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1. INTRODUCTION 

An unbalanced mechanism running at high speed transmits forces and moments to the ground 

known as shaking forces and shaking moments. These forces and moments are vector sum of 

the inertia forces and moments of all the moving links. They adversely affect the dynamic 

performance of the mechanism. Several techniques are presented in the literature for reducing 

these shaking forces and shaking moments due to inertia. The complete force balancing can 

be achieved by making the mass center of moving links of a mechanism stationary [1]. This 

is achieved either by mass redistribution or by adding counterweights to the moving links. 

This methodology was extended for the mechanisms having prismatic joints under certain 

conditions [2, 3]. Force balancing and trajectory tracking is achieved in a five-bar real-time 

controllable mechanism using adjusting kinematics parameter approach [4].  

The complete force balancing increases other dynamic performance characteristics such as 

shaking moment, driving torque and bearing forces in joints [5]. Therefore, along with the 

full force balancing, several methods proposed in the literature to balance the shaking 

moment [6, 7]. The complete force and moment balancing is achieved by adding duplicate 

mechanism, inertia or disk counterweights [8-10]. However, this method is not recommended 

due to complexity and practical reasons.  

Several trade-off methods were developed to minimize different dynamic quantities 

simultaneously [11, 12]. As the shaking force and shaking moment depend on link masses, 

their locations of mass centers and moment of inertias, these trade-off methods find the 

optimal distribution of the link masses [13].    

The conventional optimization methods like gradient based search method is used to 

optimally balance the planar mechanisms [14,15] and to analyse the sensitivity of shaking 
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force and shaking moment to the design variables [16]. Optimum force balancing is achieved 

for a five-bar mechanism using natural orthogonal complement dynamic modeling [17]. The 

shaking moment is minimized in five-bar manipulator through constrained nonlinear 

optimisation problem in which shaking force elimination is presented as the balancing 

constraints [18]. The conventional optimization methods require an initial guess point to start 

searching the optimum solution and likely to produce local optimum solution close to the 

start point.  

The evolutionary optimization techniques like particle swarm optimization (PSO) and genetic 

algorithm (GA) can be applied to minimize multi-objective functions subject to some design 

constraints [19, 20]. The mixed mass redistribution method using genetic algorithm is applied 

for reducing shaking force and shaking moment in mechanisms [21].   

In this paper, the formulation of optimization problem is simplified by modelling the rigid 

links of mechanism as dynamically equivalent system of point-masses, known as 

equimomental system [22, 23]. The balancing problem is formulated as a multi-objective 

optimization problem and solved using genetic algorithm. This algorithm doesn’t require a 

start point and searches the solution in the entire design space. Therefore, it produces the 

global optimum solution for the optimization problem. Also, for a multi-objective 

optimization problem, it produces several solutions which are all pareto optimum. Any 

solution among these can be chosen as per the specific requirement.                 

The structure of this paper is as follows. Section 2 presents the equations of motion for rigid 

body and equimomental point-masses. Problem of minimizing shaking force and shaking 

moment for a five-bar mechanism is formulated in Section 3. A numerical example is 

solved using the proposed method and its results are presented in Section 4. Finally, 

conclusions are given in Section 5. 

2. EQUIMOMENTAL SYSTEM OF POINT-MASSES 

In this section, the concept of equimomental system of point-masses is discussed and the 

dynamic equation of motion for a rigid body is rewritten in terms of the point-masses.  

2.1. Equations of motion of rigid body  

The links of a mechanism can be modelled as rigid bodies for simplifying the kinematic and 

dynamic analyses. Consider an ith rigid link having motion in XY plane for which a local 

frame, Xi Yi, is fixed at Oi on the body. The Newton-Euler (NE) equations of motion for this 

link in the fixed inertial frame, OXY, are written as [11]:  

 

iiiii wtCtM =+& . (1) 
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Figure 1. The ith rigid link moving in XY plane 

In Eq. (1), 3 vectors, it , it& and iw are twist, twist-rate, and wrench vectors of the ith link with 

respect to Oi, respectively, i.e.,  
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where, iω and iv are the scalar angular velocity about the axis perpendicular to the plane of 

motion and the 2-vector of linear velocity of the origin Oi, respectively. 

Accordingly, iω
& and iv& are time derivatives of iω and iv , respectively. Also, the scalar, in , and 

the 2-vector, if , are the resultant moment about Oi and the resultant force at Oi, respectively. 

In Eq. (1), the 3×3 matrices, Mi and Ci are defined as: 
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Now, the points on the link, Oi and Oi+1 are defined at the joints connecting preceding and 

succeeding links. The body fixed frame, Oi Xi Yi, is then defined in such a way that the axis Xi 

is aligned from Oi to Oi+1. The shortest distance between Oi and Oi+1 is defined as link length. 

The parameters di and θi are polar coordinates of the mass center as shown in Fig. 1.  

2.2. Modified equations of motion for equimomental system of point-masses  

To formulate an optimization problem to minimize shaking force and shaking moment, the 

rigid links are modeled as dynamically equivalent systems of point-masses referred to 

equimomental systems. The rigid link and the system of point-masses will be dynamically 

equivalent (equimomental) if they have same mass, same center of mass and same inertia 
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tensor with respect to same coordinate frame [22]. Hence, a set of dynamically equivalent 

system of rigidly connected n point-masses, mij, located at lij, θij, as shown in Fig. 2 must 

satisfy the following conditions:  

 

i

j

ij mm =∑  (4) 
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Figure 2. Equimomental system of point-masses for ith link 

where mi and Ii are the mass of the ith link and its mass moment of inertia about Oi. The first 

subscript i denotes the link number, and the second subscript j represents the point-mass. The 

NE equations of motion, Eq. (1), are now rewritten for the equimomental system of point-

masses using equimomental conditions, Eqs. (4)-(7). It can be shown that the form, Eq. (1), 

does not change except the elements of matrices, Mi and Ci, which are given as: 
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(8) 

In Eq. (8), C and S are abbreviations for cosine and sine functions, respectively. There are 3k 

parameters, mij, θij, lij for j=1, 2,…,k if k point-masses are defined for the ith link. For a 

mechanism of n moving links, there will be a total 3kn point-mass parameters. All or some of 

these can be taken as the design variables in optimization formulation discussed in the next 

section. 
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3. FORMULATION OF OPTIMIZATION PROBLEM 

Without loosing generalization, the problem for minimizing shaking force and shaking 

moment in a planar five-bar mechanism is now formulated on the basis of the dynamics 

presented in previous section. For minimizing the inertia forces by redistributing the link 

masses, mass and inertia properties of moving links are represented by the dynamically 

equivalent systems of point-masses. The point-mass parameters are treated as the design 

variables. The five-bar mechanism under consideration is shown in Fig. 3. The links are 

numbered as #0, #1, #2, #3 and #4, where link #0 represents the frame to which link #1 and 

link #4 are connected. All joints are revolute type. The joints are numbered as 1, 2, 3, 4 and 5 

while a0, a1, a2, a3 and a4 represent the link lengths. The fixed inertial frame, OXY, is located 

at joint 1, between link #1 and the frame #0.  

 

 
Figure 3. Five-bar mechanism detached from its frame 

3.1. Identification of design variables 

A system of k equimomental point-masses is used for each link and the corresponding point-

mass parameters are taken as the design variables. Therefore, the 3k-vector of design 

variables for the ith link includes point-mass and their locations, and is defined as:  
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Hence, the design variable 3kn-vector, DV, for mechanism having n moving links can be 

defined as: 
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3.2. Objective function and constraints 

For a mechanism in motion, shaking force is the vector sum of the inertia forces, whereas the 

shaking moment about any point is the sum of the inertia couples and the moment of the 
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inertia forces about that point [12]. In the current problem, the external forces like gravity and 

dissipative forces are not considered. Once all the joint reactions are determined, the shaking 

force and shaking moment at and about joint 1 are presented as: 

 

)( 0401sh fff +−=  and ) x ( 040

e

1sh fa+−= nn  (11) 

In Eq. (11), f01 and f04 are the reaction forces of the ground on the links 1 and 4, respectively, 

while e
1n is the driving torque applied at joint 1. a0 is the vector from O1 to O5. Considering 

the RMS values of the shaking force, fsh,rms, and the shaking moment, nsh,rms, the optimization 

problem is proposed as: 

Minimize rmssh,2rmssh,1 nfZ ww +=  (12) 

Subject to   maxi,mini, mmm
j

ij ≤≤∑  for i = 1, 2, 3,4 and  j = 1, 2,…,k     (13) 

where w1 and w2 are the weighting factors whose values may vary depending on an 

application. For example, w1=1.0 and w2=0 if objective is to minimize the shaking force only 

and vice-versa. These weighting factors can also be taken as the design variables to get the 

most appropraite values for a multi-objective optimization problem. The minimum mass and 

inertia, mi,min and Ii,min, of ith link can be defined according to its force bearing capabilities 

and link material properties. The solution of this optimization problem finds the values of the 

design variables that minimize the objective function Z.  

4. SOLUTIONS AND RESULTS 

After formulating the balancing problem as an optimization problem, it can be solved by 

using either conventional or evolutionary optimization algorithms. The gradient based 

conventional algorithms use the gradient information of the objective function with respect to 

the design variables. Starting with an initial guess point, these methods converge on the 

optimum solution near to the starting point and thus produce local optimum solution.           

Genetic algorithm is evolutionary search and optimization algorithm based on the mechanics 

of natural genetics and natural selection [24]. This algorithm evaluates only the objective 

function and genetic operators - selection, crossover and mutation are used for exploring the 

design space. One can specify the initial population, bounds and nonlinear constraints for the 

variables in this algorithm. After selection operation, crossover and mutation operators are 

used to form the new population. This process is repeated till the convergence criteria is 

satisfied [25]. The drawbacks of the GAs are that (1) they require a large amount of 

calculation and (2) there is no absolute guarantee that a global solution is obtained. These 

drawbacks can be overcome by using parallel computers and by executing the algorithm 

several times or allowing it to run longer [26]. The flow chart of the proposed method is 

shown in Fig. 4.  

The proposed method is applied for the balancing of a five-bar mechanism [17]. In [17], only 

shaking force is minimized through conventional optimization method, i.e., non-linear 

constraint optimization. The center of mass parameters of moving links were chosen as the 

design variables. The natural orthogonal complement method was used for dynamic analysis 

of the mechanism. However, the resulting effect on shaking moment and driving torque was 

not considered. For the same numerical problem, both shaking force and shaking moment are 
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simultaneously minimized in this paper using the global optimization method, i.e., genetic 

algorithm.     

As shaking force and shaking moment are of different units, these quantities need to be 

dimensionless for adding them in a single objective function. For this, the mechanism 

parameters are made dimensionless with respect to the parameters of the driving link and 

shown in Table 1. For this example, the driving link, i.e. link 1, rotates with a constant speed 

of 100 rad/sec.  

 

 

Figure 4. Flowchart of proposed method 

To demonstrate the effectiveness and accuracy of the method, here each link is represented by 

three equimomental point-masses. To reduce the dimension of the problem, out of nine 

variables, mij, lij, θij, for j=1, 2, 3, for the ith link, five parameters are assigned as: θi1=0; 

θi2=2π/3; θi3=4π/3 and li2=li3=li1.  

The other four point-mass parameters and weighing factors, namely, mi1, mi2, mi3, li1, w1 and 

w2 are brought into the optimization scheme. A MATLAB program was developed using the 

equimomental conditions, Eqs. (4)-(7), for finding the dynamically equivalent point-masses 

for each link. The resulting point-masses and their locations are shown in Table 2.  

Table 1. Dimensionless parameters of standard mechanism 

 

Link 

Length 

ai 

 

Mass 

mi 

 

Moment 

of 

inertia 

Iozzi 

Center 

of mass 

distance 

di 

 

Center 

of mass 

location 

θi 

 

1 1 1 0.3333 0.5 0 

2 5 5 41.6667 2.5 0 

3 5 5 41.6667 2.5 0 

4 2 2 2.6667 1 0 

0 2 -  - - 

 

Solution using “ga” and “gamultiobj” functions in                
MATLAB 

 

Optimized values of shaking force 
and shaking moment and 

corresponding design variables 

Design variables: 
Point mass parameters and 

weighting factors 

Optimized mechanism parameters 

Objective function and constraints: 

rmssh,2rmssh,1 nfZMinimize ww +=  

maxi,mini,toSubject mmm
j

ij ≤≤∑
 

    for i = 1, 2, 3, 4 and  j = 1, 2,…,k 
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Table 2. Point-mass parameters 

Link mi1 mi2 mi3 li1 

1 0.9107 0.0447 0.0447 0.5774 

2 4.5534 0.2233 0.2233 2.8868 

3 4.5534 0.2233 0.2233 2.8868 

4 1.8214 0.0893 0.0893 1.1547 

Considering mi,min= 0.75 0
im , mi,max= 2 0

im where 0
im is original mass of the ith link, the 

optimization problem as explained in Eqs. (12)-(13) is solved using “ga” function in Genetic 

Algorithm and Direct Search Toolbox of MATLAB [27]. The original values of point-mass 

parameters are taken as the initial population and the algorithm was run for 100 generations. 

The comparison of original values with optimum values of the shaking force and shaking 

moment obtained using genetic algorithm are presented in Table 3 and Fig. 5. The optimized 

link parameters are found by using the equimomental conditions presented in Eqs. (4)-(7) and 

shown in Table 4.  

Table 3. RMS values of dynamic quantities of standard and optimized mechanisms 

 RMS values of dimensionless 

dynamic quantities 

 Shaking 

force 

Shaking 

moment
 

Standard 

value 
2388 21913 

Genetic 

algorithm 

1603 

(-32.87%) 

11214 

(-48.82%) 
The values in the parenthesis denote percentage increment/decrement with respect to corresponding RMS values of the 

standard mechanism 

Table 4. Dimensionless parameters of balanced mechanism 

 

Link 

Length 

ai 

 

Mass 

mi 

 

Moment 

of 

inertia 

Iozzi 

Center 

of mass 

distance 

di 

 

Center 

of mass 

location 

θi 

 

1 1 1.8783 2.1803 0.6767 356.00 

2 5 4.3356 15.6911 1.1160 16.10 

3 5 4.6127 9.6128 1.1681 358.12 

4 2 3.3909 0.0812 0.0839 331.92 

0 2
 

- - - - 

 

By using the genetic algorithm, the reduction of 32.87% and 48.82% were found in the 

values of shaking force and shaking moment, respectively.  
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                              (a) Shaking force                                          (b) Shaking moment 

Figure 5. Variations of shaking force and shaking moment for complete cycle 

Note that the above results are obtained using single objective function mentioned in Eq. (12). 

Moreover, this problem can be solved by considering the shaking force and shaking moment 

as two objective functions. The multi-objective optimization, also known as vector 

optimization, is the procedure used for simultaneous minimization or maximization of more 

than one objective function. Various nonlinear multi-objective optimization methods are 

surveyed in [28]. The objective function for the posed problem is defined as: 

Minimize T

rmssh,rmssh, ]n,[fZ =m                                               (14) 

This problem is solved using “gamultiobj” function in Genetic Algorithm and Direct Search 

Toolbox of MATLAB. This function, Zm, finds the minimum using genetic algorithm and 

creates a set of non-dominated solution set known as Pareto front for objectives, i.e., the 

shaking force and shaking moment. The values of genetic operators used are: 

Selection function = Stochastic uniform 
elite count = 2 
crossover fraction = 0.8 
migration fraction = 0.2 
function tolerance = 1 x 10

-10
 

constraint tolerance = 1 x 10
-10

 

All Pareto solutions are optimum as no other solutions in the entire design space is available 

which is better than these solutions when all the objectives are considered. The Pareto front is 

shown in Fig. 6 which presents the multiple optimum solutions for the considered problem. 

The values of the objective function and corresponding design variables associated with each 

point of this curve are also available in the solution. The optimum values of weighting factors 

are found as 0.5 each. The optimum values of point-mass parameters are given in Table 5. 

Table 5. Optimum point-mass parameters 

Link mi1 mi2 mi3 li1 

1 1.4107 0.1863 0.2813 1.0774 

2 3.0743 1.0380 0.2233 1.9024 

3 4.0245 0.2233 0.3649 1.4436 



International Journal of Engineering and Techniques - Volume 3 Issue 6, Nov - Dec 2017 

ISSN: 2395-1303                                 http://www.ijetjournal.org Page 60 
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Figure 6. Pareto front 

The results obtained by using single and multi-objective optimization methods are shown in 

Fig. 6. For the optimum solutions lying on Pareto front, the decrease in value of one objective 

increases value of the other one. Hence, the mechanism designer has several choices to choose 

the solution as per the specific requirement.  

5. CONCLUSIONS 

An optimization method for dynamic balancing of five-bar planar mechanisms is presented 

in this paper using the concept of the equimomental system of point-masses for the rigid 

body. The dynamic equations of motion are formulated systematically in the parameters 

related to the equimomental point-masses. Using these equations, the optimization problem 

is formulated for the minimization of the shaking force and shaking moment as single 

objective and multi-objective function. With optimum weighting to the objectives, 32.87% 

and 48.82% reduction is achieved in shaking force and shaking moment, respectively. The 

problem is also formulated as a multi-objective optimization problem for which Pareto front 

provides better insight over the combinations of shaking force and shaking moment. The 

formulation presented in this paper is simple, easy to implement and it can be applied for 

multi-loop planar and spatial mechanisms also.  
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