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Abstract: 
         Fraudulent behaviors in Google Play, the most popular Android app market, fuel search rank abuse and 

malware proliferation. To identify malware, previous work has focused on app executable and permission 

analysis. In this paper, we introduce FairPlay, a novel system that discovers and leverages traces left behind by 

fraudsters, to detect both malware and apps subjected to search rank fraud. FairPlay correlates review activities 

and uniquely combines detected review relations with linguistic and behavioral signals gleaned from Google 

Play app data (87 K apps, 2.9 M reviews, and 2.4M reviewers, collected over half a year), in order to identify 

suspicious apps. FairPlay achieves over 95 percent accuracy in classifying gold standard datasets of malware, 

fraudulent and legitimate apps. We show that 75 percent of the identified malware apps engage in search rank 

fraud. FairPlay discovers hundreds of fraudulent apps that currently evade Google Bouncer's detection 

technology. FairPlay also helped the discovery of more than 1,000 reviews, reported for 193 apps, which reveal a 

new type of “coercive” review campaign: users are harassed into writing positive reviews, and install and review 

other apps. 
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I. INTRODUCTION 

The commercial success of Android app markets 

such as Google Play [1] and the incentive model 

they offer to popular apps, make them appealing 

targets for fraudulent and  malicious  behaviors. 

Some  fraudulent  developers deceptively boost the 

search rank and popularity of their apps (e.g., 

through fake reviews and bogus installation counts) 

[2], while malicious developers use app markets as a 

launch pad for their malware [3], [4], [5], [6].  

The motivation for such behaviors is impact: app 

popularity surges translate into financial benefits 

and expedited malware proliferation.  

Fraudulent developers frequently exploit 

crowdsourcing sites (e.g., Freelancer [7], Fiverr [8], 

BestAppPromotion [9]) to hire teams of willing 

workers to commit fraud collec-tively, emulating 

realistic, spontaneous activities from unre-lated 

people (i.e.,”crowdturfing” ). 

In addition, the efforts of Android markets to 

identify and remove malware are not always 

successful. For instance, Google Play uses the  

Bouncer system [11] to remove mal-ware. However, 

out of the 7,756 Google Play apps we ana-lyzed 

using VirusTotal [12], 12 percent (948)  

 

 
In this paper, we seek to identify both malware and 
search rank fraud subjects in Google Play. Fig. 1. 
An “install job” posting from Freelancer [7], asking 
for 2,000 installs within 3 days (in orange), in an 
organized way that includes expertise veri-fications 
and provides secrecy assurances (in blue). Text 
enlarged for easier reading. an efficient algorithm to 
identify temporally con-strained, co-review pseudo-
cliques—formed by reviewers with substantially 
overlapping co-review-ing activities across short 
time windows.We use temporal dimensions of 
review post times to identify suspicious review 
spikes received by apps; we show that to 
compensate for a negative review,for an app that has 
rating R, a fraudster needs to post at least 

R
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positive reviews. We also identify apps with 
“unbalanced” review, rating and install counts, as 
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well as apps with permission request ramps.We use 
linguistic and behavioral information to (i)detect 
genuine reviews from which we then (ii) extract 
user-identified fraud and malware indicators. 
  

Tools to Collect and Process Google Play Data. 

We have developed GPCrawler, a tool to 

automatically collect data published by Google Play 

for apps, users and reviews, as well as GPad, a tool 

to download apks of free apps and scan them for 

malware using VirusTotal.  
Novel Longitudinal and Gold Standard Datasets. 

We contributed a longitudinal dataset of 87,223 

freshly posted Google Play apps (along with their 

2.9 M reviews, from 2.3 M reviewers) collected 

between October 2014 and May 2015. We have 

leveraged search rank fraud expert contacts in 

Freelancer [7], anti-virus tools and manual 

verifications to collect gold standard datasets of 

hundreds of fraudulent, malware and benign apps [x 

3]. We have published these datasets on the project 

website [20]. 

II.     RELATED WORK AND MOTIVATION 

System Model. We focus on the Android app 

market ecosys-tem of Google Play. The participants, 

consisting of users and developers, have Google 

accounts. Developers create and upload apps, that 

consist of executables (i.e., “apks”), a set of required 

permissions, and a description. The app mar-ket 

publishes this information, along with the app’s 

received reviews, ratings, aggregate rating (over 

both reviews and ratings), install count range 

(predefined buck-ets, e.g., 50-100, 100-500), size, 

version number, price, time of last update, and a list 

of “similar” apps. 
 

Each review con-sists of a star rating ranging 

between 1-5 stars, and some text. The text is 

optional and consists of a title and a descrip-tion. 

Google Play limits the number of reviews displayed 

for an app to 4,000. Fig. 2 illustrates the participants 

in Goo-gle Play and their relations. 
 

Adversarial Model. We consider not only 

malicious devel-opers, who upload malware, but 

also rational fraudulent developers. Fraudulent 

developers attempt to tamper with the search rank of 

their apps, e.g., by recruiting fraud experts in 

crowdsourcing sites to write reviews, post rat-ings, 

and create bogus installs. While Google keeps secret 

the criteria used to rank apps, the reviews, ratings 

and install counts are known to play a fundamental 

part (see e.g., [21]). 

To review or rate an app, a user needs to have a 
Google account, register a mobile device with that 
account, and install the app on the device. This 
process complicates the job of fraudsters, who are 
thus more likely to reuse accounts across jobs. The 
reason for search rank fraud attacks is impact. Apps 
that rank higher in search results, tend to receive 
more installs. This is beneficial both for fraudulent 
developers, who increase their revenue, and 
malicious developers, who increase the impact of 
their malware. 
 

2.1 Android Malware Detection 
 

Zhou and Jiang [19] collected and characterized 

1,200 Android malware samples, and reported the 

ability of mal-ware to quickly evolve and bypass the 

detection mecha-nisms of anti-virus tools. 
 

   Burguera et al. [13] used crowdsourcing to 

collect system call traces from real users, then used 

a “partitional” cluster-ing algorithm to classify 

benign and malicious apps. Shabtai et al. [14] 

extracted features from monitored apps (e.g., CPU 

consumption, packets sent, running processes) and 

used machine learning to identify malicious apps. 

Grace et al. [15] used static analysis to efficiently 

identify high and medium risk apps. 
 

 Previous work has also used app permissions to 

pinpoint malware [16], [17], [18]. Sarma et al. [16] 

use risk signals extracted from app permissions, e.g., 

rare critical permissions (RCP) and rare pairs of 

critical permissions (RPCP), to train SVM and 

inform users of the risks versus benefits tradeoffs of 

apps. In Section 5.3 we show that FairPlay 

significantly improves on the performance achieved 

by Sarma et al. [16]. 
 

Peng et al. [17] propose a score to measure the 

risk of apps, based on probabilistic generative 

models such as Naive Bayes. Yerima et al. [18] also 

use features extracted from app permissions, API 

calls and commands extracted from the app 

executables.   
Sahs and Khan [22] used features extracted from 

app per-missions and control flow graphs to train an 
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SVM classifier on 2,000 benign and less than 100 

malicious apps. Sanz et al. [23] rely strictly on 

permissions as sources of features for several 

machine learning tools. They use a dataset of around 

300 legitimate and 300 malware apps. 
  
Google has deployed Bouncer, a framework that 

moni-tors published apps to detect and remove 

malware. Ober-heide and Miller [11] have analyzed 

and revealed details of Bouncer (e.g., based in 

QEMU, using both static and dynamic analysis). 

Bouncer is not sufficient—our results show that 948 

apps out of 7,756 apps that we downloaded from 

Google Play are detected as suspicious by at least 1 

anti-virus tool. In addition, FairPlay detected 

suspicious behavior for apps that were not removed 

by Bouncer during a more than 6 months long 

interval. 
 

Instead of analyzing app executables, FairPlay 

employs a relational, linguistic and behavioral 

approach based on lon-gitudinal app data. FairPlay’s 

use of app permissions differs from existing work 

through its focus on the temporal dimension, e.g., 

changes in the number of requested permis-sions, in 

particular the “dangerous” ones. We observe that 

FairPlay identifies and exploits a new relationship 

between malware and search rank fraud. 
 

2.2 Graph Based Opinion Spam Detection 

Graph based approaches have been proposed to 

tackle opinion spam [24], [25]. Ye and Akoglu [24] 

quantify the chance of a product to be a spam 

campaign target, then clus-ter spammers on a 2-hop 

subgraph induced by the products with the highest 

chance values. Akoglu et al. [25] frame fraud 

detection as a signed network classification problem 

and classify users and products, that form a bipartite 

net-work, using a propagation-based algorithm. 
  
FairPlay’s relational approach differs as it 

identifies apps reviewed in a contiguous time 
interval, by groups of users with a history of 
reviewing apps in common. FairPlay com-bines the 
results of this approach with behavioral and lin-
guistic clues, extracted from longitudinal app data, 
to detect both search rank fraud and malware apps. 
We emphasize that search rank fraud goes beyond 
opinion spam, as it implies fabricating not only 
reviews, but also user app install events and ratings 

 

3 THE DATA 
 

We have collected longitudinal data from 87K+ 

newly released apps over more than 6 months, and 

identified gold standard data. In the following, we 

briefly describe the tools we developed, then detail 

the data collection effort and the resulting datasets. 
 

    Data Collection Tools. We have developed the 

Google Play Crawler (GPCrawler) tool, to 

automatically collect data pub-lished by Google 

Play for apps, users and reviews. Google Play 

prevents scripts from scrolling down a user page. 

Thus, to collect the ids of more than 20 apps 

reviewed by a user. To overcome this limitation, we 

developed a Python script and a Firefox add-on. 

Given a user id, the script opens the user page in 

Firefox. When the script loads the page, the add-on 

becomes active. The add-on interacts with Google 

Play pages using content scripts (Browser specific 

compo-nents that let us access the browsers native 

API) and port objects for message communication. 

The add-on displays a “scroll down” button that 

enables the script to scroll down to the bottom of the 

page. The script then uses a DOMParser to extract 

the content displayed in various formats by Goo-gle 

Play. It then sends this content over IPC to the add-

on. The add-on stores it, using Mozilla XPCOM 

components, in a sand-boxed environment of local 

storage in a temporary file. The script then extracts 

the list of apps rated or reviewed by the user. 
 

We have also developed the Google Play App 

Downloader (GPad), a Java tool to automatically 

download apks of free apps on a PC, using the open-

source Android Market API[26]. GPad takes as 

input a list of free app ids, a Gmail account and 

password, and a GSF id. GPad creates a new market 

session for the “androidsecure” service and logs in. 

GPad sets parameters for the session context (e.g., 

mobile device Android SDK version, mobile 

operator, country), then issues a GetAssetRequest 

for each app identifier in the input list. GPad 

introduces a 10s delay between requests. The result 

contains the url for the app; GPad uses this url to 

retrieve and store the app’s binary stream into a 

local file. After collecting the binaries of the apps on 

the list, GPad scans each app apk using VirusTotal 

[12], an online malware detector provider, to find 
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out the number of anti-malware tools (out of 57: 

AVG, McAfee, Symantec, Kaspersky, Mal-

warebytes, F-Secure, etc.) that identify the apk as 

suspicious. We used 4 servers (PowerEdge R620, 

Intel Xeon E-26XX v2 CPUs) to collect our datasets, 

which we describe next. 

3.1 Longitudinal App Data 
 
In order to detect suspicious changes that occur 

early in the lifetime of apps, we used the “New 

Releases” link to identify apps with a short history 

on Google Play. Our interest in newly released apps 

stems from our analysis of search rank fraud jobs 

posted on crowdsourcing sites. 
 

    Revealed that app developers often recruit 

fraudsters early after uploading their apps on Google 

Play. Their intent is likely to create the illusion of an 

up-and-coming app, that may then snowball with 

interest from real users. By moni-toring new apps, 

we aim to capture in real-time the moments when 

such search rank fraud campaigns begin. 
  

We approximate the first upload date of an app 

using the day of its first review. We have started 

collecting new releases in July 2014 and by October 

2014 we had a set of 87,223 apps, whose first 

upload time was under 40 days prior to our first 

collection time, when they had at most 100 reviews. 
 

 (Personalization). Fig. 4 shows the average rating 

distribu-tion of the fresh apps. Most apps have at 

least a 3.5 rating aggregate rating, with few apps 

between 1 and 2.5 stars. However, we observe a 

spike at more than 8,000 apps with less than 1 

star.We have collected longitudinal data from these 

87,223 apps between October 24, 2014 and May 5, 

2015. Specifi-cally, for each app we captured 

“snapshots” of its Google Play metadata, twice a 

week. An app snapshot consists of values for all its 

time varying variables, e.g., the reviews, the rating 

and install counts, and the set of requested  
 

 
 
 
 
 
 
 
 

Fig. 5. Co-review graph of 15 seed fraud accounts 
(red nodes) and the 188 GbA accounts (orange 
nodes). Edges indicate reviews written in common 
by the accounts corresponding to the endpoints. We 
only show edges having at least one seed fraud 
account as an endpoint. The 15 seed fraud accounts 
form a suspicious clique with edges weights that 
range between 60 and 217. The GbA accounts are 
also suspiciously well connected to the seed fraud 
accounts: the weights of their edges to the seed fraud 
accounts ranges between 30 and 302. 
 

Permissions (see Section 2 for the complete list). 

For each of the 2,850,705 reviews we have collected 

from the 87,223 apps, we recorded the reviewer’s 

name and id (2,380,708 unique ids), date of review, 

review title, text, and rating. 
  
This app monitoring process enables us to extract 

a suite of unique features, that include review, install 

and permis-sion changes. In particular, we note that 

this approach ena-bles us to overcome the Google 

Play limit of 4,000 displayed reviews per app: each 

snapshot will capture only the reviews posted after 

the previous snapshot. 
 

3.2 Gold Standard Data 
 

Malware Apps. We used GPad (see Section 3) to 

collect the apks of 7,756 randomly selected apps 

from the longitudinal set (see Section 3.1). Fig. 6 

shows the distribution of flags raised by VirusTotal, 

for the 7,756 apks. None of these apps had been 

filtered by Bouncer [11]! From the 523 apps that 

were flagged by at least 3 tools, we selected those 

that had at least 10 reviews, to form our “malware 

app” dataset, for a total of 212 apps. We collected 

all the 8,255 reviews of these apps.  
 

Fraudulent Apps. We used contacts established 

among Freelancer [7]’s search rank fraud 

community, to obtain the identities of 15 Google 

Play accounts that were used to write fraudulent 

reviews for 201 unique apps. We call the 15 

accounts “seed fraud accounts” and the 201 apps 

“seed fraud apps”. Fig. 5 shows the graph formed by 

the review habits of the 15 seed accounts: nodes are 

accounts, edges connect accounts who reviewed 

apps in common, and edge weights represent the 

number of such commonly reviewed apps. The 15 

seed fraud accounts form a suspicious clique. This 
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shows that worker controlled accounts are used to 

review many apps in common: the weights of the 

edges between the seed fraud accounts range 

between 60 and 217. 
 

Fraudulent Reviews. We have collected all the 

53,625 reviews received by the 201 seed fraud apps. 

The 15 seed fraud accounts were responsible for 

1,969 of these reviews. We used the 53,625 reviews 

to identify 188 accounts, such that each account was 

used to review at least 10 of the 

 

 
 

   Fig. 6. Apks detected as suspicious (y axis) by 
multiple anti-virus tools (x axis), through VirusTotal 
[12], from a set of 7,756 downloaded apks. 

    201 seed fraud apps (for a total of 6,488 reviews). 

We call these, guilt by association (GbA) accounts. 

Fig. 5 shows the co-review edges between these 

GbA accounts (in orange) and the seed fraud 

accounts: the GbA accounts are suspiciously well 

connected to the seed fraud accounts, with the 

weights of their edges to the seed accounts ranging 

between 30 and 302. 
 

To reduce feature duplication, we have used the 

1,969 fraudulent reviews written by the 15 seed 

accounts and the 6,488 fraudulent reviews written 

by the 188 GbA accounts for the 201 seed fraud 

apps, to extract a balanced set of fraudulent reviews. 

Specifically, from this set of 8,457 (¼ 1; 969 þ 6; 

488) reviews, we have collected 2 reviews from 

each of the 203 (¼ 188 þ 15) suspicious user 

accounts. Thus, the gold standard dataset of 

fraudulent reviews con-sists of 406 reviews. 
 

    The reason for collecting a small number of 

reviews from each fraudster is to reduce feature 

duplication: many of the features we use to classify 

a review are extracted from the user who wrote the 

review (see Table 2). 
  
Benign Apps. We have selected 925 candidate 

apps from the longitudinal app set, that have been 

developed by Goo-gle designated “top developers”. 

We have used GPad to fil-ter out those flagged by 

VirusTotal. We have manually investigated 601 of 

the remaining apps, and selected a set of 200 apps 

that (i) have more than 10 reviews and (ii) were 

developed by reputable media outlets (e.g., NBC, 

PBS) or have an associated business model (e.g., 

fitness trackers). We have also collected the 32,022 

reviews of these apps. 

 

FAIRPLAY: PROPOSED SOLUTION 
 
We now introduce FairPlay, a system to 
automatically detect malicious and fraudulent apps. 
Fig. 7. FairPlay system architecture. The CoReG 
module identifies sus-picious, time related co-
review behaviors. The RF module uses linguistic 
tools to detect suspicious behaviors reported by 
genuine reviews. The IRR module uses behavioral 
information to detect suspicious apps. The JH 
module identifies permission ramps to pinpoint 
possible Jekyll-Hyde app transitions. 
  

4.1 FairPlay Overview 
 
FairPlay organizes the analysis of longitudinal app 

data into the following 4 modules, illustrated in Fig. 

7. The Co-Review Graph (CoReG) module 

identifies apps reviewed in a contig-uous time 

window by groups of users with significantly 

overlapping review histories. The Review Feedback 

(RF) module exploits feedback left by genuine 

reviewers, while the Inter Review Relation (IRR) 

module leverages relations between reviews, ratings 

and install counts. The Jekyll-Hyde (JH) module 

monitors app permissions, with a focus on dan-

gerous ones, to identify apps that convert from 

benign to malware. Each module produces several 

features that are used to train an app classifier. 

FairPlay also uses general fea-tures such as the 

app’s average rating, total number of reviews, 

ratings and installs, for a total of 28 features. Table 1 
 
                                 TABLE 1  

FairPlay’s Most Important Features, Organized 
by Their Extracting Module  
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Notation Definition  

   

CoReG Module number of pseudo-cliques with r   

u 

 

nCliques  
r
max

,
 
r
med

,
 
r
SD clique density: max, median, SD  

CSmax, CSmed, 
CSSD 

pseudo-cliques size: max, 
median, SD  

inCliqueCount 
% of nodes involved in pseudo-
cliques  

   

RF Module   

malW 
% of reviews with malware 
indicators  

fraudW, goodW 
% of reviews with fraud/benign 
words  

FRI 
fraud review impact on app 
rating  

   

IRR Module   
spikeCount, 
spikeamp 

days with spikes & spike 
amplitude  

I1=Rt1, I2=Rt2 install to rating ratios  

I1=Rv1, I2=Rv2 install to review ratios    
JH Module 
   
 

                  

 

 

 

 
 
 
Fig. 8. Example pseudo-cliques and PCF output. 
Nodes are users and edge weights denote the 
number of apps reviewed in common by the end 
users. Review timestamps have a 1-day granularity. 
(a) The entire co-review graph, detected as pseudo-
clique by PCF when u is 6. When u is 7, PCF detects 
the subgraphs of (b) the first two days and (c) the 
last two days. When u=8, PCF detects only the 
clique formed by the first day reviews (the red 
nodes). 
 
4.2 The Co-Review Graph (CoReG) Module 
 
This module exploits the observation that fraudsters 

who control many accounts will re-use them across 

multiple jobs. Its goal is then to detect sub-sets of an 

app’s reviewers that have performed significant 

common review activities in the past. In the 

following, we describe the co-review graph con-cept, 

formally present the weighted maximal clique 

enumer-ation problem, then introduce an efficient 

heuristic that leverages natural limitations in the 

behaviors of fraudsters.  
Co-Review Graphs. Let the co-review graph of an 

app, see Fig. 8, be a graph where nodes correspond 

to user accounts who reviewed the app, and 

undirected edges have a weight that indicates the 

number of apps reviewed in common by the edge’s 

endpoint users. Fig. 16a shows the co-review cli-que 

of one of the seed fraud apps (see Section 3.2). The 

co-review graph concept naturally identifies user 

accounts with significant past review activities.  
The Weighted Maximal Clique Enumeration 

Problem. Let G ¼ ðV; EÞ be a graph, where V 

denotes the sets of vertices of the graph, and E 

denotes the set of edges. Let w be a weight function, 

w : E ! R that assigns a weight to each edge of G. 

Given a vertex sub-set U 2 V , we use G½U& to 

denote the sub-graph of G induced by U. A vertex 

sub-set U is called a clique if any two vertices in U 

are connected by an edge in E. We say that U is a 

maximal cliqueif no other clique of G contains U. 

The weighted maximal clique enumeration problem 

takes as input a graph G and returns the set of 

maximal cliques of G. 

 

Maximal clique enumeration algorithms such as 

[27], [28] applied to co-review graphs are not ideal 

to solve the prob-lem of identifying sub-sets of an 

app’s reviewers with signifi-cant past common 

reviews. First, fraudsters may not consistently use 

(or may even purposefully avoid using) all their 

accounts across all fraud jobs that they perform. In 

addi-tion, Google Play provides incomplete 

information (up to 4,000 reviews per app, may also 

detect and filter fraud). Since edge information may 

be incomplete, original cliques may now also be 

incomplete. To address this problem, we “relax” the 

clique requirement and focus instead of pseudo-

cliques:  
The Weighted Pseudo-Clique Enumeration 

Problem. For a graph G ¼ ðV; EÞ and a threshold 

value u, we say that a ver- 
 
tex sub-set U (and its induced sub-graph G½U&) is 

a pseudo- 

clique of G if its weighted ¼
e E 
wðeÞ [29]  2  
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density r  2n exceeds  
  ð Þ      
Algorithm 1. PCF Algorithm Pseudo-Code   

Input: days, an array of daily 
reviews, and u, the weighted 

threshold density  
Output: allCliques, set of all detected pseudo-cliques  
1. for d :=0 d < days.size(); d++  
2. Graph PC := new Graph();  
3. bestNearClique(PC, days[d]);  
4. c := 1; n := PC.size();  
5. for nd := d+1; d < days.size() & c = 1; d++  
6. bestNearClique(PC, days[nd]);  
7. c := (PC.size() > n); endfor  
8. if (PC.size() > 2)  
9. allCliques := allCliques.add(PC); fi endfor  

10. return  
11. function bestNearClique(Graph PC, Set revs)  
12. if (PC.size() = 0)  
13. for root := 0; root < revs.size(); root++  
14. Graph candClique := new Graph ();  
15. candClique.addNode (revs[root].getUser());  
16. do candNode := getMaxDensityGain(revs);  
17. if (density(candClique [ {candNode})   u))  
18. candClique.addNode(candNode); fi  
19. while (candNode != null);  
20. if (candClique.density() > maxRho)  
21. maxRho := candClique.density();  
22. PC := candClique; fi endfor  
23. else if (PC.size() > 0)  
24. do candNode := getMaxDensityGain(revs);  
25. if (density(candClique [ candNode)   u))  
26. PC.addNode(candNode); fi  
27. while (candNode != null);  
28. return  
 

For each day when the app has received a review 

(line 1), PCF finds the day’s most promising 

pseudo-clique (lines 3 and 12 22): start with each 

review, then greedily add other reviews to a 

candidate pseudo-clique; keep the pseudo cli-que (of 

the day) with the highest density. With that “work-

in-progress” pseudo-clique, move on to the next day 

(line 5): greedily add other reviews while the 

weighted density of the new pseudo-clique equals or 

exceeds u (lines 6 and 23 27). When no new nodes 

have been added to the work-in-prog-ress pseudo-

clique (line 8), we add the pseudo-clique to the 

output (line 9), then move to the next day (line 1). 

The greedy choice (getMaxDensityGain, not 

depicted in Algorithm 1) 

 
1. r is thus the average weight of the graph’s 

edges, normalized by the total number of edges of a 
perfect clique of size n. 

 
TABLE 2  

Features Used to Classify Review R Written by User 

U for App A  
 
Notation Definition 

  

rR The rating of R 
LðRÞ The length of R 

posðRÞ 
Percentage of positive statements 
in R 

negðRÞ 
Percentage of negative 
statements in R 

nrðUÞ 

The number of reviews written 

by U 

pðrRÞ 
Percentile of rR among all 
reviews of U 

ExpU ðAÞ The expertise of U for app A 
BU ðAÞ The bias of U for A 

PaidðUÞ 
The money spent by U to buy 
apps 

RatedðUÞ Number of apps rated by U 
plusOneðUÞ Number of apps +1’d by U 

n:flwrsðUÞ 
Number of followers of U in 
Google+  

 
 

Picks the review not yet in the work-in-progress 

pseudo-clique, whose writer has written the most 

apps in common with reviewers already in the 

pseudo-clique. Fig. 8 illustrates the output of PCF 

for several u values.  
If d is the number of days over which A has 

received reviews and r is the maximum number of 
reviews received in a day, PCF’s complexity is 
Oðdr

2
ðr þ dÞÞ. 

  
We note that if multiple fraudsters target an app in 

the same day, PCF may detect only the most densely 

connected pseudo-clique, corresponding to the most 

prolific fraudster, and miss the lesser dense ones.  
CoReG Features. CoReG extracts the following 

features from the output of PCF (see Table 1) (i) the 

number of cli-ques whose density equals or exceeds 

u, (ii) the maximum, median and standard deviation 

of the densities of identified pseudo-cliques, (iii) the 
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maximum, median and standard deviation of the 

node count of identified pseudo-cliques, normalized 

by n (the app’s review count), and (iv) the total 

number of nodes of the co-review graph that belong 

to at least one pseudo-clique, normalized by n. 
 

4.3 Reviewer Feedback (RF) Module 
   

Reviews written by genuine users of malware and 

fraudu-lent apps may describe negative experiences. 

The RF module exploits this observation through a 

two step approach: (i) detect and filter out fraudulent 

reviews, then (ii) identify malware and fraud 

indicative feedback from the remaining reviews. 
 

Step RF.1: Fraudulent Review Filter. We posit 

that certain features can accurately pinpoint genuine 

and fake reviews. We propose several such features, 

see Table 2 for a sum-mary, defined for a review R 

written by user U for an app A. 
 

Text based features. We used the NLTK library 

[30] and the Naive Bayes classifier, trained on two 

datasets: (i) 1,041 sentences extracted from 

randomly selected 350 positive and 410 negative 

Google Play reviews, and (ii) 10,663 sen-tences 

extracted from 700 positive and 700 negative IMDB 

movie reviews [31]. 10-fold cross validation of the 

Naive Bayes classifier over these datasets reveals a 

false negative rate of 16.1 percent and a false 

positive rate of 19.65 percent, for an overall 

accuracy of 81.74 percent. We ran a binomial test 

[32] for a given accuracy of p=0.817 over N=1,041 

cases using the binomial distribution binomialðp; N 

Þ to assess the 95 percent confidence interval for our 

result. The deviation of the binomial distribution is 

0.011. Thus, we are 95 percent confident that the 

true performance of the classifier is in the interval 

(79.55, 83.85). 
 

We used the trained Naive Bayes classifier to 

determine the statements of R that encode positive 

and negative senti-ments. We then extracted the 

following features: (i) the per-centage of statements 

in R that encode positive and negative sentiments 

respectively, and (ii) the rating of R and its 

percentile among the reviews written by U.  
In Section 5 we evaluate the review classification 

accu-racy of several supervised learning algorithms 

trained on these features and on the gold standard 

datasets of fraudu-lent and genuine reviews 

introduced in Section 3.2.  
 

Step RF.2: Reviewer Feedback Extraction. We 

conjecture that since no app is perfect, a “balanced” 

review that contains both app positive and negative 

sentiments is more likely to be genuine, and (ii) 

there should exist a relation between the review’s 

dominating sentiment and its rating. Thus, after 

filtering out fraudulent reviews, we extract feedback 

from the remaining reviews. For this, we have used 

NLTK to extract 5,106 verbs, 7,260 nouns and 

13,128 adjectives from the 97,071 reviews we 

collected from the 613 gold stan-dard apps (see 

Section 3.2). We removed non ascii charac-ters and 

stop words, then applied lemmatization and 

discarded words that appear at most once. We have 

attempted to use stemming, extracting the roots of 

words, however, it performed poorly. This is due to 

the fact that reviews often contain (i) shorthands, 

e.g., “ads”, “seeya”, “gotcha”, “inapp”, (ii) 

misspelled words, e.g., “pathytic”, “folish”, “gredy”, 

“dispear” and even (iii) emphasized mis-spellings, 

e.g., “hackkked”, “spammmerrr”, “spooooky”. Thus, 

we ignored stemming. 
 

We used the resulting words to manually identify 

lists of words indicative of malware, fraudulent and 

benign behav-iors. Our malware indicator word list 

contains 31 words (e.g., risk, hack, corrupt, spam, 

malware, fake, fraud, black-list, ads). The fraud 

indicator word list contains 112 words (e.g., cheat, 

hideous, complain, wasted, crash) and the benign 

indicator word list contains 105 words.  
RF Features. We extract 3 features (see Table 1), 

denoting the percentage of genuine reviews that 

contain malware, fraud, and benign indicator words 

respectively. We also extract the impact of detected 

fraudulent reviews on the overall rating of the app: 

the absolute difference between the app’s average 

rating and its average rating when ignor-ing all the 

fraudulent reviews. 
 
4.4 Inter-Review Relation (IRR) Module 
 

This module leverages temporal relations between 
reviews, as well as relations between the review, 
rating and install counts of apps, to identify 
suspicious behaviors. 
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Plots the lower bound on the number of fake 

reviews that need to be posted to cancel a 1-star 

review, ver-sus the app’s current rating. It shows 

that the number of reviews needed to boost the 

rating of an app is not constant. Instead, as a review 

campaign boosts the rating of the subject app, the 

number of fake reviews needed to continue the pro-

cess, also increases. For instance, a 4 star app needs 

to receive 3, 5-star reviews to compensate for a 

single 1 star review, while a 4.2 star app needs to 

receive 4 such reviews. Thus, adversaries who want 

to increase the rating of an app, i.e., cancel out 

previously received negative reviews, will need to 

post an increasing, significant number of positive 

reviews. 
 

Such a “compensatory” behavior is likely to lead 

to sus-piciously high numbers of positive reviews. 

We detect such behaviors by identifying outliers in 

the number of daily pos-itive reviews received by an 

app. Fig. 9 shows the timelines and suspicious 

spikes of positive reviews for 2 apps from the 

fraudulent app dataset (see Section 3.2). We identify 

days with spikes of positive reviews as those whose 

number of positive reviews exceeds the upper outer 

fence of the box-and-whisker plot built over the 

app’s numbers of daily posi-tive reviews. 
 

Reviews, Ratings and Install Counts. We used the 

Pearson’s x
2
 test to investigate relationships between 

the install count and the rating count, as well as 

between the install count and the average app rating 

of the 87 K new apps, at the end of the collection 

interval. We grouped the rating count in buckets of 

the same size as Google Play’s install count buck-ets. 

Fig. 10 shows the mosaic plot of the relationships 

between rating and install counts. p=0.0008924, thus 

we con-clude dependence between the rating and 

install counts. The standardized residuals identify 

the cells (rectangles) that contribute the most to the 

x
2
 test. The most significant rating:install ratio is 

1:100. 

cells correspond to apps that have a certain install 

count range (x axis) and average rating range (y 

axis). It shows that few popular apps, i.e., with more 

than 1,000 installs, have below 3 stars, or above 4.5 

stars. We conjecture that fraudster efforts to alter the 

search rank of an app will not be able to preserve a 

natural balance of the features that impact it (e.g., 

the app’s review, rating, and install counts),IRR 

Features. We extract temporal features (see Table 1): 

the number of days with detected spikes and the 

maximum amplitude of a spike. We also extract (i) 

the ratio of installs to ratings as two features, I1=Rt1 

and I2=Rt2 and (ii) the ratio of installs to reviews, as 

I1=Rv1 and I2=Rv2. ðI1; I2& denotes the install count 

interval of an app, ðRt1; Rt2& its rat-ing interval and 

ðRv1; Rv2& its (genuine) review interval. 
 
4.5 Jekyll-Hyde App Detection (JH) Module 
  

In addition, Android’s API level 22 labels 47 

permissions as “dangerous”. Fig. 12b compares the 

distributions of the number of dangerous 

permissions requested by the gold standard malware, 
fraudulent and benign apps. The most popular 

dangerous permissions among these apps are 
“modify or delete the contents of the USB storage”, 

“read phone status and identity”, “find accounts on 

the device”, and “access precise location”. Only 8 
percent of the legiti-mate apps request more than 5 

dangerous permissions, while 16.5 percent of the 
malware 

 

After a recent Google Play policy change [33], 

Google Play organizes app permissions into groups 

of related per-missions. Apps can request a group of 

permissions and gain implicit access also to 

dangerous permissions..  
JH Features. We extract the following features (see 

Table 1) 
 
 

5.1 Experiment Setup 
 

We have implemented FairPlay using Python to 

extract data from parsed pages and compute the 

features, and the R tool to classify reviews and apps. 

We have set the threshold den-sity value u to 3, to 

detect even the smaller pseudo cliques.  
We have used the Weka data mining suite [34] to 

per-form the experiments, with default settings. We 

experi-mented with multiple supervised learning 

algorithms. Due to space constraints, we report 

results for the best perform-ers: MultiLayer 

Perceptron (MLP) [35], Decision Trees (DT) (C4.5) 

and Random Forest (RF) [36], using 10-fold cross-

validation [37]. For the backpropagation algorithm 

of the MLP classifier, we set the learning rate to 0.3 

and the momentum rate to 0.2. We used MySQL to 

store collected data and features.  
 

5.2 Review Classification 
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To evaluate the accuracy of FairPlay’s fraudulent 

review detection component (RF module), we used 

the gold standard datasets of fraudulent and genuine 

reviews 

5.3 App Classification 
 

To evaluate FairPlay, we have collected all the 

97,071 reviews of the 613 gold standard malware, 

fraudulent and benign apps, written by 75,949 users, 

as well as the 890,139 apps rated by these users.  
In the following, we evaluate the ability of 

various super-vised learning algorithms to correctly 

classify apps as either benign, fraudulent or malware                                                                                                                                                                                                                                      
 

 

 

 

 

 

 

Fraud Detection Accuracy. Table 4 shows 10-fold 

cross val-idation results of FairPlay on the gold 

standard fraudulent and benign apps (see Section 

3.2). All classifiers achieve an accuracy of around 

97 percent. Random Forest is the best, having the 

highest accuracy of 97.74 percent and the lowest 

FPR of 1.01 percent. Its EER is 2.5 percent and the 

area under the ROC curve (AUC) is 0.993 (see Fig. 

15).  
Fig. 16a shows the co-review subgraph for one of 

the seed fraud apps identified by FairPlay’s PCF. 

The 37 accounts that reviewed the app form a 

suspicious tightly connected clique: any two of 

those accounts have reviewed at least 115 and at 

most 164 apps in common. 
  
Malware Detection Accuracy. We have used 

Sarma et al. [16]’s solution as a baseline to evaluate 

the ability of FairPlay to accurately detect malware. 

We computed Sarma et al. [16]’s RCP and RPCP 

indicators (see Section 2.1) using the longitudinal 

app dataset. We used the SVM based variant of 

Sarma et al. [16], which performs best. Table 4 

shows 10-fold cross validation results over the 

malware and benign gold standard sets. FairPlay 

significantly outperforms Sarma 
 

High: any two of the 37 accounts reviewed at 

least 115 apps and up to 164 apps in common! (b & 

c) Statistics over the 372 fraudulent apps out of 

1,600 investigated: (b) Distribution of per app 

number of discovered pseudo-cliques. 93.3 percent 

of the 372 apps have at least 1 pseudo-clique of u 3 

(c) Distribution of percentage of app reviewers 

(nodes) that belong to the largest pseudo-clique and 

to any clique. Eight percent of the 372 apps have 

more than 90 percent of their reviewers involved in 

a cliqueet al. [16]’s solution, with an accuracy that 

consistently exceeds 95 percent. We note that the 

performance of Sarma et al.’s solution is lower than 

the one reported in [16]. This inconsistency may 

stem from the small number of malware apps that 

were used both in [16] (121 apps) and in this paper 

(212 apps). 
 

For FairPlay, Random Forest has the smallest 

FPR of 1.51 percent and the highest accuracy of 

96.11 percent. It also achieves an EER of 4 percent 

and has an AUC of 0.986. This is surprising: most 

FairPlay features are meant to identify search rank 

fraud, yet they also accurately identify malware. 
   

Is Malware Involved in Fraud?We conjectured 

that the above result is due in part to malware apps 

being involved in search rank fraud. To verify this, 

we have trained FairPlay on the gold standard 

benign and fraudulent app datasets, then we have 

tested it on the gold standard malware dataset. MLP 

is the most conservative algorithm, discovering 

60.85 percent of malware as fraud participants. 

Random Forest discovers 72.15 percent, and 

Decision Tree flags 75.94 percent of the malware as 
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fraudulent. This result confirms our conjecture and 

shows that search rank fraud detection can be an 

impor-tant addition to mobile malware detection 

efforts.  
Top-most Impactful Features. We further seek to 

compare the efficacy of FairPlay’s features in 
detections fraudulent apps and malware. Table 6 
shows the most impactful fea-tures of FairPlay when 
using the Decision Tree algorithm to classify 
fraudulent versus benign and malware versus benign 
apps. It shows that several features are common : the 
standard deviation, median and maximum over the 
sizes of identified pseudo-cliques (CSSD, CSmed, 
CSmax), the number of reviews with fraud indicator 
words (fraudW). Surprisingly, even the number of 
reviews with malware indicator words (malW) has 
an impact in identifying fraud-ulent apps, yet, as 
expected, it has a higher rank when iden-tifying 
malware apps 

 

In addition, as expected, features such as the 
percentage of nodes involved in a pseudo-clique 
(inCliqueCount), the number of days with spikes 
(spikeCount) and the maximum density of an 
identified pseudo-clique (rmax) are more rele-vant to 
differentiate fraudulent from benign apps. The num-
ber of pseudo-cliques with density larger than 3 
(nCliques) the ratio of installs to reviews (I1=Rv1) 
and the number of dangerous permissions 
(dangerCount) are more effective to differentiate 
malware from benign apps.  

More surprising are the features that do not 

appear in the top, for either classifier. Most notably, 

the Jekyll-Hyde fea-tures that measure the ramps in 

the number of dangerous permissions. One 

explanation is that the 212 malware apps in our gold 

standard dataset do not have sufficient danger-ous 

permission ramps. Also, we note that our conjecture 

that fraudster efforts to alter the search rank of an 

app will not be able to preserve a natural balance of 

the features that impact it (see IRR module) is only 

partially validated: solely the I1/Rv1 feature plays a 

part in differentiating malware from benign apps. 
 

Furthermore, we have zoomed in into the 
distributions of the sizes and densities of the largest 
pseudo-cliques, for the gold standard fraudulent and 
malware apps. Fig. 17 shows 
 
Scatterplots for the gold standard fraudulent and 
malware apps. (a) Each red square represents a 

fraudulent app, whose y axis value is its number of 
nodes (reviews) in the largest pseudo-clique 
identified, and whose x axis value is its number of 
nodes. (b) For each fraudulent app, the density of its 
largest pseudo-clique versus its number of nodes. (c) 
For each malware app, the size of its largest pseudo-
clique versus its number of nodes. (d) For each 
malware app, the density of its largest pseudo-clique 
versus its number of nodes. Fraudulent apps tend to 
have more reviews. While some malware apps have 
relatively large (but loosely connected) pseudo-
cliques, their size and density is significantly smaller 
than those of fraudulent apps.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 18. Scatterplots of the 372 fraudulent apps out 
of 1,600 investigated, showing, for each app, (a) the 
number of nodes (reviews) in the largest cli-que 
identified versus the app’s number of nodes and (b) 
the density of the largest clique versus the app’s 
number of nodes. While apps with more nodes also 
tend to have larger cliques, those cliques tend to 
have lower densities. scatterplots over the gold 
standard fraudulent and malware apps, of the sizes 
and densities of their largest pseudo-cliques, as 
detected by FairPlay. Fig. 17a shows that fraudu-
lent apps tend to have very large pseudo-clique and 
Fig. 17c shows that malware apps have significantly 
smaller pseudo-cliques. We observe however that 
malware apps have fewer reviews, and some 
malware apps have pseudo-cliques that contain 
almost all their nodes. Since the maxi-mum, median 
and standard deviation of the pseudo-clique sizes are 
computed over values normalized by the app’s 
number of reviews, they are impactful in 
differentiating malware from benign apps. 
 

Fig. 17b shows that the largest pseudo-cliques of 

the larger fraudulent apps tend to have smaller 

densities. Fig. 17d shows a similar but worse trend 

for malware apps, where with a few exceptions, the 

largest pseudo-cliques of the malware apps have 

very small densities. 
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5.4 FairPlay on the Field 
 

We have also evaluated FairPlay on other, non 

“gold standard” apps. For this, we have first selected 

8 app cat-egories: Arcade, Entertainment, 

Photography, Simulation, Racing, Sports, Lifestyle, 

Casual. We have then selected the 6,300 apps from 

the longitudinal dataset of the 87K apps, that belong 

to one of these 8 categories, and that have more than 

10 reviews. From these 6,300 apps, we randomly 

selected 200 apps per category, for a total of 1,600 

apps. We have then collected the data of all their 

50,643 reviewers (not unique) including the ids of 

all the 166,407 apps they reviewed. 

 
We trained FairPlay with Random Forest (best 

perform-ing on previous experiments) on all the 

gold standard benign and fraudulent apps. We have 
then run FairPlay on 

the 1,600 apps, and identified 372 apps (23 percent) 

as fraudulent. The Racing and Arcade categories 

have the highest fraud densities: 34 percent and 36 

percent of their apps were flagged as fraudulent.  
Intuition. We now focus on some of the top most impactful FairPlay features to 

offer an intuition for the surprisingly high fraud percentage (23 percent of 1,600 

apps). Fig. 16b shows that 93.3 percent of the 372 apps have at least 1 pseudo-

clique of u 3, nearly 71 percent have at least 3 pseudo-cliques, and a single app 

can have up to 23 pseudo-cliques. Fig. 16c shows that the pseudo-cliques are 

large and encompass many of the reviews of the apps: 55 percent of the 372 apps 

have at least 33 percent of their reviewers involved in a pseudo-clique, while 

nearly 51 percent of the apps have a single pseudo-clique containing 33 percent 

of their reviewers. 
 

5.5 Coercive Review Campaigns 
 

Upon close inspection of apps flagged as 

fraudulent by Fair-Play, we detected apps 

perpetrating a new attack type: harass the user to 

either (i) write a positive review for the app, or (ii) 

install and write a positive review for other apps 

(often of the same developer). We call these 

behaviors coercive review campaigns and the 

resulting reviews, as coerced reviews. Example 

coerced reviews include, “I only rated it because i 

didn’t want it to pop up while i am playing”, or 

“Could not even play one level before i had to rate it 

[...] they actually are telling me to rate the app 5 

stars”. 

 

In order to find evidence of systematic coercive 

review campaigns, we have parsed the 2.9 million 

reviews of our dataset to identify those whose text 

contains one of the root words ½“make”, “ask”, 

“force”& and “rate”. Upon manual inspection of the 

results, we have found 1,024 coerced reviews. The 

reviews reveal that apps involved in coercive review 

campaigns either have bugs (e.g., they ask the user 

to rate 5 stars even after the user has rated them), or 

reward the user by removing ads, providing more 

features, unlock-We have observed several 

duplicates among the coerced reviews. We identify 

two possible explanations. First, as we previously 

mentioned, some apps do not keep track of the user 

having reviewed them, thus repeatedly coerce subse-

quent reviews from the same user. A second 

explanation is that seemingly coerced reviews, can 

also be posted as part of a negative search rank fraud 

campaign. However, both scenarios describe apps 

likely to have been subjected to fraudulent behaviors. 
 
We have introduced FairPlay, a system to detect 

both fraud-ulent and malware Google Play apps. 

Our experiments on a newly contributed 

longitudinal app dataset, have shown that a high 

percentage of malware is involved in search rank 

fraud; both are accurately identified by FairPlay. In 

addition, we showed FairPlay’s ability to discover 

hundreds of apps that evade Google Play’s detection 

technology, including a new type of coercive fraud 

attack. 
 

CONCLUSIONS 
      We have introduced FairPlay, a system to detect 

both fraud- ulent and malware Google Play apps. 

Our experiments on a newly contributed 

longitudinal app dataset, have shown that a high 

percentage of malware is involved in search rank 

fraud; both are accuratelyidentified by FairPlay. In 

addition, we showed FairPlay’s ability to discover 

hundreds of apps that evade Google Play’s detection 

technology, including a new type of coercive fraud 

attack. 
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