Available online

European Journal of Advancesin Engineering and Technology, 2016, 3(8): 60-66

[yt
¥ » 2,

Research Article ISSN: 2394 - 658X

L B
L, i, SR

SPI Slave Controller for AMBA Based SOC

Mukthi SL and AR Aswatha

Department of Electrical and Electronics Engineering
Jain University, Bangalore, Karnataka, India
chakshu.son@gmail.com

ABSTRACT

SPI Controller is one of the high performance system bus slaves and provides a simple software interface to the
SPI peripherals and the CPU. The AHB dlave main function is an interface unit that allows AHB logic to initiate a
data transfer on the AHB. The AHB specifies the type transaction to be executed on the slave through a user
friendly interface. The SPI Controller provides access to devices with SPI Interface and performs Read Operation,
Write Operation or Read/Write Operation. In this paper we are designing a SPI Memory Controller which is
compatible with the Advanced Microcontroller Bus Architecture (AMBA) developed by ARM. We are developing a
SPI Module which can operate based on the Advanced High Performance Bus (AHB) signals. Aim lies in the
Interfacing of the SPI controller to the ARM Processor using the AMBA AHB Bus. Synthesis and simulation is
carried out to verify the functionality of the design.

Keywords: Advanced Microcontroller Bus Architecture (AMBA) jilect Memory Access (DMA), Advanced High
Performance Bus (AHB), Serial Peripheral Interféggel), ARM

INTRODUCTION

An AMBA based microcontroller typically consists athigh performance system backbone bus, ablestaistthe
external memory bandwidth, on which the CPU on-ahgmory and other direct memory access [DMA] device
reside. This bus provides a high bandwidth intexfaetween the elements that are involved in theonityjof
transfers also located on the high performanceidasbridge to the lower bandwidth APB, where maisthe
peripheral devices in the system are located. SiptrGller is one of the high performance system &lases. The
AHB slave main function is an interface unit thiows AHB logic to initiate a data transfer on tA&¢iB. The
AHB specifies the type transaction to be executedhe slave through a user friendly interface. 8d?eripheral
Interface (SPI) is one of the widely accepted comication interfaces. It was developed by Motordi®l
protocol has become a standard but does not hdiegathy released specification or agreed by antetnational
committee. This gives some flexibility in Implemamg SPI Protocol in the Electronic devices but alequires
programmable flexibility of the host micro contenll The SPI Controller provides access to devicgés &Pl
Interface. It can perform Read Operation, Write @fien or Read/Write Operation.

We are designing a SPI Memory Controller which @mpatible with the Advanced Microcontroller Bus
Architecture (AMBA) developed by ARM. We are devegilog a SPI Module which can operate based on the
Advanced High Performance Bus (AHB) signals.

PROPOSED DESIGN

SPI slave memory controller is AMBA AHB compliarit]{ the memory controller is interfaced to advanbégh
performance bus in the AMBA SoC.SPI Serial Conémols a SPI Slave which transfers data betweerARI!
Processor and Serial Memory Devices. The commtioitdetween AHB BUS and the slave module is thioug
AHB protocol and the communication between the eslmodule and serial flash device is through SPtooal.
Hence the module translates the AMBA signals frofBAus and communicates to the serial flash merasiryg
SPI protocol facilitating efficient data transféj.[The internal architecture is shown in Fig. 1.

The architecture is divided mainly into 4 blocksnedy the —

1. AHB Slave Interface 2. Register Bank Gntrol Logic and 4. SPI Slave Interface

60

Mukthi and Aswatha Euro. J. Adv. Engg. Tech., 2016, 3(8):60-66

|
:

—_— - —_— -
CTRL_=a
HEESFAR SN
» b SIS _REATY
= -
e
.—
ITFLANIS 2
EE— REG BASTELCS

— Tl REEGISTEFR 2 |#+—————— CONTROL -
B ADDER - LOGIC spas_ Roc maTA =
JaaET i B REG BAMNE WRITE_EW i i SRR | e —
—_— - - 1
—_—
-
HBURST @&)
B — REG_BASTE,_ WDATA (X

RIIrE Iy TWDATA X T

HWRITE —_—
=
RES_BANK RDuATA]
] o O H L
| WD _DRATA REGEE TEIEE AT
™~ —_—
HEDATA 32 RINATA (E2] -
| TR TRATA RECS (I
-, R -
HREATY
- D PNT C1R
-_—
AR ELE. WE_DIT CR
-
_ ——
| 3 . = =
= E = RD_TUT Wk_DGT
Fig. 1 Internal architecture
HRESETn=0
HCLK
HRESETn
CE
IDLE
ik HSEL & TTVRITE-1 HSEL~1 & HWRITE=0
& HTRANS = NONSEQ & HTRANS = NONSEQ
HADDR (32)
i L S W /RN
HSEL T 2
-
HBURST (3] HSEL=0
— BRI HSEL-0
HSIZE {3} AHB SLAVE
_—
HWRITE HSEL=1 & HWRITE=1
HWDATA (32) RODATA (32) HTRANS = \IO\ISEQ
_— =
HROATA (32)
WDATA (32) WRITE
HREADY -
—
HRESP HSEL=1 & HWRITE=(&
HTRANS = NONSEQ
Fig. 2 AHB SLAVE I/O diagram HSEL=TTWRITE 8 HSEL~] &HWRITE-]

Fig. 3 AHB Slave State Diagram

AHB Slave Design
Fig. 2 shows the top level /O diagram of AHB slauterface with register banlAHB SLAVE features are &
follows:

* It provides the interface between the AHB bus awd of the modul

* It responds to the global, control, address and diginals from AHB MASTER and takes necessary astto be
done by the module.

» AHB requires 2 cycles for address and cseparately in address and data phase but regestér requires onl
one clock cycle for both read and write operati

» An AHB bus slave responds to transfers initiatedby masters within the syste

» The slave uses a HSEL select signal from the de& to determine when it should respond to a bus tesu

« All other signals required for the transfer, sushtse address and control information, will be gatezl by the bu
master.

The state diagram for AHB slave is showrFig. 3. It has 3 states naiy Idle State, Read State and WState. In
idle state AHB slave will be in reset condition. Bvtever the system is reset irrespective of custe AHB slave

61

Mukthi and Aswatha

Euro. J. Adv. Engg. Tech., 2016, 3(8):60-66

will make transition to idle state. If hsel is reved again AHB slave will go to idle se. In read state AHB slave

will perform read operation. The module will redu tdata from the register bank and will be tran&féeo AHB
master. If hsel is available and htrans is-sequential depending on hwrite AHB slave will matansition to rea
or write state. In write state AHB slave will pemfo write operation. The module will capture theadptovided by
the AHB master and writes into the register banthatprovided addre:

Register Bank

The Fig.4 shows the top level I/O diagram of register biThe register consists of mainly two bloc
1. The direct addressing blc
2. The indirect addressing blc

The direct addressing block consists of five regstThey are: Configuraticregister, read data register, write d
register, interrupt clear register and the addregsster. These registers are used to store tleeadat the contre
information transmitted or received between the teominals. The indirect addressing blocores the 32 bit
address of external memory locations. The AHB slaas only a read access to these registers, whaledntrol
logic has only writes to these regist The Memory Organization in Register Bank is showtheFig. 5.

hclk

hresetn

ce — 0 e

w T

addr (7)

REGISTER

BAMK

wdata (32) — o

rdata {32)

hclk

HRESETRn — =
Ctrl_en e

reg_bank_cs +—————

reg_bank_acdr [7) 4+——
reg_bank_write_en o
reg_bank_wdata (32) «——
reg_bank_rdata (32) ——»
rd_data_reg(32) %

wr_data_reg (32) ——»

rd_int

wr_int

rd_int_clr
wr_int_clr S
Index_bus .

Crri_en
e

-—

0x7f

reg_bank_cs

reg_bank_addr{7)

-

reg bank write_en

-

- reg_bank_wdata (32)

- —

E—

-

wer_imt__clr

e

ocpol
cpha

Do

Fig. 4 Register bank |/O diagram

CONTROL

LOGIC

#+—— spis_ready

spis_tx_data(32)

———— spis_r_data(32)

Fig. 6: Control Logic I/O diagram

Control Logic

wr_data_reg (32)

rd_int_clr

Index_buws (32)

reg_bank_rdata {32)

ox14

INDIRECT ADDRESSING

MEMORY REGISTERS

rd_data_reg (32)

ADDRESS REGISTER

ox10

OxOc

WRITE DATA REGISTER

INTERRUPT CLEAR REGISTER

0x08

READ DATA REGISTER

|

Q=04

Spi_slave_en

O0x00

CONFIGURATHOM REGISTER

Fig. 5: Memory Organisa?ion in Register Bank

[Crnd (1] &.& Spis_ready &&! depy_ready)

Or

({1 cmd (1)) 88! Spis_ready Bf delay_ready 8&

rd_int_cll

Fig. 7 Control Logic State diagram

lomd [0) pfd addr_done

Spis_ready and! delay_ready

HRESETn

Cmd () and sgidr_dane

Wr_int_clr

The control logic controls and coordinates the apiens of the SPI Slave Controller module. The mnbgic
decodes the command from the SPI slave block amdtdithe module to operate in the following thneedes of

operations —

1. Direct Read

2. Indirect Read

62

3. Indirect Write

Mukthi and Aswatha Euro. J. Adv. Engg. Tech., 2016, 3(8):60-66

The Control logic is modelled as a Finite State Mae, with the IDLE state as the default state. Titst 32 bit
block of data that is received from the SPI slalak when the control logic is in its IDLE stateassumed to be
the Command block, with the two LS bits represantire mode as operation and the seven MS bitsgeptiag the
Register address in the Register bank.

In the DIRECT READ mode:

« The Control Logic receives the Command block — @BIEXXXXXXXXXXXXXXXXXXXXXX00 — or
000000 LXXXXXXXXXXXXXXXXXXXXXXX00, from the SPI Skablock, representing the configuration registethar
read data register respectively.

» The Control Logic points either to the configuratior the read data register depending on the s¥gistdress
field from the command block.

» The Control Logic receives the contents of theegponding register and it transmits it to the $&lesblock.

DIRECT WRITE mode is a invalid mode of operatiorcéase the Configuration and the Read Data Red[3terct
Registers) are having READ only access from theSS&le Block.

In the INDIRECT READ mode:

» The Control Logic receives the Command block — AAKAAXXXXXXXXXXXXXXXXXXXXXXX10 from the SPI Slave
block.

» The Control Logic receives the indirect addresthanext data block from the SPI slave block whghtored in
the register in the register bank having the addfegSAAAAA.

» The Control Logic receives the data contents pdifitg the corresponding register from the read dedgster
which is transmitted to the SPI slave block.

In the INDIRECT WRITE mode:

» The Control Logic receives the Command block — AAMBBAXXXXXXXXXXXXXXXXXXXXXXX10 from the SPI Slave
block.

» The Control Logic receives the indirect addresthannext data block from the SPI slave block whghtored in
the register in the register bank having the addfe¢SAAAAA.

» The Control Logic receives the data from the SBVeslblock which is written into the write data sgr of the
register bank.

The Fig. 6 shows the Control Logic I/O diagram. Theatrol logic is modeled as a Finite State Maclijeand it is
bound to have the following four states:

1. IDLE state 2. COMMAND state 3. READ state 4. WWR state

The IDLE state is the default state of the conlkogic block. The control logic powers up in the IBlstate after
returning from reset as well as after the termoratf the READ and WRITE operation. The registenkbahip is

not enabled for access from the control logic ia tBLE state. A short pulse from the SPI slave bloalled

spis_ready is required for the transition from tB&E state to the COMMAND state. The command blask
received in the COMMAND state which is decodeddentify the mode of operation and the register beatdiress
index. The control logic receives another 32 bitckl which represents the indirect address in tise od Indirect
mode of operation. Depending on the CMD field af tommand block the transition occurs to the READhe

WRITE state. In the Read state, the control logiceives a block of data from the Register bank fwicthen
transmitted to the SPI Slave block. A spis_readgeis required for transition from the READ Sthgxck to the
IDLE state in the case of direct read operatiorthinindirect read operation the control logic inipts (rd_int) the
host and hence a spis_ready pulse along with r@adpt clear signal is required for transitiorclo#o the IDLE

state. In the Write state, the control logic seaddock of data from the SPI Slave block whiclhisn transmitted
to the Register bank. The control logic interrufes_int) the host in the write state and hence ia_spady pulse
along with write interrupt clear signal is required transition back to the IDLE state.

SPI Slave

SPI slave is used to transform the data serially e@@mmunicate with the master when required. Itnfrthe
interface between control logic and SPI master. @a&@ is transferred to SPI master in accordante &I

protocol. The I/O Diagram of SPI Slave is showihia Fig. 8. SPI slave is enabled by spis_slaveiggrakwhich is

routed from register bank and is in accordance withfiguration register provided by AHB master. Tdata is
loaded into transmission buffer when it has torbadferred to SPI master through spis_tx_data wikicii 32 bits.
This data is shifted out to SPI master through midbthis process occurs when SPI slave is setkbiemaster by
pulling down the SSn signal which is active lowm#arly data from SPI master is loaded into reaaptiegister
through mosi and is transferred to register banikguSpis_rx_data which is of 32 bits. The Spis_yeadasserted
once all 32 bits are transmitted to spi master2bis are received from SPI master. Cpol and Gidpaals decide

63

Mukthi and Aswatha Euro. J. Adv. Engg. Tech., 2016, 3(8):60-66

the mode of communication between spi slave andrii®ter. The data transmission and reception psoisi
always with respect to sclk provided by SPI maatet this is done by configuring the spi slinitially with respect
to frequency supported by SPI sla

Transmissions normally involve two shift registefsome given word size, such as eight bits, orthérmaster an
one in the slave; they are connected in a ringaRa¢ usually shifted t with the most significant bit first, whil
shifting a new least significant bit into the samgister. After that register has been shifted the, master an
slave have exchanged register values. Then eadtedkes that value and does somethirth it, such as writing
it to memory. If there are more data to excharlge shift registers are loaded with new data angbtbeess repeat
Transmissions may involve any number of clock cycWhen there are no more data to be transmittedmiaste
stops toggling its clock. Normally, it then desekethe slave. Transmissions often consist ¢bits of data, and a
master can initiate multiple such transmissiorns\fishes/needs

Every slave the bus that hasn't been activatedyutsnchip sele(line must disregard the input clock and MC
signals, and must not drive MISO. The master meisics only one slave at a tir

misg

Spis_tx_data(32) | Transmission Buffer And
shift Out Register
Spis_tx_data(32) sclk

l:>

55n

@
Spis_rx_data(32)

mosi cpal

S — SPI SLAVE K
Signaling Block
pha
cpol | 55n

- OO & Spis_ready

miso

cpha
S —
-
Spis_ready
-
Spis_slave_en

—_—

Spis_mx_data(32) Reception Register And

Shift In Register mosi

Fig. 8 SPI SLAVE |/O diagram

Spis_slave_en
_

Fig. 9: SPI SLAVE internal architecture

RESULTS

The following snapshots shows tsimulation results obtained from ModelSim and thid_Rynthesis report is als
illustrated in Table 1.
Table-1 Synthesis Report of the Proposed Design

Parameters

AHB interface

Register bank

Control logic

SPI slav:

Integrated model

Number of Slices

8 out of 3584 -
0%

4371 out of 3584 -
121%

100 out of 3584-2%

145 out of 358-4%

4450 out of 3584-
126%

Number of Slice 12 out of 7168 - 1180 out of 7168 - 145 out of 7168 - 1600ut of 716-2% 1480 out of 7168-
Flip Flops 0% 16% 2% ' 20%
Number of 4 input| 12 out of 7168 - 8598 out of 7168 - 155 out of 7168- 219 out of 716%- o
LUTs 0% 119% 206 3% 8927 out of 7168 -124
Number of bonded| 151 out of 141- | 248 out of 141-175% 240 out of 141-
IOBs 107% 170% 72 out of 14-51% 84 out of 141-59%
Number of GLKs 1 out of 8-12% 1 out of 8-12% 1 out of 8-12% 1 out ofl@% 1 out of 8-12%

64

Mukthi and Aswatha Euro. J. Adv. Engg. Tech., 2016, 3(8):60-66

File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help
BEH 8 JRBOI0-AT | SERED Bt es B sw

J Layout [Simalate - ‘

[EEErr3sd]

Heiumetatitar

oyt G 223 oo [N leuadim] s xa] ke onixtig
Jev 4~ B | Seachs E H it E] H QO @ 5,37 || rercontoam Lz o ‘
. . I N = |

BT

Curser 1 3105086 ps

LF v T

[[|5

Fig. 10 Simulation wavefor msfor Direct Read

File Edit View Insert Format Tools window

(RS s @ | kKT ||FEASBHH||N) aQ ek

AEREEDPRRIRIOPERIERRO PR ERE IR ORI D RREDREEORIEDEAERARYS e I NV §0, SE RO PIRE PO AR EREPROE)
L tth_block/count_rx BEPRVRSIRETEPREIRRREPROIDRIEPEmeIDEIERAPDRRERRORRNEDRRNOE Y (I N § P4 $OLRE PO PRI R IS PRI BAREPOeND)
foooooooo | T [1}

¥
Cursor 1 5526851 ps - I
[[v] [k = |

Fig. 11 Simulationswaveforms for Indirect Read

File Edit View Insert Format Tools Window

|cES|| xm@n| hxicr |[F EBEBE] [a8 &R
-

i 1u :
5000000 ps I

[+ 1| B .
Fig. 12 Simulation waveformsfor Indirect Write

65

Mukthi and Aswatha Euro. J. Adv. Engg. Tech., 2016, 3(8):60-66

CONCLUSIONS

A serial memory controller using Serial Periphdrgkrface has been designed. AHB Bus interfacesed ufor
communication with processor and the Serial Pergdhterface. CPU can conFig. the device by priogjcthe
configuration and will set the mode of operationl aiata order. Control Logic will receive the commdrom the

SPI Master and will decode the received commandedDiread, indirect read or indirect write openatan be
performed depending on the command. During theéatliread and indirect write operations the promesan be
interrupted and processor will access the dataarigie the dataThe future enhancements are data size which can
be made compatible for variable sizes, the datakbtan be extended to support block data transfgroposed
design it supports only one data transfer, the AdiBer can be used and the design can be implechéntéhe
FPGA kit and the AHB slave can be designed to stifpe burst type of data and hence do burst & ttahsfers.

REFERENCES

[1] ARM Corporation AMBA specification 2.0, Reference Manu&06.

[2] AMBA Open Specifications- ARM - http://mww.arm.com

[3] SPI-www.en.wikipedia.org/wiki/Seria_Peripheral_Interface Bus

[4] John F WakerlyDigital Design Principles and Practises, Third Edition, Prentice Hall PublicatioB0Q00.

[5] J Basker and A VerilogdDL Primer, 3% Edition, 2003.

[6] J Noseworthy, Efficient Communications between ambEdded Processor and Reconfigurable Logic on FPGA,
|EEE Transaction on Very Large Scale Integration (VL) Systems, 2008, 16 (8), 1083-1090.

[7] J Basker and A Verilog{4DL Synthesis 1°'Edition, 1998.

[8] Nazeih M BotrosHDL Programming (VHDL and VERILOG), Dreamtech PresX09.

66

