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ABSTRACT  
 

A new approach to model failure-prone FMS is by first decomposing it into a group of closed-loop production 
lines. To evaluate this approach, the decomposition method of Frein et al (1996) was extended to incorporate 
failures with repair times having a generalized exponential distribution. It combined and then extended the work of 
Dallery et al (1988, 1989), Frein et al (1996), and Dallery and Bihan (1999). The FMS was treated here as a 
group of disaggregated non-homogeneous closed-loop production lines. Each non-homogeneous closed-loop 
production line was analyzed and subsequently results obtained from them were aggregated to give performance 
parameters of the FMS. A simulation study was done to validate the results.   
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INTRODUCTION  
 

In this research, the failure-prone FMS (Fig. 1) is approximated by a group of automated closed-loop production 
lines. The process harnesses several recently published results. A routing policy decides which particular line a part 
will go to. The overall behaviour of such a conglomerate would depend on the performance of the individual 
production lines constituting it. Each such closed-loop production line is configured here as a sequence of 
machines (Fig. 2), the sequence containing one or more machines of same type or different type. Finite sized 
buffers separate the machines in the line. Parts flow from one machine to the next machine along the line. Each 
part spends a fixed amount of time called the processing time on a machine. This processing time may differ from 
machine to machine.  Further, repair times in the present work are assumed to have generalized exponential 
distribution.  The individual machines are prone to failure caused by events such as equipment breakage, missing 
parts, tool wear, operator error, and quality problems. These failures influence the performance of closed-loop 
production lines. When a machine fails, it is unavailable for an amount of time required to repair it. This time is 
known as repair time or downtime of the machine.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1 Conceptual Makeup of an FMS modeled as a CQN 
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In a closed-loop production line, when a machine is in a failed state, the number of parts in the upstream buffer 
tends to increase while the number of parts in the downstream machine tends to decrease. If the failure condition 
persists, the upstream buffer may become full and consequently, the upstream machine may be blocked. Similarly, 
the downstream buffer may become empty and, therefore, the downstream machine may be starved. Hence, the 
failure of a machine may lead to starvation and blocking of its adjoining machines. Most failures of production 
lines are operation-dependent rather than time dependent i.e. failures occur only when the machine is working 
(Buzacott and Hanifin, 1978) and also machines cannot fail when they are fully starved or fully blocked. A 
machine is blocked if on completion of the processing of a part, the downstream buffer is full. 
 

Scope and Organization 
This research adopts a different approach to model a failure-prone FMS—it uses closed-loop production lines. 
Section 2 introduces the closed- loop production lines nomenclature and it reviews past related work. Here, the 
manner in which an FMS is decomposed into several different closed-loop production lines is illustrated (see Fig. 2).  
Section 3 describes the method for analyzing non-homogeneous production lines. Two methods are presented. 
Section 4 shows how the closed-loop production lines model may be developed by employing transformations. 
Section 5 presents the computational algorithm for modeling an FMS using closed-loop production lines. Section 6 
describes the use of this model in performance evaluation. Section 7 presents numerical results of a failure-prone 
FMS model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Decomposition of the FMS into four closed-loop production lines 
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Introduction to Closed-Loop Production Lines 

Let us consider a closed-loop production line j consisting of a series of nj machine groups 




 j

n
j

i
jj

j
MCMCMCMC ,...,,...,, 21  

separated by nj buffers ),...,,...,,( 21
j

n
j

i
jj

j
BBBB  having finite buffer capacities ),...,,...,,( 21

j
n

j
i

jj
j

bbbb  (details of the various 

indices are given below).  
Indices used in this research are defined as follows: 

Index  Characteristic represented 
h : homogenized (line) 
j : production line 
i : machine in a production line 
e : generalized exponential (GE)   
u : upstream machine 
d : downstream machine 

A new part entering the system from outside is mounted on a pallet.  The pallet carries it to machine group jMC1 , 

then to buffer jB1 , then to machine group jMC2 , and so on, until it reaches buffer jn j
B , after which the pallet goes 

back to jMC1  where the finished part is removed and the pallet is reused for another new part. Assume that there are 

always new parts available at the input of the system and unloading space available at the output of the system. 
Pallets are used to carry parts throughout the production line. As is the case with closed loop queueing network 
(CQN), it is assumed here that a limited number N of pallets keep recirculating in the system. A new part is released 
to the system only if a pallet is available at the load/unload station. The part is then loaded onto the pallet and 
remains on it during its sojourn in the system. When the last operation has been performed, the part is unloaded and 
the pallet becomes available to carry a new part. It is assumed that the FMS produces only one type of parts, though 
they may each require differing amounts of processing. There is no rework or rejection. Each buffer is connected to 
exactly two machines j

iMC and j
iMC 1+ , and is named j

iB .  
 

In general, the time that parts spend on machine groups is random. This randomness may be due to variability in 
processing times and/or failures of the machine groups.  Owing to this variability in processing times of the machine 
groups, FMS are represented using non-homogeneous lines. However, processing times are assumed at a machine 
group to be deterministic, but the time-to-failure of the machine group is exponentially distributed. 
 

A machine group may fail only when it is processing a part. Thus, failure is operation-dependent. The time-to-
failure is exponentially distributed. Let jif  be the failure rate of machine group j

iMC . Its mean time to failures 

(MTTF) is thus j
if1 . Since, operation-dependent failures are considered, j

if1  is the average working time of 

machine group j
iMC  between two failures. After a machine group has failed, it is put under repair. Repairing times 

are also exponentially distributed. Let j
ir  be the repair rate of machine groupj

iMC . Its mean time to repair (MTTR) 

is therefore j
ir1 . It is assumed that when a failure occurs, the part stays on the machine group, and that processing 

resumes after the repair is completed, i.e., ‘preemptive-resume policy’ is in effect. When machine group j
iMC  is in a 

failed state, the number of parts in buffer j
iB 1−  tends to increase while the number of parts in buffer j

iB  tends to 

decrease as the parts move from it to next machine group j
iMC 1+ .  As said earlier, if this condition persists, buffer 

j
iB 1−  may become full, and if machine group j

iMC 1− completes a part, it will be blocked and therefore prevented from 

working. Similarly, buffer j
iB  may become empty. In that case, machine group jiMC 1+  is starved and therefore 

prevented from working. It should be noted that, since operation-dependent failures are being considered, a machine 
group might fail only if it is neither blocked nor starved. Note also that jMC1  is never starved and machine group 

j
n j

MC  is never blocked as it is assumed that new parts are always available at the input of the system and space is 

available at the output of the system. 
 

Such systems are difficult to analyze because of their large state spaces and their un-decomposability. The method 
used in this research is based on the model that approximates the nj-buffer system by nj individual buffer systems. 
The parameters of the single buffer systems are determined by the relationships existing among the flows through 
the buffers of the original system. The calculation of throughput and average levels is difficult because of the great 
size of the state space. Each machine group can be in four states: operational, blocked, starved, and under repair. 
Buffer j

iB  can be in 1+j
ib  states (the content of the buffer can have values from 0 to j

ib  where j
ib  is its maximum 
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capacity). Consequently, the Markov chain representation of nj machine groups closed-loop production line with nj 

buffers has a state space of cardinality )1(4
0

+∏
=

j
j

n

i

j
i

n
b . 

This state space is too large to allow brute force calculation. The approximate decomposition algorithm described 
below reduces this effort considerably. 
 

The two-machine transfer line, i.e., a line consisting of only two machines separated by a finite buffer, has been 
extensively studied in the literature. The usual assumptions are that both the time-to-failure and the time-until-repair 
is complete are exponentially distributed.  However, even in this simple case, no exact solution has yet been derived. 
As a result, two approximate models have been suggested for it, called respectively the discrete model, and the 
continuous model.  
 

Both approximate models provide very accurate results provided that the time between failures and the time until 
repair is complete are much larger than the processing times.  This condition holds in many applications and is true 
in the case of FMSs. 
 

Many researchers have analyzed the longer transfer lines. Gershwin and Schick (1983) have derived an exact 
solution for the three-machine version of the discrete model. However, it appears that ‘it is difficult to program, ill-
behaved, and not extendable to larger problems’ (Gershwin, 1987). Therefore, a solution for transfer lines with more 
than two machines would require approximations. Two different types of approximate techniques have been 
proposed so far to solve transfer line problems. These are named, respectively, decomposition methods and 
aggregation methods. 
 

Frein, et al. (1996) proposed an analytical method to evaluate the performance of closed loop production lines with 
unreliable machines and finite buffers. The principle of this method is to decompose the jth nj-machine homogenized 
closed-loop line called jL  into a set of nj two-machine open lines tagged jiL , i = 1, ..., nj. Each line j

iL is a 

continuous-flow model consisting of an upstream machine, j
iuMC , a downstream machine j

idMC , and an intermediate 

buffer, j
iB . In this method the repair time distribution of machine j

iuM  and j
idM  is approximated by an exponential 

distribution with the same mean.  
 

Le Bihan (1998) describes several homogenization methods for tandem lines. These methods can be extended to 
assembly/disassembly systems, so that the original non-homogeneous tree-structured system is transformed into a 
homogeneous one, which is then analyzed by the methods of Gershwin (1991) or Di Mascolo, David, and Dallery 
(1991). Dallery and Bihan (1999) proposed another approximation technique for the analysis of open type of transfer 
lines. The processing times are deterministic and all the machines have the same processing time. They use two-
moment approximation instead of a one-moment approximation of the repair time distribution for equivalent 
machines. The literature summarized above indicates that little is available yet for analyzing maintainability and 
reliability of the FMS using closed-loop production lines. This research is an attempt to extend previous research on 
modeling of closed-loop production lines into the modeling of failure-prone FMSs. 
 

In this research, an FMS such as the system shown in Fig. 1 consisting of M machine groups is modeled as a group 
of M closed-loop production lines. Each production line is analyzed using an extended decomposition technique. 
This extended decomposition technique developed in this research uses the generalized exponential distribution 
(two-moment approximation) for repair time distribution of j

iuMC  and j
idMC  machines. Use of generalized 

exponential distribution was suggested by Dallery and Bihan (1999) for open transfer lines. It was noticed by 
Dallery and Bihan that the original decomposition method by Frein et al. (1996) for closed-loop production lines, 
may not give accurate results for those cases where the reliability parameters (mean times to failure and repair) are 
of different orders of magnitudes. This weakness in the method due to Frein et al. is addressed in the present work 
by using generalized exponential distribution in place of exponential distribution for repair time distribution of 
machines. This technique was used in this research for the reliability analysis and modeling of a failure-prone FMS. 
 

In Fig. 2 the central server model of FMS (Fig. 1) has been conceptually disaggregated into a group of closed-loop 
non-homogeneous production lines. Each resulting non-homogeneous production line is then separately analyzed. 
These non-homogeneous lines are converted into homogeneous lines. To illustrate this adaptation a hypothetical 
FMS is used (shown in Fig. 1) that has four machine groups each having single-machine capability. This FMS is 
decomposed (consisting of a load/unload station, a central storage, an AGV controller, AGVs, machine groups with 
finite buffer capacity and a conveyor system) into a set of closed-loop production lines. Note that in the situation 
modeled, the load/unload station, AGVs and machine groups, all are prone to failure. The FMS such as the system 
shown in Fig. 1 consisting of M machine groups is decomposed into M closed-loop production lines. Each jth 

[ ]( )Mj :1∈ closed-loop production line in the decomposed system consists of load/unload station, central storage, 
AGV controller with AGVs, one machine group and conveyor system as shown in the Fig. 2. 
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Analysis of Non-Homogeneous Production Lines 
Let j

iT  be the processing time at node jiMC  (ith node in jth line). One way of analyzing a non-homogeneous line is to 

transform it into a homogeneous line. This transformation is called as disaggregation. Dallery et al. (1989) proposed 
another transformation of a non-homogeneous production line to a homogeneous production line. This 
transformation known as homogenization is simpler and leads to results that are closer to simulation. This 
transformation is used in the present work. It replaces each machine of the original line by an equivalent single 
machine as described below.  

 
 

Fig. 3 Original system parameters of jth non-homogeneous production 
line 

Fig. 4 Homogeneous jth production line consisting of four buffers 

 
All the equivalent machines have identical processing times jTmin , which is equal to the processing time of the fastest 

machine of the original line (Fig. 3).  Thus jTmin is given by the minimum of{ }T Tj
n
j

j1 , ... , . Let jh
if  and jh

ir  be the 

failure rate and repair rate of the equivalent machine of machine j
iMC  in jth homogenized production line (Fig. 4). 

The parametersjh
if  and jh

ir must be chosen such that the behavior of the homogenous line is close to the behavior of 

the original nonhomogeneous line.  
Thus in this transformation the failure rate of the node is adapted to the new speed of the node while its repair rate 
remains the same (Fig. 4). 
 
Model Development 
In this section, the approach is developed that will be used in modeling FMSs using closed-loop production lines. As 
stated earlier the FMS is first decomposed into a group of non-homogeneous closed-loop production lines. Using the 
procedure given in Section 3 these non-homogeneous lines are transformed into homogeneous lines. Each 
homogeneous line is then analyzed by the extended technique developed in this research. The method of Frein et al. 
(1996) is expanded in this research by approximating the repair time distribution by a generalized exponential 
distribution.  

 

 

Fig. 5 Decomposition of the Homogeneous jth Production Line (Fig. 
4) into Four Two-Machine Lines Fig. 6 ‘Equivalent’ Four Two-Machine Lines of Fig. 5 

 
It is important to note that in the present analysis the processing times are assumed to be deterministic. Each line jh

iL  

must be defined in such a way that the behavior of the material flow in buffer j
iB  closely matches that of the 

material flow in buffer j
iB  of the line jhL .  
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The homogeneous jth Production Line jhL consisting of four buffers shown in Fig. 4 would thus be decomposed into 
four two-machine lines { }jhjhjhjh LLLL 4321 ,,, as shown in Fig. 5. Machine jh

iuMC represents (in an aggregate way) the part of 

the line upstream of bufferjiB , while machine jh
idMC represents (in an aggregate way) the part of the line downstream 

of buffer j
iB . 

In addition, machine jh
idMC  models how material is transferred out of bufferj

iB . In this method the repair time 

distribution of machine jh
iuMC  and jh

idMC  is approximated by an exponential distribution with the same mean (one 

moment approximation). This condition is modified by approximating the repair time distribution of machine jh
iuMC  

and jh
idMC  by the generalized exponential distribution (two moment approximation) in this research. The 

performance parameters for the homogeneous jth production line are defined as follows: 
jh

iE  efficiency of machine group jh
iMC i.e. the proportion of time machine group jh

iMC is working; 
jh

ips  probability that machine group jh
iMC is starved in homogeneous jth line; 

jh
ipb  probability that machine group jh

iMC is blocked in homogeneous jth line; 
j

iQ  average amount of material in buffer j
iB  in homogeneous jth line; 

 
After approximating the repair time distribution of machine jh

iuMC  and jh
idMC  by generalized exponential distribution 

and taking the above equivalence with exponential distribution the performance parameters are calculated. The 

performance parameters of interest, jh
i

jh
i

jh
i pbandpsE ,  for a homogeneous jth line jhL may be obtained by solving 

equivalent two-machine groups linesjhe
iL , [ ]jni :1∈ with exponential failure and repair time distributions. Fig. 6 

shows the equivalent four two-machine lines for the four two-machine lines of Fig. 5. 

Using the above quantities jhe
id

jhe
id

jhe
iu

jhe
iu randfrf ,, , the parameters jhe

i
jhe

i
jhe

i pbandpsE , , as well as the average buffer 

level j
iQ  are calculated (Gershwin and Schick, 1983 and Dallery, David and Xie, 1989). The change in the present 

study is the introduction of homogenization approximation for non-homogeneous closed-loop production lines, 
which extends the works of earlier researchers. The efficacy of this approximation is validated by simulation.  
 

 
Fig. 7: ith Closed-Loop Production Line of the FMS as Shown in Fig. 1 

 

To apply decomposition approach to a failure-prone FMS the procedure is as follows: 
• Transform an FMS first into j multiple transfer lines as shown in the Fig. 2. Fig. 2 displays four closed-loop 

production lines for the FMS described in Fig. 1. The procedure begins by specifying the number of machine 
groups and material handling vehicles (AGVs) in the system, along with the routing probability (all parts are 
identical and require same processing sequence) to each machine groups. AGVs in the original FMSs 
collectively serve each decomposed closed-loop production line. However, their availability at a particular 
production line depends upon (a) the number of AGVs in the system, (b) the failure behavior of the AGVs. The 
equivalent individual decomposed production line would consist of one unloading/loading station, a central 
storage, one AGV controller, one machine group and a conveyor system (Fig. 7). Parts are mounted on the 
pallets. Pallets move in the production line. N represents the limited number of pallets circulating in the system. 
A new part can be released to the system only if a pallet is available. The part is then loaded onto the pallet and 
remains on it during its sojourn in the system. When the last operation has been performed, the part is unloaded 
and the pallet becomes available to carry a new part.  

 
The flow of pallet is modeled as follows. A part mounted on the pallet during one production cycle traces the 
following path (Fig. 7): 
• First, a finished Part, which has come from conveyor to the L/U station, will be unloaded. The pallet will remain 

engaged during unloading or in other words processing has been done on the pallet and pallet spends some time 
on node. Finished part goes out. The free pallet moves on to central storage. Note that there is a failure behaviour 
associated with L/U station. 
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• Next, the pallet moves on to L/U station for loading of a part on it. There is a loading time associated. The pallet 
remains engaged and spends time on the L/U station equal to loading time. 

• Next, the pallet with the part joins the AGV controller queue. There are alternate AGVs competing for the pallet 
to be picked up by them to transport it to the buffer of machine group i. Each AGV is equipped to handle one 
pallet at a time. 

 

The routing policy/protocol governing the FMS operation decides to which machine group (this corresponds to one 
of the 4 production line) the part will go. In other words, the traffic intensity to any machine group is decided by the 
routing scheme. The state dependent routing policy developed here dictates that parts are not sent to ‘full buffer’ and 
the ‘down’ machine groups. Routing probability in effect reflects the number of times a part goes to a particular 
machine group (a closed loop line) and the interaction between the lines. 
• Next, the part on a pallet goes to the machine group for processing. After getting processed it goes back to 

unloading station via the conveyor buffer for unloading and the freed pallet is transferred to central storage. The 
sum of the number of parts in each buffer is always equal to total number of pallets. 

 

The above transformation of FMSs into multiple independently operating transfer lines is one alternative method for 
analyzing the FMS. The lines interact through the routing scheme in affect. Such a model can also provide a basis 
for comparing the performance between two or more different FMSs design/operation configurations. Each 
disaggregated closed loop production line is analyzed using the algorithm described in next section. However, this 
analysis is valid only when processing times are deterministic. 
 

Computational Algorithm 
The algorithm to evaluate a closed-loop line consists of two major ‘loops’. For a given value of jhuI1 , the inner loop 

solves the system of 4nj - 1 equations. An iterative procedure is used whose convergence criterion is the 
conservation of parts flow through the homogeneous j th production line. The outer loop seeks the value of jhe

uI1 such 

that the sum of the number of parts in each buffer is equal to the total number of pallets in the closed-loop 

production line, i.e., ∑
=

==
jn

i

jj
i NQQ

1
 is satisfied. This is achieved by using a binary search.   

Performance Evaluation of the FMS  
Many real FMSs are composed of a load/unload station, a set of machine groups with local buffers, a material 
handling system (MHS) and a common central buffer. Each machine group includes a limited input buffer, several 
machines (servers), and a limited output buffer, which is optional. A machine group takes a part from the input 
buffer, processes it, and then releases it to the output buffer or to a conveyor. The MHS consists of several AGVs 
moving parts among the machine groups according to the process paths required by the parts. The function of the 
common buffer is to temporarily store blocked parts. Parts enter the system from the load/unload station, and leave 
the system through the load/unload station after all required processes are finished. In the present method, in order to 
obtain the performance parameters of the FMS, it is first conceptually transformed into multiple nonhomogeneous 
closed loop production lines. Then the efficiency and average part flow time of each production line are 
approximated by disaggregation and homogenization transformations and the extended decomposition technique 
shown above. 
 

 Numerical results and Discussions 
In this section, some numerical results are presented for the model of the failure-prone FMS system developed 
above. Tables 1 to 8 give the system parameters for the different cases (FMSs characteristics) considered and the 
comparison between above technique with simulation. A simulation model was built using ARENA for the typical 
FMSs configuration shown in Fig. 8. The results obtained are compared from the closed loop production lines 
technique with those obtained by simulation. In each case study, the simulation experiment consisted of ten 
replications. 
 

For each case the simulation was conducted for 100,000 time units and for each experiment, statistics were collected 
after the elapse of a warm-up period of 20,000 time units to minimize the effects of initialization. It was ensured that 
this length was long enough to eliminate the initialization bias and to provide independence (of the performance 
measure in question) between the successive replications of a simulation run. At the end of each replication, the 
model calculates a 95% confidence-interval half width for the steady-state (long run) expected value of throughput 
from each machine group, waiting time at each machine group, queue length at each machine group and utilization 
of each machine group. A simulation model was also built for a single closed-loop production line to compare the 
results obtained using the extended algorithm developed in the Section 5 for closed-loop production lines and those 
of simulation. The results from extended algorithm developed in this research agree well with simulation results. 

 

For all case studies the convergence tolerance ∈ = 10-4 was set. Generally, the algorithm converges fast but the 
number of iterations needed to reach convergence depends on ∈ and system parameters. This fact was noticed 
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during trial runs. For each case study carried out, the above extended decomposition technique demonstrated 
reasonable accuracy. The relative errors are generally no more than 5% for throughput and only in few cases higher 
than 10% but less than 15%. 
 

While experimenting with the above model, one observation regarding production efficiency (rate) and the excess 
capacity (Excess capacity is the difference of total capacity of the buffer and pallet number) for a closed-loop 
production line (Fig. 9) was noticed. The total buffer capacity is kept constant and the number of pallets circulating 
in the production line is changed. It is observed that the relation between the production rate and the excess capacity 
of buffer is a non-linear relationship that grows with marginally diminishing rise in efficiency.  Beyond a point, even 
if there is excess buffer capacity installed there is no significant increase in the production rate. Hence, an optimum 
number of pallets may give the desired maximum production rate. It is assumed that there are always parts available 
at the input of the system and space is available at the output of the system. As a result, the behavior of this system 
is entirely determined by the behavior of the pallets circulating through the closed loop. 

 

  
Fig. 8 ARENA Diagram of the Conceptual FMS Fig. 9 Result for a closed-loop production line 

 In case 1 (Table 1), single machine at each machine group is available with different buffer capacity. Each machine 
group has the same processing capacity. The throughput from each machine group now depends upon the routing 
probabilities. 
 

On reducing the number of AGVs 4 in case 1 (Table 3) to 3 in case 4 (Table 8) it is found that this action reduces the 
total mean throughput of the system by 6.5 %. This is due to starvation of machine groups, since traffic intensity is 
affected by lowering the number of AGVs in use. 
 

When failure rates of the machines at the machine groups are increased (case 2 (Table 4) from 0.001 to 0.01 in case 
3 (Table 6)) the total mean throughput of the system is reduced (Table 6), again as expected. Similar relationships 
were observed in other numerical experiments also. It is inferred that the model developed is able to reasonably 
model a FMS and hence may be used in the performance analysis of the system. It is planned to explore the 
possibility of modeling multi-machine machine groups using above technique in future. 

 
Table -1 Case 1 System parameters for the FMS 

M/c   
No. 

Service 
rate 

Machines Buffers Routing 
rate 

Failure 
rate 

Repair 
rate 

1 1 1 4 0.15 0.001 0.1 
2 1 1 6 0.10 0.001 0.1 
3 1 1 8 0.35 0.001 0.1 
4 1 1 10 0.40 0.001 0.1 

L/U 
station 

1 1 20 1 0.001 0.1 

Number of AGVs = 4; AGV speed = 1; Number of pallets = 30 
Buffer Capacity of Central Storage and conveyor is 20 each 

AGV failure rate and repair rate are 0.001 and 0.1 respectively 

Table -2 Throughputs for Case 1 
M/c
No
. 

Simulation 
Throughpu

t (A) 

Analytical Error 
(B-

A)*100/B 

Computational Time 
E(i) eff

iγ  
Throughput 

(B) 
Analytical  

(Sec) 
Simulation 

(Sec) 

1 0.14851 ± 
0.00197 

0.957829 0.151549 0.14520 -2.28% 

0.21978 
14800 

(10 
replications) 

2 0.09896 ± 
0.00217 

0.960041 0.101131 0.09709 -1.93% 

3 0.34544 ± 
0.00248 

0.961765 0.350005 0.33670 -2.59% 

4 0.39376 ± 
0.00175 

0.963124 0.397314 0.38270 -2.89% 

 

Table -3 Case 2 System Parameters for the FMS 
M/c No. Service 

rate 
Machines Buffers Routing 

rate 
Failure 

rate 
Repair 

rate 
1 1 1 4 0.25 0.001 0.1 
2 1 1 6 0.25 0.001 0.1 
3 1 1 8 0.25 0.001 0.1 
4 1 1 10 0.25 0.001 0.1 

L/U 
Station 

1 1 20 1 0.001 0.1 

Number of AGVs = 4; AGV speed = 1; Number of pallets = 30 
Buffer Capacity of Central Storage and conveyor is 20 each 

AGV failure rate and repair rate are 0.001 and 0.1 respectively 

Table -4 Throughputs for Case 2 
M/c
No
. 

Simulation 
Throughpu

t (A) 

Analytical Error 
(B-

A)*100/
B 

Computational Time 
E(i) eff

iγ  
Throughpu

t  
(B) 

Analytica
l 

(Sec) 

Simulation 
(Sec) 

1 0.24672 ± 
0.0031 

0.95782
9 

0.24909
9 

0.238590 -3.40% 

0.21978 

12000 
(10 

Replications
) 

2 0.24812 ± 
0.0011 

0.96004
1 

0.25011
9 

0.240124 -3.33% 

3 0.24867 ± 
0.0027 

0.96176
5 

0.25036
1 

0.240788 -3.27% 

4 0.24866 ± 
0.0021 

0.96312
4 

0.25042
1 

0.241186 -3.10% 

 

Simulate
FMS
100000

FLex ib le Manufacturing System

Mach ine group  2

Mach ine group  3

Mach ine group  4

Machine group 1

Conveyo r Mechanism

A G V Con tro l ler

Cen tral Sto rage
L oad/Un load  Stat ionP ark ing

M1

M2

M3

M 4
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Table -5 Case 3 System parameters for the FMS 
M/c No. Service 

rate 
Machines Buffers Routing 

rate 
Failure 

rate 
Repair 

rate 
1 1 1 4 0.25 0.01 0.1 
2 1 1 6 0.25 0.01 0.1 
3 1 1 8 0.25 0.01 0.1 
4 1 1 5 0.25 0.01 0.1 

L/U 
station 

1 1 12 1 0.01 0.1 

Number of AGVs = 3; AGV speed = 1; Number of pallets = 30 
Buffer Capacity of Central Storage and conveyor is 12 and 14 
respectively AGV failure rate and repair rate are 0.01 and 0.1  

 

Table -6 Throughputs for Case 3 
M/c
No
. 

Simulation 
Throughpu

t (A) 

Analytical Error 
(B-

A)*100/
B 

Computational Time 
E(i) eff

iγ  
Throughpu

t  
(B) 

Analytica
l 

(Sec) 

Simulation 
(Sec) 

1 0.14329 ± 
0.0025 

0.50414
3 

0.24981
1 

0.12594 -13.77 

0.76923 

11040 
(10 

Replications
) 

2 0.14417 ± 
0.0016 

0.56970
2 

0.25007
5 

0.142468 -1.190 

3 0.14639 ± 
0.0030 

0.61363
7 

0.25010
9 

0.153476 4.610 

4 0.14375 ± 
0.0012 

0.54051
7 

0.25000
6 

0.13513 -6.38 

 

Table -7 Case 4 System parameters for the FMS 
M/c No. Service 

rate 
Machines Buffers Routing 

rate 
Failure 

rate 
Repair 

rate 
1 1 1 4 0.15 0.001 0.1 
2 1 1 6 0.10 0.001 0.1 
3 1 1 8 0.35 0.001 0.1 
4 1 1 5 0.40 0.001 0.1 

L/U 
station 

1 1 12 1 0.001 0.1 

Number of AGVs = 3; AGV speed = 1; Number of pallets = 30 
Buffer Capacity of Central Storage and conveyor is 12 and 14 
respectively AGV failure rate and repair rate are 0.001 and 0.1  

 

Table -8 Throughputs for Case 4 
M/c
No
. 

Simulation 
Throughpu

t (A) 

Analytical Error 
(B-

A)*100/
B 

Computational Time 
E(i) eff

iγ  
Throughpu

t  
(B) 

Analytica
l 

(Sec) 

Simulation 
(Sec) 

1 0.14871 ± 
0.0015 

0.87549
8 

0.15127
2 

0.132438 -12.28% 

0.824175 

17000 
(10 

Replications
) 

2 0.09856 ± 
0.0008 

0.90804
5 

0.10092
4 

0.09164 -7.55% 

3 0.34542 ± 
0.0026 

0.92543
9 

0.35142
5 

0.325224 -6.20% 

4 0.39364 ± 
0.0033 

0.89464
6 

0.39637
9 

0.354618 -11.00% 

 

 
CONCLUSION 

 

An approximate modeling technique is explored in this research, which may be used to model large sized failure-
prone FMSs with finite buffer size.  Note, however, that the above approach applies only to systems with 
deterministic processing times. It was concluded that while the approach produced acceptable results, its application 
should be made when the size of the system would make the use of the more near-exact Disaggregation and 
Aggregation (DA) approach intractable or difficult.   
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