Available online
European Journal of Advancesin Engineering and Technology, 2015, 2(7): 33-37

Research Article ISSN: 2394 - 658X

Stack Overflow and Program Control
Biswajit Sarma and Srishti Dasgupta

Department of Computer Science and Engineerindialdengineering College, Jorhat, Asaam, India
eduneristbiswa@gmail.com

ABSTRACT

A buffer is a sequential section of memory allogate contain anything from a character string to array of
integers. A buffer overflow or buffer overrun ocgwvhen more data is put into a fixed-length butifen that the
buffer can handle. Adjacent memory space becomeswadtten and corrupted. In computer security and
programming, a buffer overflow, or buffer overriman anomaly where a program, while writing dataatbuffer,
overruns the buffer's boundary and overwrites adfgcmemory. This is a special case of violatiormeimory
safety. A buffer overflow is a common software mgdnistake. This paper discusses certain issuestatndfer
overflow from the very basic and its details in fystem.

Key words: Buffer, computer security, memory, stack overflow

INTRODUCTION

A process is program in execution. There are fantspor sections in a process. These are
» Code or text section: Which holds the executabtieanf the program
« Data section: Which holds all the global variables
« Stack section: The stack is the main important rbmgart in the process. It grows when a functisrcalled
and shrinks when the function finishes its execeutid/hen it grows it holds the return address arahllo
variables.
« Heap section: This part of the memory is usedltxate dynamic memory for the process.
The heap and the stack sections grow in opposietiin. The stack grows from high memory to the fnemory.
We will concentrate only on the stack here. Befaee discuss the details we want to mention some iitapb
points:
a) A general-purpose register to take note of isetttended stack pointer register (ESP) or simplysthek pointer.
ESP points to the memory address where the neckt efzeration will take place. The ESP register pdlint to the
top of the stack. Here is an example for ESP pnointe
Suppose we have two instructions in assembly laggyua
PUSH 1
PUSH varA
Here 1000h is memory address and varl is a variable
1. after execution of the instruction PUSH 1
2. after execution of the instruction PUSH ADDRYar

b) Another relevant register to the stack is EBP. EB® register is usually used to calculate an addrelative to
another address sometimes called a frame pointigrodgh it can be used as a general-purpose redisB® has
historically been used for working with the stack.

The stack: Let us take an example program and®sdhe stack grows. Here is a C program:

void test()

{

int A;

A=10;

}

int main()

{

33



Sarma and Dasgupta Euro. J. Adv. Engg. Tech., 2015, 2(7):33-37

int x=100;

test();

x=x+100;

}

This is a simple C program where a functis called (test()) from the main function. In thestt function an intege
variable is declared and one initialization is d@mel an executable statement is there. This C anogtack is
shown below step by step:

I) The starting point of main before ttest function which is called the stack looks like:

II) When the function test is called the stack Istike:

The stack works according to a LIFO model (Lagtinst Out). Since the spaces within the stack Boeated for
the lifetime of a function, dg data that is active during this lifetime canidesthere

Cortent of memary Cortent of memory
Low Addrassas
Taxt Low Lowr
Emory Mermrmory
Address Address
Data
Heap
ESF
War A p—frairt
hiere
: Stack |__ESFP
High Addressas 1 pain 1
High here High
mermory
remary
Fig. 1 Address Address .
Fig. 2 Fig. 3
Contert of memaory Contert of memory
Low Lo
MEmoFy MEmory
Address Address
ESP
Test VAR A=10 +—pair
Functiol ere
stack ERP
Return Address
ESP
Var x=100 k—poir Mai Var x=100
here can
Stack
High High
memary Memaory
Address Address
Fig. 4 Fig. 5

VULNERABLE POINT IN THE STACK OF A PROCESS

Now we have a solid understanding of what hapjwhen a function is called and how it interacts whb stack
In this section, we are going to see what happdrenwve stuff too much data into a buffer. We modify above
program and use a buffer in the test function. fidsson why we use a buffe that array bound checking is r
done by the system. Here is a simple program whsels the buffer (a [1

void test()
har A[1];
Al0]="a;

}

int main()

{
int x=100;
test();
x=x+100;

34



Sarma and Dasgupta Euro. J. Adv. Engg. Tech., 2015, 2(7):33-37

}

If we compile and run the program we do not havg problem. But here is another program which does
something else.

void never_return()

{
while(1)
{
}

void call()

{
char A[1];
ar[5]= never_return;

}

int main()

{

int x=100;

call();

}

If we run the above program it does something amahrwhich never returns back to the terminal.
[biswa@localhost buffer]$ ./a.out

Now let us try to find out the reason of why thimarmality happens. We have to go to the stackefystem and
try to find the reason. When the instruction arfidwer_return executes, something abnormal happensr code

we include a function never_return which basicafigludes a forever loop doing nothing. But most artpnt

thing is that this function is not called propeirythe whole C program. The name of the functiobasically used
in that particular instruction. Here is the diagrahstack for the above program.

Before the execution of the instruction a[5]=neveturn; the stack looks like above.

After the execution of the instruction a[5]=neveaturn the stack looks like above. The most impartaimg here is
that when the function call is made from main tegim address is pushed into the stack which és laged by the
system to return back to main function. Since tlayabound is not checked by the system we wrigtatement in
the function call trying to over write the returddaess by some other address. Basically that asldresur function
address of function never_return. So when the systédl try to return back from the function call toain, it will
use the return address already stored in the sBagkhere it will find the address of the functinaver_return and
the control automatically goes to the function meweturn and starts execution there instead ofggnthe main
function.

Cortent of memory Low e omtent of memory
memary
Address
Low
MEMory
Address
ESF — . ESP
call VAR AD] 1—pain call VARAD] [
Functio ere Fundctio here
stack EEP stack EBP
Rﬁg_ti dress
will Be rep aoed by
Retrn Address the address of the
furction
newer_rewrns
M Var x=100 |
ain Hain
Stack Stack Var x=100
High High
memary MEMary
Address Bddress
Fig. 6 Fig. 7

Finding the Address of a Process and Using Vulnerability of the Process Stack and Changing the Transfer
Control
So now we have a little idea of system stack aedréturn address. Now we will try to use this vuhindlity to
change the execution sequence. But before we ploseehave to find out the address of the functiorthie
system. For this we need to know little bit abodb glebugger. We use the same C program and conogiilg -g
option.

35



Sarma and Dasgupta Euro. J. Adv. Engg. Tech., 2015, 2(7):33-37

[biswa@Ilocalhost buffer]$ gcc -g test.c

[biswa@Ilocalhost buffer]$ gdb a.out

(gdb) disassemble never_return

0x08048400 <+0>: push %ebp

0x08048401 <+1>: mov %esp,%ebp

0x08048403 <+3>: jmp 0x8048403 <never_return+3>

End of assembler dump.

Dump of assembler code for function never_return:

(gdb) quit

Here we try to use gdb and disassemble never_rethith gives us the starting address along withatthdresses
for all instructions for the function never_retuhdow we modify the above C program and use thisrinftion in
that C program. Here is the code:

void never_return()

{
while(1)
{
}

void call()

{

char A[1];

A[5]=0x08048400; //HERE we modify
}

int main()

{

int x=100;

call();

}

If we notice the above code now we see that weuaigg the address 0x08048400 instead of the fumctaome
(never_return). If we try to execute we will findet same result the terminal never return back.h®eet things
work interchangeably. The stack looks like:

Law Low ¢ ontert of memor Law
memu_yCumem of memary memory ¥ memayCumem of memary
Address Address Address
] ESP _ _ ESF _ _ ESP
cal VAR A[D] - poirt: call VAR AD]=A —Eam call VAR A[0]=A it
Functio here Functin ere Fundio here
stack stack EEP stack
EBP ARAAAA will be ARAARA
replac
by A Addres
Y OxCB042430 of the
G0 8048 400 0=A048400 furctic
Main Main _ Main E:Er‘
Stack Var x=100 Stack Var x=100 Stk Var x=100
High High High
MEMary memary MEMary
Address Address Address
Fig. 8 Fig. 9 Fig. 10

Giving the input from user sideand running it:

Now we have a clear idea about the stack overflads éhange of execution sequence. But the most itaupior
thing is that whatever we did, basically we wrdte tode itself in the program. Now we will try tivey input from
user side and to implement the same thing. Hetteeisode:

#include<stdio.h>
void never_return()

{
while(1)

{
}

36



Sarma and Dasgupta Euro. J. Adv. Engg. Tech., 2015, 2(7):33-37

void call()

char ar[1];

scanf("%s",ar);

printf("\n the array=%s",ar);

}

int main(){

call();

}

We use the scanf() function to fill up the strimgdgout it in the character array A and then tryptimt the string.
We compile the above program and use gdb debugdard out the address of the function never_refwihich is
same as before 0x08048400). Then we try to ruptbgram.

[biswa@localhost research]$ printf "A" | ./a.out

the array=A

[biswa@localhost research]$

It is running perfectly well. Then we try again

[biswa@localhost research]$ printf "AAAAAA" | ./aib

the array=AAAAAA

[biswa@localhost research]$

That means the string can hold more than one cteara¥e try again.

[biswa@localhost research]$ printf "AAAAAAAAAAAA" |/a.out

Segmentation fault (core dumped)

[biswa@localhost research]$

We got a segmentation fault. But why? We again gokkto the system stack and try to find out. Her¢hie
system stack for the above input.

If we notice this carefully the return address O&B800 is over written by a A character there arel résturn
address changes to 0xA048400. The system foundthisats not a legal address and gave user a sdgtitan
fault. We try again with the following input; ateHast we put the address which we want to chamgexecution
sequence. The stack looks like Fig. 9.

[biswa@localhost research]$ printf "AAAAAAAAAAAAA\BO\x84\x04\x08"| ./a.out
printf "AAAAAAAAAAAAA

hello

asdf

mnpo

It is taking the input forever. This means it i®enting the function never_return(), which neveumes back (Fig.
10).
CONCLUSION

We have studied the system stack in relation toftimetion call in a process, how the stack growsemvithe
function is called and shrinks when the functiaridhes its work and returns back to the called tionc The main
intention of this paper is to find the vulnerableirgs in the stack and discuss the theory behinsl thhis
information can be used in further research work.

REFERENCES

[1] Sobolewski Piotr, Over Flowing the Stack on Lin@6xHak in 9 Magazing2004, 4.

[2] Carbonneaux Quentin, Hoffmann Jan, Ramananandrmd,aBhao Zhong, Ertb-End Verification of Stack-
Space Bounds for C Programéale University, PLDI '14, Edinburgh, United Kidgm, 2014.

[3] Anley Chris, Heasman John, Linder Felix, Richarteraédo, The Shellcoder’s Handbook, (Discovering and
Exploiting Security Holes), Second Edition, Wileylt#ishing Inc,2007.

37



