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ABSTRACT

In the present Paper, we derive three new and ésting expressions for the composition of two ngesteral
fractional integral operators whose kernels involte product of a Appell Polynomial, Fox H-functiand S-
Generalized Gauss's Hypergeometric Function. Thexadprs of our study are quite general in natureanay be
considered as extensions of a number of simpletimal integral operators studied from time to éirby several
authors. By suitable specializing the coefficiearigl the parameters in these functions we can ¢geigg number
of (new and known) interesting expressions forcposition of fractional integral operators invislg simpler
special functions. The results obtained by Erd¢R®}i Goyal and Jain [11] follow as simple cases ofir
composition formulae.

Key words: Unified Fractional integral operators, Appell Palymial, S-Generalized Gauss's Hypergeometric
Function, Fox H-function.

INTRODUCTION

Fox H-Function

A single Mellin-Barnes contour integral, occurrimgthe present work, is now popularly known as ith&unction
of Charles Fox (1897-1977). It will be defined amgresented here in the following manner (seegf@mple,
[8]):
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an empty product being interpreted to be 1. Heig & Mellin - Barnes type contour in the compléxplane with
appropriate indentations in order to separatewioesets of poles of the integra{&) [1] and [8].

Multivariable H-Function
The Multivariable H-Function is defined and represe in the following manner [8]:
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All the Greek letters occurring on the left andesidf (1.4) are assumed to be positive real numii@rs
standardization purposes. The definition of thetivatiable H-function will however be meaningfulevif some
of these quantities are zero. The details aboutntiare of contour 4,...,L;, conditions of convergence of the
integral given by (1.4). Throughout the paper itassumed that this function always satisfied itprapriate
conditions of convergence [8].

S-Generalized Gauss's Hypergeometric Function
The S-generalized Gauss hypergeometric funcﬁgﬁa’ﬁ;r’”)(a, b; ¢ 2 introduced and defined by Srivastava et
al. [9] is represented in the following manner:
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Provided that (Re (®0; minRef, B, T, 1} > 0: Re (c) >Re (b) >0)

where the S-generalized Beta functiﬁa(a‘ﬁ;y’r)(x y) was introduced and defined by Srivastava et al [9]
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provided that (Re (M O; mlnRe{x, v,o, B, T, u}>0)
and (/1 )n denotes the pochhammer symbol defined ddrlC) by (see [5];see also [4]):
(1) :F(/]+n):{1 if n=0
" T(4) A(A+1)...(A+n-1) ,if n=1,2..
provided that the Gamma quotient exists (see, étaits, [6] and [7]).

8

Appell Polynomial
The Appell Polynomial introduced and defined by][isrepresented in the following manner:
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Where @is the complex coefficiera,, # 0.

Fractional Integral Operators
We study two unified fractional integral operatarsrolving the Appell Polynomial, Fox H-function an8-
Generalized Gauss's Hypergeometric Function hagémgeral arguments
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Provided that
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where, The operators are defined fbt) [\, A\ denotes the class of function f(t) for which
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RESULTS
Composition Formulae For The Fractional Operators
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and following conditions are satisfied
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and K*(T) can be obtained from K(T) by interchargitne parameters with dashes with those withoutetasnd
following conditions are satisfied

f(t)OA

. b, b
Re(v +v+{)>-2; min ReA +d,—+ A+, |>- 2 (26)

Re(w,) > Oor R§w,) = Oand Rp(v - w)]|> 0

Proof of (15), (19) & (22):To proveResult 1, we first express both the I-operators involvedsreft hand side, in
the integral form with the help of (10). Next wadrchange the order of t-ang-integrals (which is permissible
under the conditions stated), we easily have aftdtle simplification.
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To evaluate), we first express both the Fox's H-Functions ar@eBeralized gauss hypergeometric functions in
terms of their respective contour integral formshwihe help of (1) and (6) respectively, next btta Appell
polynomial are expressed in terms of the seriel thi¢ help of (9). Further, weinterchange the oocdesummations
and contour integral and get:
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Finally, re-interpreting the result in terms of thiltivariable H-function and substituting the vatuofA in (27),
we get the right hand side of required result @ffgr some simplification.

Now, we substitutey = (ﬂ} in (29) and evaluate the u integral thus obtainéh the help of known result [3].

The results given by (19) and (22) can be proved similar lines by making use of the results
[3] and so we omit the details.

SPECIAL CASES OF COMPOSITION FORMULAE

As our composition formulae involve the Appell Ruynial, Fox H-function and S-Generalized Gauss's
Hypergeometric Function, a large number of othempuosition formulae involving simpler functions and
polynomials, can be obtained by specializing thecfions involved in our composition formulae.

Thus if in these composition formulae, if we take= )I'Z =0 in (15), (19) and (22) H-Functions reduce to

exponential function. Further, reducing exponertialction to unity, reducing all the Appell Polyn@is to unity
and S-Generalized Gauss's Hypergeometric Funatidacing to Gauss Hypergeometric Function by puttirg 0
thus obtained Gauss Hypergeometric Function redutcinunity, we get the corresponding expressionistware in
essence the same as those given by Erdélyi [2].

Also, if we take p = 0 in (15), (19) and (22) S-@mlized Gauss's Hypergeometric Function reduc&dass
Hypergeometric Function. Further reducing thesesSadypergeometric function to unity, reducing ai tAppell
Polynomials to unity and reducing all the H-funosBoto generalized hypergeometric functions, we thet
corresponding expressions which are in essencgathe as those given by Goyal and Jain [11].

CONCLUSION

We have obtained herein three composition formuta®lving the Appell polynomial, Fox H-function and
S-generalized Gauss hypergeometric function whioh wery general in nature. A large number of other
composition formulae involving simpler functionsdgmolynomials follow as simple special cases ofresults.
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