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1. Introduction

  Quorum sensing (QS) is a chemical mechanism by which bacteria 

respond to external environmental changes promptly and effectively 

by using their chemical languages[1-4]. Upon reaching a threshold 

bacterial population density, diffusible signal molecules trigger the 

expression of genes involved in biofilm formation (BF), virulence 

factor production, motility, bioluminescence, antibiotic production, 
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sporulation, and nitrogen fixation[1-6]. Both gram-negative and 

gram-positive bacteria are known to have QS mechanism, but there 

are differences between them. Many gram-negative bacteria produce 

N-acyl homoserine lactone as a signaling molecule. In general, 

N-acyl homoserine lactones bind directly to the transcription factor 

to regulate gene expression[1-6]. Gram-positive bacteria produce 

autoinducing peptide as a QS signal molecule. When gram-positive 

bacteria sense a threshold autoinducing peptide, autoinducing 

peptides bind to the receptor protein and activate two-component 

system[1-6].

  Bacterial QS plays a role in BF[7-9]. A biofilm is defined as a 

sessile community of microorganisms on the surface enveloped 

within a polymer complex composed of DNA, proteins, and 

exopolysaccharides[7-9]. Microorganisms form biofilms upon 

perceiving attachment sites, nutrient depletion, and/or certain 

antibiotics[10,11]. According to the National Institutes of Health, 

around 80% of all bacterial infections (e.g., bacterial vaginosis, 

urinary tract infection, otitis media, tooth decay, and endocarditis) 

involve biofilm[12-15].

  Over the past 50 years, antibiotics have significantly reduced the 

rate of mortality caused by bacterial infections. However, abuse 

of antibiotics has led to the emergence of antibiotic-resistant 

microorganisms. Therefore, the development of alternatives to 

antibiotics is urgently required[16]. Recently, non-bactericidal 

treatment modalities that inhibit bacterial activity, such as 

suppression of QS, have been developed[17,18]. We investigated the 

anti-QS activity of plant extracts. QS-disturbing phytocompounds 

are reportedly present in the extracts of medicinal plants, marine 

algae, essential oils, and edible fruits[19-23]. These compounds 

represent a new approach to the treatment of bacterial infections[19].

  In the future, combination therapies comprising an antibiotics and 

anti-QS and/or anti-BF agent may prove useful[24-28]. Indeed, as QS 

is closely related to pathogenicity, anti-QS agents are currently under 

development[29,30].

2. Materials and methods

2.1. Plant extracts

  The plant extracts were obtained from the National Institute of 

Horticultural & Herbal Science, National Institute of Horticultural 

Science, South Korea. Plant parts used for extraction are mainly 

used in oriental medicine. Plant samples were extracted with 80% 

ethanol for 24 h followed by filtering with Whatman No. 1 filter 

papers (Advantec, Tokyo, Japan). The supernatants were vacuum-

concentrated under reduced pressure. The ethanol extracts of 446 

samples (including plant parts of leaf, stem, root, flower, bark, and/or 

twig) from 388 plants were diluted to 100 mg/mL in 100% ethanol 

and stored at -20 曟.

2.2. Bacterial strains and culture conditions

  Chromobacterium violaceum (C. violaceum) CV017 was used 

for anti-QS assays and Pseudomonas aeruginosa (P. aeruginosa) 

PAO1, Yersinia enterocolitica (Y. enterocolitica) ATCC 9610, and 

Agrobacterium tumefaciens (A. tumefaciens) C58 were used for anti-

BF assays. C. violaceum CV017 (derived from ATCC 31532) and 

Y. enterocolitica ATCC 9610 were obtained from the American 

Type Culture Collection, Rockville, MD. A. tumefaciens C58 and 

P. aeruginosa PAO1were kindly provided by C. Fuqua, Indiana 

University, Bloomington, IN. The bacteria were cultured on Luria-

Bertani (LB) broth or agar at 28 曟. For biofilm assays, the bacteria 

were cultured in Agrobacterium (AB) broth at 28 曟.

2.3. Anti-QS activity assays

  C. violaceum has been extensively studied in QS-mediated violet 

pigment violacein. To evaluate the anti-QS activity of the extracts, 

disc-diffusion assays using C. violaceum CV017 were performed; 

those with such an activity inhibited pigment production, resulting 

in the formation of a zone of clearance around the disc, as in 

antibacterial susceptibility tests[31]. Disc-diffusion assays were 

performed as described previously with some modifications[19]. An 

overnight culture of C. violaceum CV017 (1/100 ratio) was embedded 

in LB agar, mixed thoroughly, and decanted into Petri dishes. Sterile 

paper discs (6 mm diameter) were placed on the LB agar and loaded 

with the plant extracts (20 µL). After incubation at 28 曟 for 24 h, 

anti-QS activity was evaluated by measuring the diameter of the 

zone of clearance. As a control, 100% ethanol (20 µL) was used 

instead of plant extracts. Antibacterial activity was determined by 

confirming bacterial growth around the zone of clearance showing 

anti-QS effect. All experiments were carried out in triplicate.

2.4. Anti-BF activity of plant extracts

  BF assays were performed as described previously[32] using P. 
aeruginosa PAO1, Y. enterocolitica ATCC 9610, and A. tumefaciens 
C58. The bacteria were shake-cultured in AB broth at 28 曟 

overnight, and diluted in AB broth to an optical density at 600 nm 

(OD600) of 0.05. Next, 150 µL of AB medium plus 0.1%-2% ethanol 

extracts were added to each of three wells of a 96-well plate. The 

negative control was treated with ethanol instead of the extract. The 

plates were placed in a plastic box with saturated paper towels and 

incubated at room temperature for 48 h. The medium was decanted, 

the wells were rinsed with water, and adherent biomass in the wells 
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was stained by adding 0.1% (w/v) crystal violet for 5 min. Next, 

the wells were rinsed three times with water and allowed to air dry. 

Adsorbed crystal violet was solubilized by adding 150 µL 33% 

acetic acid and the OD600 of the resulting solution was determined 

using a microplate reader (Bio-Rad). Biofilm assays involved three 

independent experiments, each comprising three technical replicates. 

Anti-BF rate (%) was calculated according to previous report[33]: 
[(Control BF – Treatment BF)/Control BF] 伊 100. 

2.5. Anti-QS and anti-BF activities of Cornus controversa 
(C. controversa) twig and leaf extracts

  Due to C. controversa extracts used for anti-QS and anti-BF assays 

were a mixture of twigs and leaves, they were extracted separately 

from twigs and leaves according to the above-mentioned methods 

in order to see whether they have higher activity. Anti-QS and anti-

BF activity assays of extracts of the twig and leaves of C. controversa 

were performed according to the above-mentioned methods. For 

anti-QS activity assays, each ethanol extract (50 µL) was loaded onto 

a paper disc. As a negative control, ethanol (50 µL) was used instead 

of plant extracts.

2.6. Effect of extracts on soft rot

  The plant extracts (10-20 µL) were loaded onto Chinese cabbage 

leaves and dried at room temperature. Next, a Pectobacterium 
carotovorum (P. carotovorum) suspension [10 µL; 7.0 伊 107 colony-

forming unit (CFU)/mL] was placed at the same position as the plant 

extracts. The inoculated cabbage leaves were placed in a plastic 

box with saturated paper towels and incubated for 52 h. Disease 

progression was examined after 20, 28, 42, or 52 h. All experiments 

were carried out in triplicate.

3. Results

3.1. Anti-QS activity assays

  Of the 388 plant extracts, 21 (Table 1) inhibited pigment 

production by C. violaceum CV017 (Figure 1). The C. controversa 

and Cynanchum wilfordii (C. wilfordii) extracts significantly inhibited 

pigment production by C. violaceum CV017 (Figure 2). Antibacterial 

activity was determined by confirming bacterial growth around the 

clear zone, showing the inhibition of QS-mediated violet violacein 

production. Most of the plant extracts showing the inhibition of 

violet pigment production exhibited antibacterial activity, however 

the four of them (Alnus sibirica, Caryopteris incana, C. wilfordii, and 

C. controversa) showed no antibacterial activity against C. violaceum 

(Figure 2). The C. controversa and C. wilfordii extracts were selected 

for further anti-BF assays and soft rot tests.

Table 1  
Plant extracts showing anti-QS activity.

No.a Scientific name Family Part(s) used
22 Sedum middendorfianum Max. Crassulaceae aerial part
57 Impatiens balsamina L. Balsaminaceae aerial part
59 Psoralea corylifolia L. Leguminosae aerial part
62 Pulsatilla koreana Nakai Ranunculaceae aerial part
139,140 Aruncus dioicus var. kamtschaticus 

Hara

Rosaceae aerial part

186 Ruta grabeolens L. Rutaceae aerial part
217 Pharbitis nil Chosy Convolvulaceae aerial part
220 Artemisia iwayomogi Kitamura Compositae aerial part
232 Ixeridium dentatum (Thunb. ex Mori) Compositae root
272 Cynanchum wilfordii Hemsl. Asclepiadaceae root
325 Alnus sibirica Fisch. ex Turcz. Betulaceae leaf
326 Alnus sibirica Fisch. ex Turcz. Betulaceae twig
328 Cornus controversa Hemsl. ex Prain Cornaceae leaf/twig
348 Althaea rosea Cav. Malvaceae root
361 Caryopteris incana (Thunb.) Miq. Verbenaceae stem
362–364 Caryopteris incana (Thunb.) Miq. Verbenaceae leaf
365 Caryopteris incana (Thunb.) Miq. Verbenaceae root
366 Caryopteris incana (Thunb.) Miq. Verbenaceae flower

aNumbers of plant extracts coincide with those in 388 plant extracts.

Figure 1. Anti-QS activity of plant extracts against C. violaceum CV017. 
Each ethanol extract (20 µL) was loaded onto a paper disc. As a negative 
control, ethanol (20 µL) was used instead of plant extracts. Numbers of plant 

extracts coincide with those in Table 1. 

Figure 2. Anti-QS activity of four plant extracts against C. violaceum CV017. 
a, C. wilfordii; b, Alnus sibirica; c, C. controversa; and d, Caryopteris incana. 
Ethanol (C-) was used as the negative control. Means 依 SD are shown.
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3.2. Anti-BF activity of the plant extracts

  Next, we evaluated the anti-BF activities of the C. controversa and C. 
wilfordii extracts against P. aeruginosa PAO1, Y. enterocolitica ATCC 

9610, and A. tumefaciens C58. Ethanol extract of C. controversa 

inhibited BF against all three bacterial strains (Figure 3). The C. 
wilfordii ethanol extract exhibited significant anti-BF activity against 

Y. enterocolitica, although the anti-P. aeruginosa BF activity was low 

(Figure 4). In addition, the C. wilfordii extract showed a higher anti-

BF activity on Y. enterocolitica than the C. controversa extract (Figure 

3 and 4).

Figure 3. Anti-BF activity of C. controversa extract against P. aeruginosa 
PAO1, Y. enterocolitica ATCC 9610, and A. tumefaciens C58. 

Ethanol (C-) was used as the negative control. Means 依 SD are shown.

Figure 4. Anti-BF activity of the C. wilfordii extract against P. aeruginosa 
PAO1, Y. enterocolitica ATCC 9610, and A. tumefaciens C58. 

Ethanol (C-) was used as the negative control. Means 依 SD are shown.

3.3. Anti-QS and anti-BF activities of C. controversa twig 
and leaf extracts

  We also assessed the anti-QS and anti-BF activities of C. controversa 

twig and leaf extracts. There was no significant difference between 

twig and leaf extracts (Figure 5), and thus twig extracts were used in 

suppression of soft rot. 

3.4. Effect of the extracts on soft rot

  P. carotovorum has been extensively studied in QS-mediated 
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virulence factors expression. We determined the effects of C. 
controversa and C. wilfordii extracts on soft rot of Chinese cabbage, 

which is caused by P. carotovorum. C. controversa extract suppressed 

the development of soft rot (Figure 6), resulting in a greenish stain. 

After incubation for 52 h, soft rot symptoms were evident in ethanol 

control and C. wilfordii extract treatment, but not in C. controversa 

extract treatment. 

Figure 5. Anti-QS (C. violaceum CV017) and anti-BF (P. aeruginosa PAO1, 

Y. enterocolitica ATCC 9610 and A. tumefaciens C58) activities of extracts of 

twig and leaves of C. controversa. 

For anti-QS activity assays, each ethanol extract (50 µL) was loaded onto a 

paper disc. As a negative control, ethanol (50 µL) was used instead of plant 

extracts.

Figure 6. Effect of the C. controversa extract against soft rot. 

4. Discussion

  Anti-QS is a process that prevents QS by disrupting the signal. This 

is accomplished by inactivating the signaling enzyme, mimicking 

the signal molecule, introducing a molecule that blocks the receptor, 

or by degrading the signal molecule itself without killing bacteria[34]. 

Using the principle of non-bacteriostasis may prevent the emergence 

of antibiotic resistant individuals. This interesting research area 

has led many research groups to the development of QS-disturbing 

phytomolecules from plant extracts. It will introduce not only a new 

mode of action and possible validation for traditional plant use, but 

also a potentially new therapeutic direction for treatment of bacterial 

infections. Therefore, this study was conducted to investigate plant 

extracts that can disturb the bacterial QS.

  Adonizio et al.[19] reported that terrestrial medicinal plants possess 

anti-QS compounds. Among 50 medicinal plants from southern 

Florida, 6 plants inhibited QS: Conocarpus erectus, Chamaecyce 
hypericifolia, Callistemon viminalis, Bucida burceras, Tetrazygia 
bicolor, and Quercus virginiana. In India, Zahin et al.[25] reported 

that ethanol extracts of 5 plants among 24 Indian medicinal plants, 

namely Hemidesmus indicus (root), Holarrhena antidysenterica (bark), 

Mangifera indica (seed), Punica granatum (pericarp), and Psoralea 

corylifolia (seed), inhibited violacein production by C. violaceum and 

swarming by P. aeruginosa PAO1. In China, Priya et al.[27] showed 

that methanol extracts of the traditional Chinese herb Phyllanthus 
amarus exhibited anti-QS activity. Damte et al.[26] reported that 6 

of 97 plant extracts inhibited pigment production by C. violaceum 

CV12472, and 16 inhibited the swarming motility of P. aeruginosa 

POA1. Han et al.[35] demonstrated that extracts of pine needle, green 

tea, and mugwort have anti-QS activity against the tobacco soft rot 

pathogen. The plants showed anti-QS activity was inconsistent with 

plants reported in previous studies[19,25,27,35]. 

  Anti-QS activity of the C. controversa and C. wilfordii extracts 

inhibited the BF of Y. enterocolitica and A. tumefaciens. Correlation 

of anti-BF with anti-QS effect is easily predicted, but is exceptional 

for A. tumefaciens. Nevertheless, there is no data so far that have 

related QS to BF in agrobacteria[36-38]. It is not known how the 

C. controversa and C. wilfordii extracts inhibited the BF of A. 
tumefaciens. This is not due to the inhibition of bacterial density 

recognition, but because it inhibited the mechanism involved in BF. 

To our knowledge, no literature has reported that the extracts of the 

C. controversa and C. wilfordii have the effect of inhibiting the BF of 

agrobacteria. Studies related to this are considered to be needed in 

the future.

  In P. carotovorum, virulence factors production is mediated by 

QS[39]. Anti-QS activity of C. controversa extract attenuated QS-

mediated virulence expression of P. carotovorum. Ethanol extract 

of C. controversa suppressed soft rot, but extract of C. wilfordii did 

not show any inhibitory effect. Thus, the anti-QS activity of the 

C. controversa extract is more broad-spectrum than that of the C. 
wilfordii extract. In addition, the C. wilfordii extract showed a higher 

anti-BF activity on Y. enterocolitica than the C. controversa extract, 

suggesting the potential for use in the food contamination through 

inhibitory effect on BF of Yersinia spp.

  Two plant extracts that exhibited anti-QS activity were subjected 

to assays of their anti-BF and anti-disease activity. C. controversa 

inhibited bacterial QS and BF, and was capable of controlling 
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soft rot. Therefore, this extract has potential for the prevention 

and treatment of bacterial infections and for the development of 

alternatives to antibiotics.
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