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ABSTRACT  
 

This article presents a static analysis of the orthotropic and isotropic thin plates in pure bending under uniform 
and concentrated load, by finite elements method. For space modeling the isoparametric quadrilateral element 
with 4 nodes Q4, and 3 degrees of freedom per node is used.  The formulation of the element is founded on a linear 
theory of the orthotropic plates, like, the kinematics assumptions of Mindlin-Reissner which hold in account the 
effect of transverse shearing.  The linear stiffness matrix is evaluated numerically by using the technique of 
selective numerical integration. The load vector is evaluated in an exact way by Gauss type diagrams. 
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INTRODUCTION 
 

The researchers are led to use numerical methods to deal with the increasing complexity of the structural 
mechanics problems.  The finite element method is the most powerful and general analysis method of structures. It 
allows a detailed analysis of the behavior of complex structures, which are difficult to calculate by the usual 
procedures of the strength of materials, such as plates and shells.  The plates (thin, thick, isotropic, orthotropic)  are 
structures which are frequently used in various fields:  aeronautics, civil engineering, nuclear thermal power 
stations, structures oriented in their plans, such as plates are more difficult to calculate numerically, they are often 
subjected to  statistical and dynamic stresses.  The objective of this work primarily concerns the static analysis of 
the orthotropic and isotropic plates under uniform and concentrate load using finite element. 
 

THE PLATES THEORY 
 

A plate is an elastic solid in which the dimension according to the thickness, is small compared to both others, and 
which has a symmetry plane in the middle of the thickness, often called average area [1], [9],[10].   
 

Displacements Field Description 
In Hencky theory, we give a displacements model based on three independent variables:  transverse displacement 
and two rotations as follows [9], [5]:   

),( yxzu xβ=   ),( yxzv yβ=   ),( yxww=             (1) 

Deformation Field Description 
The strain tensor is: 

             { } { } { }{ } { } { }{ }TTTTT
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Contribution de bending effect:   Contribution of shear effect: 
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EQUATIONS MOTION FORMULATION 
 

The overall formulation of the problem is to look for the whole structure the matrix expression strain energy and the 
work of applied forces, according to the movements of all nodes of the structure. This requires the assembly of the 
elementary characteristics (stiffness matrix, vector equivalent forces) for all elements [14]. 
 
The total potential energy of the structure can be obtained by summation of the component total potential energy as 
shown in equation (4)   

{ } [ ] { } { } { }∑ ∑ 







−==
éléments éléments

eTeeeTee FqqKqVV
2

1                                                      (4) 

{ }Tq Is the row displacement vector at nodes of the structure: 

{ } { }T

m

T

i

TT qqqq KK1=                 (5) 

With: { }iq  : sub- displacement vector at node i  . 

We can define for each element a matrix relationship in order to establish a correspondence between the element 

node’s displacements { }eq  and the structure nodes’s one { }q , as following:  

{ } [ ] { }qq ee Β=                  (6) 

)1(.)()1( ××=× NNnn ee
 

With  : [ ]eΒ  : Matrix location element . 

ne : Number of degree of freedom of  element .   N : Number of degree of freedom of  structure. 
Each relationship represented by the equation (6) can identify or locate degree of freedom of each element in all 
degree of freedom of the structure.  
 
Using the equations (4) and (6), we can write: 
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Knowing that  :        { } [ ]{ } { } { }FTqqKTqV −=
2
1                                                                  (8) 

With  :      [ ] [ ] [ ] [ ]∑ ΒΒ=
éléments

eeK
TeK                (9) 

{ } [ ] { }∑ Β=
éléments

eF
TeF               (10) 

[ ]K : Stifness matrix of the structure.  { }F : Equivalent force vector of the structure. 

In the case of concentrate load applied in node of the structures (represented as {P} vector), the expression of { }F
becomes: 

{ } { } [ ] { }∑ Β+=
éléments

eTe FPF              (11) 

These expressions allow us to obtain by direct application of the principle of virtual work, the equilibrium equations 
system of nodes. Indeed, we have: 

WU δδ =  

{ } [ ] { } { } { }FqqKq TT δδ =               (12) 

D’où :[ ]{ } { }FqK =                (13) 

 
FINITE ELEMENT PLATE WITH TRANSVERSE SHEAR 

 

The formulation of finite elements of plate in bending and shear is based on the theory of Reissner-Mindlin.  Indeed, 

their conformity requires only continuity C0 de yx etw ββ,  [2], [8], [9]. 

We consider a quadrilateral type element in which we apply the isoparametric formulation [2], [6], [11], [9]. The 

approximations of yx etw ββ,  are: 
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The interpolation functions used are usually related to interpolation of the isoparametric quadrilaterals.  In the case 
of the linear quadrilateral, we have:   

[ ]4321 NNNNNT =  with: )1()1(
4
1),( iiiN ηηξξηξ ++=             (15) 

ii ouηξ  : taking the values (+1) or (-1) according to the considered node 
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By substitution (14), in the relations of deformations (3), we obtain the interpolation deformation matrix of bending 
and shear:   
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We can write  :         { } { } [ ]{ }qff βεχ ==   { } [ ]{ }qγβγ =             (18) 

 
Stiffness matrix 
The expression of the deformation energy makes possible the calculation of stiffness matrix [2], [7], [9], we have: 
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[ ]fD  : Bending stiffness matrix, 21, EE  : Young moduli in the directions (X), (y) respectively. 2112 , νν  : Poisson's 

ratios, [ ]cD  : Shear stiffness matrix 231312 ,, GGG  : moduli of rigidity, k : Coefficient of correction of transverse 

shearing. 
 
After substitution of the expressions of the deformations in the deformation energy, we obtain: 
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[ ]J  : is the Jacobienne matrix of the geometrical transformation, The stifness matrix [ ]K  is evaluated numerically 

by selective numerical integration; [ ]fK  : is integrated with (2 X 2) points of Gauss,  [ ]cK  : is obtained by 

reduced integration .   
The integration of Gauss at two points is as following:   
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Equivalent Loads Vector 
The potential energy of external forces [10], [4],[14] expressed using surface forces and volume, as following 
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With :              { } [ ] { } [ ] { }∫∫ +=
ee S
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For the distributed uniform load zf along z, the equivalent vector load has the usual form 

{ } [ ]∫=
eS

z
Tee dSfNF                (28) 

RESULTS AND DISCUSSION 
 

Static Response of Simply Supported Isotropic Thin Plate 
We consider an isotropic square thin plate simply supported, subjected to a uniform load, the geometry of the 
structure and the properties of material are represented on the Fig.1 for this problem. The Fig. 2 represents the static 
evolution response of normal displacement for different mesh and then compared to analytical response given by [3, 
14]. 

D
LP

wc

4
000406.0=

                          
Where: 3.0

)1(12 2

3

=
−

= ν
ν

hE
D  

D : Flexion  coefficient stiffness , ν  : Poisson ratio , cw  : Normal displacement  

Data :   a = 1.2 m;  E = 210 × 109 N/m2 ;    h = 0.01 m.  ν = 0.3;  P0 = 750 N/m2 

 
Static Response of Embedded Isotropic Thin Plate 
We consider an isotropic thin square plate embedded on four sides, subjected to a uniform load, the geometry of the 
structure and the properties of material are represented on the Fig. 3 for this problem. The Fig. 4 represents the static 
evolution response of normal displacement for different mesh and then compared to analytical response given by [3, 
14].  
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Fig.1 Simply Supported Thin Plate under a Uniform Load Fig.3 Embedded Thin Plate Under a Uniform Load 
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Fig. 2 Static Evolution Response of Normal Displacement for Different Mesh of Simply Supported Plate 

 
Fig. 4 Static Evolution Response of Normal Displacement for Different Mesh of Embedded Plate 

 
Static Response of Simply Supported Orthotropic Thin Plate under Uniform Load 
We consider anorthotropic square thin plate simply supported [12], subjected to a uniform load, the geometry of the 
structure and the properties of material are represented on the Fig. 5.  The plates was divided into 100 elements, each 
side having 10 elements of equal length, and have compared our numerical results of the deflection along the two 
half-axes of symmetry of the plate with the exact solution, (Fig. 6). In order to study the convergence , we represent 
in Fig. 7 a normal displacement evolution in the center of the plate vs different mesh cases(2x2 , 4x4, 6x6, 8x8, 
and10x10), our numerical results are compared with the analytical solution given by [13]. 
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Data: a = 2 m ; E1 = 2.068 × 1011 N/m2; E2 = 

E1/15; 3.012 =ν ; P0(x,y) = 800 N/m2.

28
132312 10055.6 mNGGG ×=== ; h = 0.01 m;  

 
 Fig. 5 Simply Supported Orthotropic Thin Plate under Uniform Load P0 
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Fig. 6 Simply Supported Orthotropic Thin Plate Deflection along the Two Half-Axes of Symmetry 

 
Fig. 7 Convergence of Finite Element Solution Depending on Mesh for a Simply Supported Orthotropic Plate 

 
Fig. 9 Simply Supported Orthotropic Thin Plate Deflection along the Two Half-Axes of Symmetry under Concentrated Load  

 

Using the previous example (Fig. 7), but in this case, the plate is under a concentrated load P0 applied in the middle. 
Our numerical results of the deflection along the two half-axes of symmetry are compared with the analytical 
solution given by [13] (Fig. 8). 
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Fig. 8 Simply Supported Orthotropic Thin Plate Under Concentrated Load  P0 

 
Static Response of Embedded Orthotropic Thin Plate under Uniform Load 
Fig. 10 and Fig. 11 represent an embedded orthotropic thin plate under uniform load and normal displacement 
evolution in the center of the plate vs different mesh cases respectively. Our numerical results are compared with the 
analytical solution given by [13]. 

Data –  
a = 2 m ;  
E1 = 2.068 × 1011 N/m2;  
E2 = E1/15;  

3.012 =ν ;  
28

132312 10055.6 mNGGG ×=== ; h = 0.01 m; 

P0(x,y) = 800 N/m2. 

22

4
031018645.0
D
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w −×=  

  
Fig. 10 Embedded Orthotropic Plate under Uniform Load 

 
Fig. 11 Convergence of Finite Element Solution Depending on Mesh for Embedded Orthotropic Plate under Uniform Load  

 

Static Response of Embedded Orthotropic Thin Plate under Concentrated Load 
Using the previous example but in the case, the plate is under a concentrated load F applied in the middle. Our 
numerical results represented by the normal displacement evolution in the center of the plate vs different mesh cases 
are given in Fig. 13. 
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D
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Data - a = 2 m ; 
E1 = 2.068 × 1011 N/m2; 
E2 = E1/15; 3.012 =ν ; 

28
132312 10055.6 mNGGG ×=== ; 

h = 0.01 m; 
P0(x,y) = 800 N/m2. 

 
Fig. 12 Embedded Orthotropic Plate under Concentrated Load 
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Fig. 13 Convergence of Finite Element Solution Depending on Mesh for Embedded Orthotropic Plate under Concentrated Load 

 
Through the different results, presented in this article, we can make the following remarks: 
• The modelisation results of an isotropic and orthotropic plate, whatever the type of the support, show a clear 

convergence with those of the analytical one. 
• The convergence of a simply supported and embedded isotrpic and orthotropic plate are reached respectively for 

8x8 elements mesh (see Figs 2 and 6) and 6x6 elements mesh (Fig. 4 and Fig. 11). 
 

CONCLUSION 
 

This work aimed the evaluation of the quadrilateral element Q4 with 12 d.d.l.  The various analyses of the static 
behavior of isotropic and orthotrpic plate allowed us to highlight the direct influence of boundary conditions on the 
response of the plate and to conclude that the accuracy of solutions increases with mesh refinement. 
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