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ABSTRACT

This paper provides asymptotic estimates strong result for real zeros of random algebraic polynomial for the
expected number of real zeros of a random algebraic polynomial of the form. The strong result for the lower

bound was obtained in the general case by their lower bound was ylogn/log{%log n} Which is obtained by taking

£, = ,u/log{%logn} in our present result .This result is better than that of Dunnage since our constant is

(1N2) Times his constant and our error term is smaller . the proof is based on the convergence of an
integral of which an asymptotic estimation is obtained .

Key words: Independent, identically distributed random vamablrandom algebraic polynomial, random algebraic
equation, real roots, domain of attraction of tbenmal law, slowly varying function

INTRODUCTION

We shall suppose thég (a,)’s real-valued random variables defined on the gbdlly space Q , m, P) .The
random events to be considered in the proof coorespo P-measurable subsets of this space. Thealpitiby that

n
\
an event E occurs will be denoted HR(E) Let N, be the number of real roots o; (X’ w)vgofv (a))x .In

Mishra et al [1}we have shown that foR > n,, N, is at least £,10gn outside an exceptional set of measure at

most ,u/(gno log no)where {&,, }is any sequence tending to zero such tfadgn tends to infinity as n tends to
infinity. We have assumed that tlfg’s have a common characteristics function éxp|t|a)whereazland Cisa

positive constant.

In the present work we have proved the same rastite general case. We assume thaf{,he are any random

variables with finite variance and third absolut@ment. Our previous result holds in the case ofpecial
characteristic function which has infinite variaificer < 2).

The strong result for the lower bound was obtaiinetthe general case by Samal and Mishra [2]. Tlogier bound

k _ Ka
was ,qugn/Iog{t—”log n} which is obtained by takinghn ‘U“Og{t_logn}in our present result, wherk,,t,,

n n

have the same meaning as in our present work.

We claim that our strong result for the lower boumdhe general case is the best estimation dorfarsoWe shall
use [X] to denote the greatest integer not excgedin
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THEOREM 1
n
Let f (X, CU) = Z QZ\, (w)xv be a polynomial of degree n whose coefficientsimdependent random variables

with expectation zero. LeU2 be the variance anﬂj’ be the third absolute moment 6f( ) Take{ }to be

a sequence tending to zero such tl&ﬁtlogn tends to infinity as n tends to infinity. Let, = mino, |,

O<vsn

k =Mmaxdo, and P, =Maxr,.Then there exists an integef,and a set A( )of measure at most

Osv<n 0<vs<n

,u/fno log N, such that, forn > Ny and all & not belonging t(A(CL), the equationsf (x,a) = 0Ohave at least

n

| e Py kK -
&, lognreal roots, prowdedlmk—and |Imt— are finite.

n n

PRELIMINARY LEMMAS
LEMMA 1

SupposeX,, X,,...X , are independent random variables with expectatoa and thatA,2 is the variance and

Bf is the third absolute moment X, .
Let
B

= g

if 4, =0

=

I PN S

vt 0 if 4, =N, =max(4,)

Also let F, (t) be the distribution function of% 3 x, and

Hy v2t
ot) = \/_}me ( ;uz]du

Then sup | £, ()= o) 2 " |

This result is due to Esseen [5] and Berry [4].

LEEMA 2
Let 77,,/7,,/5,... be a sequence of independent random variatiesically distributed withv (;,) <1 for all i.

Then, for eache >0

1 k
p{fgm;{m E( )} f}s‘gzk(.)

Where D is a positive constant. This form of thersg law of large number is a consequence of thek-Renyi
inequality [3].

Proof of the Theorem

t C,
Take B, = k—"eXP{T} where Gis a constant to be chosen later.
n

Let A and B be constants such that 0<B<1 and AlLel.

2
M, = {zﬂf[f—:j % +1 ®
k 2
So lj[‘t J [iw sM,su [ J /3n
We define dx) = X[Iog Jex
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Let k be the integer determined by

o8k + 7)M 7 < n < gk +11)Mm &1, @)
Obviously 3)
which implies Fagologn<k<Z2(e, logn)
We consider f(x,a)=U, (a)+R ()
. 1 %
at the points Xy = {1 - W} 4)

for m= I%J+lI%J+ 2.k, where
Unl@)= 38 (@i Rol@)=(3 +3 Jalad,
the indexV ranging from dam-M ™ +1 1o Gam+3YM I Z ,from O to d4m-1M ™ i
1
s, and fromd4m+3M ™ +1 toniny .
2 3
Let Vv, =1(z afxivjyz
2(1
We define the event&, | as the sets ofa for which U, (a) >V, and U2m+l(a) <-V,... and the events
F., as the sets of. for which UZm(a) <-V,, andU2m+1( ) >V2m+1 Obviously the sets of,'Sin U, (a)
and the sets of,,'S in U2m+1(a) are disjoint. ThudJ, (a) andU2m+l(a) are independent random variables.

Let S, S, be the sets of in which respectivell . (a) >V U m(a) <-V,.

Hence E,, O F, = (Ss 0 S;00a )0 (S5 0 Sia).

Since the two sets within the braces on the rigindhside are disjoint and sinég, (a) and U2m+1( ) are
independent random variables,

P(En O Fo)= P(Sin P (Simin )+ PISIn JP(S3n).

2 . . —
If 0 isthe variance ofU,,(w) then g?=4avy .

- P . . U 2m (0.))
So 0 =2, . Let FZm(t) be the distribution function of — ~— .
Hence P{Un(@ P{U ml@)/ 0 < __} FZm(_%)-
Here we shall apply Lemma 1.
In our case B =13x3 A’ =g2x2
3

So A = (%szxgm , = gj&r{ jxm _—2“ and U, =0 =2, .
Therefore sup| F,,,(t) - t) l<— P Py 1

t t Vs,

i} pd 1
Hence  P(S;,)= Fun(-3)2 A1)~ [Fon(- )= - 2] > od-3) -2
n 2m

Similarly the other probabilities can be calculated
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Therefore P(E,OF,)> {1—40(%)— P Hcﬂ(—%)— i }+{¢(—%) Py }{1—40(%)— tﬁ\iﬂ

terZm tr?\/2m+1 ) tr?VZm
t2 _
It can be easily shown as in [5] thalVm > T"(”(“m +1M 2m (%)e ' when n is large
2
So V2> %" (m+1)m " (B/A)e™

The least value of mis [k/2] +1. HenceV,,, >t A,
where A, — © asn - o, sinceM, >1 and8m+1> 1k > y/'s logn.

G AT Pr _Pa 1 o
Since lim t ]IS finite, it follows that < —-——tends to zero as n tends to infinity.
e n tf\/Zm t, A

Thereforepr(g,, OF,)is greater than a quantity which tends&@(— %){l - (0(%)} as n tends to infinity.

Denote this last expression Iy .

LEMMA 3

2
1 16Ae | k
There is a sef) , of measure at mostW R (t—n] exp{— (4m+1)*m n2}
n n

such that ifa JQ_ and N> n, then |Rm(0)x <V, for M= %JJfll%JJf 2.k

Proof of the Theorem
Ral@)=(3 3 Jefwh
By Tchebycheff's inequality, we have
ot ak? y
P{‘@ &, (w)x! | = EV’"} < V—ﬂ%‘@ X2
Proceeding as in Lemma 2 of [4], we now get thatahove probability does not exceed

2
_16;@ (It(—”] exp{— (4m + 1)’ M nz}

Again, by using the same inequality
P V2V }é < 1
>
mﬂn(%"’Zij mzﬂnz .
Thus if @ JQ_, where

2
P(Qm) < m21,82 + 16;e (':—”] ex;{— (4m+1)2M f}

Sé, (o)

n

¥
we have |Rm(w)|<%vm +mﬁn(§0\?xﬁ1\')

Now, by using (1) and (5) and following the proceslaf Lemma 2 of [4], we have
2,2 %
mﬁn(zavxm\l) <%Vm
2

We have shown earlier thatP(Em 0 Fm) =0,>0>0,

Let 77,, be a random variable such that it takes value Egnl1 F., and zero elsewhere. In other words

1 with probabilityd,,

M =
0 ith probabilityl—9J,,
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The 17,,’s are thus independent random variables vei,) =3, andV (7,,)= 93, - 62 <1,

Let O,, be defined as follows:

0 |iR2m (w)| <V,, and | Rome (w)| <Vomu
Pnm =

1 otherwise.

Let  On =fn ~TnPm.
k
The conclusion of [4] gives that the number of :adot(x2rrb , sz+1) must exceed 2
m=mg
Where m, = [% k] +1

Now we appeal to Lemma 2.

46, - E(r )}

m=mg

> {7 - E(1 )}

m=mg

We have =

Let A(a) be the set ofx for which

{8, - E(7..)
sup ——— - > €,
k—mo+?2k0 k—my +21|m=mg " "
B(a) be the set ofe for which
k
- - - i
k—mSOLi?ZkO k - m, +1 m=zr:n£,7m E(”m)} g 2 g

and C(a) be the set ofw for which

_ 1

k—nfol{iko k 7,m, +1m=zmo Pm =2 &

E( m): P{qR2m| 2V2m)|:| qR2m+1 2V2m+1)}S PqR2m| 2V2m)+ PqRZmﬂ 2v2m+1)
By Lemma 3,

2 2
1 16Ae( k, 1 16Ae( k,

PRl iz 52 ) et lomeami} < 202 o oo miv)
Similarly

P(Roper

2
2 v2m+1)< m%ﬁnz + 16£e (lt(—nJ eXp(— m>M nz)

Hence by using (2.1), we have

E(o, ) <—2+y L} exp(— m2M§)< ,u"/(mzﬁnz)< ulm?
m*s; ty '

n

Therefore
1 K

-+ E < n / m2

k—m0+1m+zmo( m) H 0
and so

1 k 2u" 1
PiClw); < P{———M— Slel 2 =
{ ( ) k—mozﬂzko {k -mp +1 m§no Pm =2 } £ k—mozﬂzko mg )

Again by Lemma 2, we have

Pla(o) <22
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Since
>{6, - El, ) < S - Elr )+ L ¢
sup ——— - < sup —— - sup ———

k—rrb+:|2k0 k- my +1|m=nmy m m k—mo+]2k0 k- my +1 m:m(),7m m k—mo+]2k0 k- my +1m:mopm
it follows that

A(a)) O B(w) O C(w)_
Hence calculation as in [5] gives

il /j"

Plah < < e
Thus if

w0 Alw)

RENC S S A

k—m0+1m:mom k—mo +1m=mg "
for all k such thatk —m, +1=k, .
So N, >%(J—£)k>%(a'—g)ﬁgn logn

o

for all k such thatk-m, +1=k, or in other words, for aft > n,

Now the theorem follows by takin, = %/112 (5‘ 5)2

CONCLUSION
We conclude that random variables with finite viac& and third absolute moment with characteristncfion has

k
infinite variancel<a <2).By taking the lower bound Wasﬂ|09n/|09{t—”|09 n} which is obtained by taking

n

_ Ky
& —'UHOQ{,[_'Ogn in our present result, wheré,t, . In the above polynomial of degree n whose coeffits
n

are independent random variables with expectatwo with UV2 be the variance anﬂf be the third absolute
moment offv (a) Taking {é‘n}to be a sequence of the polynomial tending to zeugh thatsf logn tends to
infinity as n tends to infinity. Hence the AsymptoEstimates for Real Zeros of Random Polynongglitogn
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