

phenomenon in both space and time dimensions simultaneously, is 

used to find both past and present outbreaks by using time-space-

related data. The former is called retrospective and the latter is called 

prospective permutation scan modeling[16,17]. Considering two 

dimensions at the same time could result in offering more interesting 

and informative results. In addition to evaluating the time and space 

features of the outcome, it could involve variety of covariates in the 

model, and finally report the past and present clusters happened in 

exact time and place with associated Pv to distinguish between a true 

and accidental outbreak.

  The current study aims to employ prospective permutation scan 

statistics in order to find future outbreaks of CL and malaria and to 

determine whether this model is more efficient in finding the future 

clusters of a low-prevalence (malaria) or a high-prevalence (CL) 

disease.

2. Materials and methods

2.1. Study design

  Time-series designs including 29 177 CL cases recorded during 

2010-2015 and 357 malaria cases recorded during 2010-2015 

were applied to predict CL and malaria cases in 25 different cities 

of Fars province in 2016. Since all eligible patients were entered 

into the study using census data, there was no need for sample size 

calculation. 

2.2. Study area

  In Iran, Fars, Esfahan, and Kerman are the three large CL and 

malaria endemic provinces. Fars is the southernmost province 

located almost near the Persian Gulf. The geographical coordinate 

system for its capital city is 27°3’ and 31°40’ northern latitude and 

50°36’ and 55°35’ western longitude. Using Google-Earth online 

system (US Department of State Geographer 2016), all 25 cities of 

the province got their latitude/longitude coordinate systems. Since 

Fars province is located in a geographically convenient site of the 

northern hemisphere, the four seasons of the year are quite distinct 

in the province, causing a variety of geographical and metrological 

climates. 

2.3. Subjects

  A total of 29 177 CL cases recorded during 2010-2015 and 357 

malaria cases recorded during 2010-2015 were included in the 
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study. All monthly recorded cases in every city were enrolled 

and maintained in Contagious Disease Control Center of Shiraz 

University of Medical Sciences, Shiraz, Iran. CL positive cases were 

diagnosed through polymerase chain reaction, culture, or smear. 

All subjects whose symptoms of CL began from January 1, 2010 to 

December 31, 2015 were entered into the study. Furthermore, any 

fever was diagnosed as malaria until the opposite was proved. To 

confirm positive malaria cases, acceptable laboratory tests, such as 

microscopic tests and rapid diagnostic test, were done. The subjects 

whose symptoms of malaria began from May 1, 2010 to December 

31, 2015 were entered into the study. 

  All ethical steps, including data collection and analysis as well as 

reporting the results, were in accordance with the standards approved 

by the Ethics Committee of the Ministry of Health, Treatment, and 

Medical Education under ethics number: IR.SUMS.REC.1396.S755. 

Indeed, the process of work was completely anonymous and the 

results were reported to the study participants.

2.4. Information processing

  Statistical, time-series, map drawing, and space-time cluster 

analyses were done using SPSS version 22, ITSM 2002, Arc GIS 

version 10, and SatScan version 9.4.4.

2.5. Statistical analysis

  Minimum, maximum, and relative frequency were used to describe 

the data. Kolmogorov-Smirnov and Kruskal-Wallis tests were 

applied for normality and mean rank tests. In addition, a variety of 

time-series models were recruited to find the best predictive trend of 

cases over time. Finally, prospective permutation scan statistics was 

used to detect prospective spatial- temporal outbreaks.

2.6. Time-series analysis

  Time-series methods were fitted on time-dependent data to predict 

the cases in future. From a set of time-series models; i.e., auto 

regressive, moving average, and any combination of these two 

basic models like ARMA, SARMA (regarding classic seasonality 

decomposition), and SARIMA (regarding Integrated Seasonality 

decomposition), the best model fitting the data was chosen. Akaike 

Information Criterion (AIC) is a goodness of fit criterion for time-

series models, which is an estimator of the relative quality of 

statistical time-series models for a given set of data. For a collection 

of models derived from time-series analysis for a set of data, 

AIC estimates the quality of each model in comparison to one 

another. Thus, AIC provides a means for model selection. Bayesian 

Information Criterion (BIC) is another criterion for model selection 

among a finite set of models. The model with the lowest values of 

AIC/ BIC is preferred. It is based, in part, on the likelihood function 

and is closely related to AIC. Auto Correlation Function (ACF) and 

Partial Auto Correlation Function (PACF) model/sample evaluate 

conformance of observed and fitted patterns in data. Also, there are 

several tests in residual analysis each examining one presumption 

necessary to be met for time-series modeling. Generally, a variety of 

time-series models are applied and the best ones are selected based 

on goodness of fit criteria, such as residual analysis, lower AIC/BIC 

statistics, and ACF/PACF conformity criteria. A model with less 

AIC/BIC is preferable, showing less divergence of observed from 

fitted values in time-series models. Finally, the more ACF, PACF 

model/sample matchs, the better the model’s fitness would be[18].

2.7. Permutation scan statistics

  Some health events alter in different time periods and places. 

To evaluate a space- and time-dependent outcome, there are two 

options. The easier and classical way involves grouping in time 

dimension, doing the analysis in space category, and interpreting 

the results in time categories, or vice versa. However, the new 

spatial-temporal method introduced by Kulldorff is a novel method 

with which, the space-time trait of a variable could be evaluated 

simultaneously[17]. Space-time permutation scan modeling tests 

if cases follow a constant risk over space and time. In space-time 

permutation modeling, permutation scan statistics is used and 

explained by cylindrical windows. The base of the window has a 

circular shape. The center of the circle is one of the cities centroid 

and its diameter varies from zero to 50% of the at-risk population. 

The height of the cylinder is prone to time and varies from zero to 

50% of the study period. The window moves across the area and 

time. Whenever and wherever the observed number of cases exceeds 

the expected number of cases by the largest likelihood ratio (the 

likelihood ratio made from observed data in proportion to the one 

gained from Monte Carlo simulation), this window is reported as 

a potential outbreak. Scan statistics is able to detect retrospective 

as well as prospective clusters using past data. The statistical 

signification of each cluster is tested by Monte Carlo hypothesis 

testing process in which, the likelihood attained from the observed 

data is compared to that derived from Monte Carlo simulation. This 

methodology is well-grounded and is able to cope with potential 

confounders. Using hyper geometric distribution, spatiotemporal 

permutation scan statistics estimates the expected number of cases 

with the assumption of defined total population. This methodology 

has been specified deeply by Kulldorff[16,17].

  In this work, space-time permutation scan modeling was done 

using SaTScan software, version 9.4.4. In order to scan the 

outbreaks with high rates of infection occurrence, time precision 

was set at month. Space-time prospective analysis was used and the 

circular spatial window shape was set to standard as default. The 

number of replications was set at 9 999 for both CL and malaria. 

It is noteworthy that in case of lower sample size, setting a larger 

number of replicates would result in a higher study power. The 

upper limit allowed for the base of the cylinder was set at 50% 
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of at-risk population. Moreover, the lowest and highest temporal 

cluster lengths were set at 1 month and 50% of the study period, 

respectively. At last, only clusters with no geographical overlay were 

reported for both CL and malaria outbreaks.

3. Results

3.1. Summary information

  Using time-series modeling on 29 177 CL cases recorded during 

2010-2015 and 357 malaria cases recorded during 2010-2015 in 

25 cities of Fars province, prospective permutation scan statistics 

analysis was conducted on 5 359 CL and 23 malaria predicted cases 

in 2016.

  The maximum and minimum predicted cases were respectively 

1 964 and 8 for CL and 12 and 0 cases for malaria. The frequency 

of CL and malaria cases in 25 cities of Fars province, Iran has been 

shown in Table 1.

  The distribution of CL and malaria cases was right-skewed. The 
results of Kolmogorov-Smirnov normality test revealed non-normal 
distributions (P<0.05). The results of Kruskal-Wallis mean rank test 
also showed the equality of mean ranks of CL and malaria cases in 
different cities (P>0.05).  

Table 1
CL and malaria cases with percentage of total cases based on 5 different 
climates in Fars Province -Iran, 2016.	
City CL Malaria Climates

Cases % of total cases Cases % of total cases
Rostam      8   0% 0    0% Moderate Semi Arid
Firoozabad     10   0% 7  30% Semi Wet
Lamerd     10   0% 0    0% Arid
Mamasani     14   0% 0    0% Moderate Semi Arid
Bavanat     25   0% 0    0% Half Semi Arid
Darab     28   1% 0    0% Arid
Sarvestan     31   1% 0    0% Severe Semi Arid
Neireez     34   1% 0    0% Severe Semi Arid
Eghlid     37   1% 0    0% Moderate Semi Arid
Farashband     41   1% 0    0% Arid
Ghirkarzin     46   1% 0    0% Severe Semi Arid
Pasargad     57   1% 0    0% Half Semi Arid
Kazeroon     66   1% 2    9% Severe Semi Arid
khonj     68   1% 0    0% Arid
Arsenjan     86   2% 12  52% Severe Semi Arid
Sepidan   114   2% 0    0% Half Semi Arid
Zarindasht   123   2% 0    0% Arid
Fasa   148   3% 0    0% Severe Semi Arid
Jahrom   152   3% 0    0% Severe Semi Arid
Stahban   198   4% 0    0% Severe Semi Arid
Lar   229   4% 0    0% Arid
Abade   295   6% 0    0% Arid
kharame   396   7% 0    0% Arid
Shiraz 1 179  22% 2    9% Half Semi Arid
Marvdasht 1 964  37% 0    0% Severe Semi Arid
Total 5 359 100% 23 100%

3.2. Forecasting CL and malaria in 2016

3.2.1. Time-series results predicting CL cases in 2016
  As a rule of thumb, one-fifth of total cases could be predicted in a 

given time-series data set. In the present study, it was tried to predict 

the monthy recorded cases of CL and malaria in the 25 cities of Fars 

province for the 12 months of 2016 using the CL cases recorded 

within 72 months and malaria cases recorded during 68 months.

  Using 29 177 CL cases recorded during 2010-2015, auto-regressive 

(1) time-series model with seasonality of 12 and quadratic trend of 

classics transformation was applied to predict CL cases in 2016. 

Number of cases during 2010-2015 in addition to the predicted cases 

in 2016 using the same model has been depicted in Figure 1.

  ACF and PACF sample models have been shown in Figure 2. 

X-axis indicates lag at which the autocorrelation is computed, and 

Y-axis indicates the value of correlation (between -1 and 1). A 

positive correlation shows that large values correspond with large 

values at the specified lag; a negative correlation shows that large 

values correspond with small values at the specified lag. 

  Accordingly, the model was good because the sample and model 

correlations were out of the bands overlap. 
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Figure 1. Observed and predicted CL cases by month of onset in Fars 

province, Iran in 2016.

The green line shows the observed monthly recorded CL cases during 2010-

2015 (72 months) and the red lines represent the predicted CL cases in 2016 

and the related confidence interval using auto-regressive (1) model. 
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Figure 2. ACF and PACF sample/model auto-regressive (1) for CL in 2016. 
The green correlations are derived from the sample, the red correlations are 
taken from the fitted model, and the two dashed horizontal lines are confidence 
bands.

3.2.2. Time-series results predicting malaria cases in 2016
  Using the 357 malaria cases recorded during 2010-2015, moving-

average (1) time-series model with seasonality of 12 and linear trend 

of classic transformation was applied to predict malaria cases in 
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2016. Number of cases during 2010-2015 in addition to the predicted 

cases in 2016 using the same model has been depicted in Figure 3.

  ACF and PACF sample models have been shown in Figure 4. 

Accordingly, the model was almost good because the sample and 

model correlations were out of the bands overlap.

  For better understanding of goodness of fit, residual analyses with 

AIC values for CL and malaria have been presented in Table 2.
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Figure 3. Observed and predicted malaria cases by month of onset in Fars 

province, Iran in 2016.

The green line shows the observed monthly recorded malaria cases during 

2010-2015 (68 months) and the red lines are predicted malaria cases in 2016 

and the related confidence interval using moving-average (1) model. 
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Figure 4. ACF and PACF sample/model moving-average (1) for malaria in 

2016.

The green correlations are derived from the sample, the red correlations 

are taken from the fitted model, and the two dashed horizontal lines are 

confidence bands. 

Table 2
Residual analysis results with AIC scores for CL and malaria.

P-value Test

McLeod 

- Li

Turning 

points

Diff sign 

points

Rank test 

statistic

Order of Minimum AIC Yule-

Walker model for residuals

AIC

CL   0.090 0.60 0.16 0.65 0   34.02

Malaria <0.001 0.10 0.83 0.96 0 359.00

Significance level was considered as 0.1.
Almost all test statistics are significant at 0.1 significance level for CL and 
malaria, showing that the models were fitted well. The order of Minimum 
AIC Yule-Walker model for residual test needs to be zero to be compatible 
with White-Noise (mean=0, SD=1). This test assessed the mean of white 
noise residual. The less AIC/ BIC scores are, the better the model’s goodness 
of fit would be. Among all tests, just McLeod-Li needs to be less than 0.1 and 
all other tests should be greater than or equal to 0.1, showing that the models 

are good based on residual analysis.

3.3. Prospective permutation scan statistics: Space-time 
features of CL and malaria

3.3.1. Most Likely Clusters (MLC)
  A cluster is statistically significant when its test statistic is greater 

than the critical value for the significance level. The standard Monte 

Carlo critical value for 0.05 significance level was obtained as 3.69 

for CL. Also, the sequential Monto Carlo procedure terminated the 

calculation after 67 replications resulted in no critical values for 

malaria.

  The MLC of CL occurred in December and contained almost 18% 

(980/5 359) of the total cases in 2016. This cluster was composed 

of Zarindasht, Darab, Lar, Jahrom, Neireez, Estahban, Fasa, and 

Khonj. Additionally, the MLC of malaria occurred from August to 

December 2016. It included Farashband, Firoozabad, and Shiraz, 

accounting for 39% (9/23) of total cases in 2016. However, this was 

not statistically significant.

3.3.2. Secondary Clusters (SC)
  The statistically significant SC for CL happened from July to 

December 2016 including 48% (2 565/5 359) of total cases in 

Bavanat, Pasargad, Arsenjan, Eghlid, Marvdasht, and Kharame. 

However, another SC that was non-significant occurred in Rostam 

and Sepidan during October and December including almost 2% 

(122/5 359) of the total cases in 2016. There was no SC for malaria 

in 2016 since the majority of observed cases were less than the 

expected cases regarding the time and place of occurrence. The 

results of prospective permutation scan statistics with which the 

MLCs and SCs of CL and malaria were derived have been presented 

in Table 3.

3.3.3. Sub-cluster analysis
  Doing the same analysis as mentioned above within each cluster 

resulted in finding sub-clusters. In other words, to determine the city 

in a cluster that caused it to be significant, sub-cluster analysis was 

done. 

  Results of sub-cluster prospective permutation scan statistics 

showed one statistically significant cluster for CL occurred in Fasa 

during 1/10/2016 to 31/12/2016 (Pv<0.05), however there was no 

statistically significant cluster for malaria (Pv> 0.05).

  From all detected clusters for CL, just Fasa located in MLC was 

statistically significant. It contained 3% (148/5 359) of the total cases 

in 2016. Considering malaria cases, since there was no statistically 

significant clusters, no sub-clusters were found.

4. Discussion

  The results of the current research revealed both significant and 

non-significant prospective clusters of CL in Fars province in 2016. 

The statistically significant MLC contained 18% of the total cases in 

December 2016 including Zarindasht, Darab, Lar, Jahrom, Neireez, 

Estahban, Fasa, and Khonj. Besides, the first SC of CL contained 

48% of the total cases during July to December 2016, including 

Bavanat, Pasargad, Arsenjan, Eghlid, Marvdasht, and Kharame. The 

second SC of CL that was non-significant also contained 2% of the 
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total cases during October to December 2016, including Rostam and 

Sepidan. In a similar study conducted in Fars province, the results 

of retrospective space-time cluster during 2010-2015 revealed six 

significant clusters and sub-clusters in the area. It is noteworthy that 

the non-significant cluster of the current study was MLC of the cited 

study, which contained 13% of the total cases from 2010 to 2015 and 

almost 97% of the total cases from 1/7/2010 to 30/11/2010. This was 

in agreement with the clinical significance of the detected cluster 

in 2016. Since no severe changes were observed in the associated 

environmental and epidemiological factors of CL occurrence in Fars 

province since 2010, the detected non-significant cluster carries 

clinical and epidemiological importance regarding dedicating funds, 

estimating medical facilities, and getting ready for future outbreaks 

in the area.

  The above-mentioned study also reported a quadratic trend in CL 

occurrence from 2010 to 2015, which increased sharply until 2014 

and then decreased until 2015. This is in concordance with the CL 

trend in 2016. In addition, a detected retrospective SC in that study 

contained Zarindasht, Darab, and Lar, which were common cities in 

MLC. These results empowered the efficiency of permutation scan 

statistics in finding clusters for a highly prevalent endemic infection; 

i.e., CL, in the area. Moreover, sub-cluster analysis revealed common 

outbreaks for both studies. Accordingly, Fasa was a canonical 

past outbreak and also a canonical site for CL during 1/9/2011 

to 28/2/2013. In the current study also, there was a prospective 

outbreak for CL in December, January, and February[16].

  In another study, the results of Ordinary Least Square Regression 

proved the relationship between CL and rainy days. This is in partial 

agreement with the results of the present research indicating the 

occurrence of CL from July to December as rainy times of most 

tropical areas in the study[12,19]. Indeed, a previous study showed that 

the seasonal transmission of the disease inclined towards summer 

and spring. This is not completely consistent with the occurrence of 

outbreaks in the present study, which happened partially in summer 

and mostly in fall[9].

  To validate the results of the current work, the same permutation 

scan statistics was done retrospectively on real CL and malaria data 

in 2016. According to the findings, almost the same MLCs and SCs 

were detected covering the same cities and time frames. Experts 

confirmed that non-significant outbreaks had clinical importance 

and the detected areas were canonical sites for CL and malaria in the 

region.

  The present study findings revealed one non-significant prospective 

outbreak and no sub-clusters for malaria. The only non-significant 

prospective outbreak occurred during 1/8/2016 to 31/12/2016. It 

included Farashband, Firoozabad, and Shiraz and contained 36% of 

the total cases in 2016. Merely temporal cluster analysis showed an 

outbreak from June to September (during 2004 to 2006) covering the 

time span of the detected outbreak in the current study[20]. 

  The transmission period of malaria in the area is from April to 

November, which is in agreement with the outbreak time frame 

found in the current study; i.e., from August to December. Moreover, 

some studies have shown a decreasing trend of malaria occurrence 

that is in contrast to the linear increasing trend detected in the present 

study[21,22]. 

  Similar to other cluster detection methods, space-time analysis can 

detect more than one cluster regarding time and space. Yet, giving 

priority between the detected clusters is debatable, especially when 

there is distinction between statistical and clinical significance. 

  In space-time cluster analysis, an Oliver-F measure derived from 

SaTScan ranging from 0 to 1 was measured for each cluster. The 

closer the Oliver-F measure is to 1, the more a cluster will be likely 

to be a true one. However, this applicable measure is not computable 

with prospective permutation statistics with which, hyper geometric 

distribution is applied to estimate the expected number of cases. 

In other words, Oliver-F measure is computable only with Poisson 

distribution applied to estimate the expected number of cases 

in purely spatial clustering. It should be noted that as a solution 

regarding this drawback in our study, sub-cluster analysis is a tool to 

recognize a true cluster. Another limitation of the current study was 

that the reporting system of infectious diseases is a passive one and, 

consequently, the predicted cases of CL and malaria might have been 

underestimated. This drawback did not affect detection of clusters, 

but had a severe impact on disease load, determining the necessary 

medical facilities, and estimating the disease prevalence.

  In conclusion, prospective permutation scan statistics could detect 

both statistical and clinical outbreaks of CL and malaria, but it 

seemed to work more efficiently with CL as an endemic and highly 

prevalent disease in the area.

Table 3
Results of prospective permutation scan statistics for CL and malaria in Fars province, Iran from 1 January to 31 December 2016.

Cluster Location(s) Radius (km) Observed/expected Time frame Test statistics P-value
CL
Cluster 1 (MLC) Zarindasht, Darab, Lar, Jahrom, Neireez, Estahban, 

Fasa, Khonj
110.21 1.41 1/12/2016 to 31/12/2016 10.32  <0.001*

Cluster 2 Bavanat, Pasargad, Arsenjan, Eghlid, Marvdasht, 
Kharame

112.61 1.06 1/7/2016 to 31/12/2016  6.30  <0.001*

Cluster 3 Rostam, Sepidan 13.25 1.26 1/10/2016 to 31/12/2016  2.20    0.39
Malaria
Cluster 1 Farashband, Firoozabad, Shiraz 94.48 0.37 1/8/2016 to 31/12/2016  0.80    0.75

*Statistical significance was evaluated using Monte Carlo hypothesis testing.



484 Abbas Rezaianzadeh et al./ Asian Pacific Journal of Tropical Biomedicine 2018; 8(10): 478-484

Conflict of interest statement

  The authors declare that there is no conflict of interest.

Acknowledgements

  This article was extracted from the PhD dissertation (proposal No. 

12439) written by Marjan Zare and approved by the Research Vice-

chancellor of Shiraz University of Medical Sciences. Hereby, the 

authors would like to thank Ms. A. Keivanshekouh at the Research 

Improvement Center of Shiraz University of Medical Sciences for 

improving the use of English in the manuscript. 

References 

[1] �Coulibaly D, Travassos MA, Tolo Y, Laurens MB, Kone AK, Traore K, et 

al. Spatio-temporal dynamics of asymptomatic malaria: Bridging the gap 

between annual malaria resurgences in a Sahelian environment. Am J Trop 

Med Hyg 2017; 97(6): 1761-1769.

[2] �Ishengoma DS, Mmbando BP, Mandara CI, Chiduo MG, Francis F, 

Timiza W, et al. Trends of Plasmodium falciparum prevalence in two 

communities of Muheza district North-eastern Tanzania: Correlation 

between parasite prevalence, malaria interventions and rainfall in the 

context of re-emergence of malaria after two decades of progressively 

declining transmission. Malaria J 2018; 17(1): 252.

[3] �Massey NC, Garrod G, Wiebe A, Henry AJ, Huang Z, Moyes CL, et al. A 

global bionomic database for the dominant vectors of human malaria. Sci 

Data 2016; 3: 160014.

[4] �Hatami H, Azizi F, Jnghorbani M. Epidemiology and control of common 

disorders in Iran. Tehran, Iran: Khosravi Publications; 2004.

[5] �Ramezankhani R, Sajjadi N, Esmaeilzadeh RN, Jozi SA, Shirzadi MR. 

Spatial analysis of cutaneous leishmaniasis in an endemic area of Iran 

based on environmental factors. Geospatial Health 2017; 12(2): 282-293.

[6] �Gálvez R, Descalzo M, Miró G, Jiménez M, Martín O, Dos Santos-

Brandao F, et al. Seasonal trends and spatial relations between 

environmental/meteorological factors and leishmaniosis sand fly vector 

abundances in Central Spain. Acta Trop 2010; 115(1): 95-102.

[7] �Hanafi‐Bojd A, Rassi Y, Yaghoobi‐Ershadi M, Haghdoost A, Akhavan A, 

Charrahy Z, et al. Predicted distribution of visceral leishmaniasis vectors 

(Diptera: Psychodidae; Phlebotominae) in Iran: A niche model study. 

Zoonoses Public Health 2015; 62(8): 644-654.

[8] �Karimi A, Hanafi-Bojd AA, Yaghoobi-Ershadi MR, Akhavan AA, 

Ghezelbash Z. Spatial and temporal distributions of phlebotomine sand 

flies (Diptera: Psychodidae), vectors of leishmaniasis, in Iran. Acta Trop 

2014; 132: 131-139.

[9] �Mollalo A, Khodabandehloo E. Zoonotic cutaneous leishmaniasis in 

northeastern Iran: A GIS-based spatio-temporal multi-criteria decision-

making approach. Epidemiol Infect 2016; 144(10): 2217-2229.

[10]�Norouzinezhad F, Ghaffari F, Norouzinejad A, Kaveh F, Gouya MM. 

Cutaneous leishmaniasis in Iran: Results from an epidemiological study 

in urban and rural provinces. Asian Pac J Trop Biomed 2016; 6(7): 614-

619.

[11]�Rodríguez EM, Díaz F, Pérez MV. Spatio-temporal clustering of 

American Cutaneous Leishmaniasis in a rural municipality of Venezuela. 

Epidemics 2013; 5(1): 11-19.

[12]�Seyoum D, Yewhalaw D, Duchateau L, Brandt P, Rosas-Aguirre A, 

Speybroeck NJP, et al. Household level spatio-temporal analysis of 

Plasmodium falciparum and Plasmodium vivax malaria in Ethiopia. 

Parasite Vector 2017; 10(1): 196.

[13]�Postigo JAR. Leishmaniasis in the world health organization eastern 

mediterranean region. Int J Antimicrob Agents 2010; 36: S62-S65.

[14]�Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. 

Cutaneous leishmaniasis. Lancet Infect Dis 2007; 7(9): 581-596.

[15]�Hanafi-Bojd AA, Khoobdel M, Soleimani-Ahmadi M, Azizi K, Aghaei 

Afshar A, Jaberhashemi SA, et al. Species composition of sand flies 

(Diptera: Psychodidae) and modeling the spatial distribution of main 

vectors of cutaneous leishmaniasis in Hormozgan Province, Southern 

Iran. J Med Entomol 2018;  55(2):  292-299.

[16]�Zare M, Rezaianzadeh A, Tabatabaee H, Aliakbarpoor M, Faramarzi H, 

Ebrahimi M. Spatiotemporal clustering of cutaneous leishmaniasis in 

Fars province, Iran. Asian Pac J Trop Biomed 2017; 7(10): 862-869.

[17]�Kulldorff M. SaTScan-Software for the spatial, temporal, and space-time 

scan statistics. [software]. August 2016 [Cited January 2018]. Available 

from: http:www.satscan.org. 

[18]�Montgomery DC, Jennings CL, Kulahci M. Introduction to time series 

analysis and forecasting. Second Edition. New Jersey, USA: John Wiley 

& Sons; 2015, p. 560.

[19]�Ali-Akbarpour M, Mohammadbeigi A, Tabatabaee SHR, Hatam 

G. Spatial analysis of eco-environmental risk factors of cutaneous 

leishmaniasis in southern Iran. J Cutan Aesthet Surg 2012; 5(1): 30.

[20]�Xia J, Cai S, Zhang H, Lin W, Fan Y, Qiu J, et al. Spatial, temporal, and 

spatiotemporal analysis of malaria in Hubei Province, China from 2004-

2011. Malaria J 2015; 14(1): 145.

[21]�Hundessa SH, Williams G, Li S, Guo J, Chen L, Zhang W, et al. Spatial 

and space-time distribution of Plasmodium vivax and Plasmodium 

falciparum malaria in China, 2005-2014. Malaria J 2016; 15(1): 595.

[22]�Adegboye OA, Al-Saghir M, Leung DH. Joint spatial time-series 

epidemiological analysis of malaria and cutaneous leishmaniasis 

infection. Epidemiol Infect 2017; 145(4): 685-700.


