
International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 80

A Survey of Data Integration
RenHao Chen*

*(School of Information Science and Technology, Jinan University, Guangzhou, China)

--************************----------------------------------

Abstract:
With the continuous development of enterprises, it is difficult for all departments within an

enterprise to avoid the phenomenon of "isolated islands of information" resulting from the distribution of

data in various departments and the different ways of data management. The task of data integration is to

integrate data from interdependent, autonomous, and heterogeneous data sources and provide users with a

common query interface that enables users to access the data transparently. Instead of accessing the data

source directly, the user submits the required query to the integrated system, which returns the consistent

query result.

Keywords —Data integration, Heterogeneous data sources, Consistency.

--************************----------------------------------

I. INTRODUCTION

The business systems of all enterprises have a

basic characteristic that the trading systems of each

branch are independent (geographically and

administratively) so that the headquarters can not

technically analyze the business data of these

systems in a timely manner. Therefore, with the

continuous development of enterprises, it is difficult

for all departments within an enterprise to avoid the

phenomenon of "isolated islands of information"

resulting from the distribution of data in various

departments and the different ways of data

management. Since the phenomenon of isolated

islands of information makes it difficult for all

departments to share information with each other, a

large number of scholars emerged from the 90s of

last century began to pay attention to data

integration research. The task of data integration is

to integrate the data of the interdependent,

autonomous and heterogeneous data sources

together to shield the data structure differences of

all the data sources and provide users with a

uniform query interface so that the users can use

transparent Way to access these data [1]. Users do

not have to know how to access heterogeneous data

source data, only need to care about the information

they need to query data.

Data integration system is mainly built on the

basis of global mode and a series of data sources.

Each data source is autonomically managed, and

the global schema can be thought of as a layer of

interface between the user and the underlying data

source. Integrated data needs to be mapped between

global mode and data source. There are two types

of mapping: GAV(Global As View) and

LAV(Local As View) [3]. GAV mapping represents

a global pattern as a view based on a local pattern,

whereas LAV mapping is from the opposite

perspective, representing a local pattern as a view

based on a global pattern, the details of which are

discussed below.

The second section discusses two ways to

integrate data, the third section describes the

structure of the data integration system framework,

the fourth section describes two GAV and LAV

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 81

mapping methods and compare the two mapping

methods, the first section Five sections describe the

integrity constraints in integrated systems. The sixth

section summarizes the full text.

II. THE WAY TO INTEGRATE DATA

An easy way to comply with the conference

paper formatting requirements is to use this

document as a template and simply type your text

into it.

In the information integration environment,

depending on whether the integrated view stores

data, there are usually two types of integration

methods: entity integration and virtualization

integration [2].

A. Materialized integration

For materialized integration, the main idea is to

integrate the processed data on the integration side.

In addition, in order to ensure the consistency of the

data between the integrated data and the data source,

data in the global mode needs to be maintained. The

most typical representative of materialized

integration is the data warehouse, which integrates

data from multiple distributed, autonomous data

sources into storage. Data may have to be cleaned

due to the possibility of overlapping information

and inconsistent information among data sources

[6]. Data warehouse is mainly formed on the basis

of ETL three processes, namely Extraction,

Transformation and Load. The extraction process

indicates that the operational database collects the

specified data. The conversion process means that

the data is converted into the specified format and

the data is cleaned to ensure the data quality. The

loading process indicates that the data satisfying the

specified format is converted into the data

warehouse after the conversion.

B. Virtualization integration

The idea of virtualization is to provide users with

a virtual global model that does not actually store

data on the integration side. In this case, queries

need to involve interaction with the underlying data

source. When a user submits a query to the system,

the system performs query rewriting according to

the global mode-local mode mapping, rewrites the

query submitted by the user based on the global

mode into a query execution plan based on the

underlying local mode, Get the data after the

merger is returned as a query response to the user.

Data integration systems are usually done in a

virtualized, integrated manner in which data is

actually stored only on a range of data sources. This

article focuses on such systems.

III. DATA INTEGRATION SYSTEM FRAMEWORK

A typical data integration system framework

mainly includes a mediator and a wrapper. Each

data source corresponds to a wrapper, and the

middleware is connected to each data source

through a wrapper, as shown in FIG. 3-1. The

global pattern is a unified access interface provided

by the integrated system to the user. The local

pattern is actually an abstract representation of the

data source data. After being encapsulated by the

wrapper, the data of each data source has a

consistent model.

The main role of the wrapper is to access the

original source of information and provide

standardized packaging for its data so that data

from different data sources may be heterogeneous

with a consistent form of data for the upper

middleware further lay the foundation for further

work. The middleware processes the user's query

request, transforms the query based on the global

schema into a subquery that the data source can

process, and then obtains the corresponding

subquery data from the data source accessed by the

wrapper and the wrapper, and the wrapper

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 82

encapsulates the data into a consistent The model is

then returned to the middleware.

Instead of accessing the data source directly, the

user submits the required query to the integrated

system, and the system returns a consistent query

result, freeing the user from the puzzles below,

what data sources the actual data is stored in, and

what Way to access the data source to extract the

required data. The tasks of an integrated system

include deciding which data sources are relevant to

the user's query, assigning query execution plans to

those data sources, collecting the results returned

from the various data sources, merging the results,

and returning data satisfying the integrity

constraints to the user.

Fig. 1A framework of data integration system

The data integration system mainly works on the

following three components: global mode, data

source and the mapping between the two. Therefore,

the data integration system I can be formalized into

a triple <G, S, M>, where G Indicates the global

mode, S indicates the data source, and M indicates

the mapping between the global mode and the data

source.

IV. DATA SOURCE DESCRIPTION

One of the most important processes in designing

a data integration system is to establish a mapping

between the global schema and the data source,

which determines how queries submitted to the

system based on the global schema are translated

into data sources. In this section we discuss two

basic mapping methods: GAV(Global As View)

and LAV(Local As View). We discuss these two

approaches separately, and then compare the two

approaches at the end of this section.

C. GAV

The GAV describes a global pattern as a view

based on a local pattern, which is conceptually

natural because the view is usually a virtual one

defined on materialized relationships. In query

rewriting, it only needs to be expanded simply

according to the mapping. This mapping is easy to

implement. However, this mapping is not suitable

for frequent changes of data sources because

changing the data source can affect the mapping of

other data sources.

D. LAV

LAV uses the opposite view of GAV, describing

the partial model as a view based on the global

model. This mapping approach may seem strange,

because the global mode is virtual, do not save the

data, but in this mapping to adapt to the frequent

changes in data sources, better flexibility. If you

need to add a data source, you only need to add the

data source and the global schema mapping,

without the need to change other data sources.

Under LAV mapping, the local schema is

described as a global schema view, and queries

submitted by users based on the global schema need

to be converted to queries based on partial schemas

so that this can be described as a more general

question, which is Overwrite the query with the

view [5]. Bucket algorithm, inverse rule algorithm,

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 83

MiniCon algorithm, etc. can be used to solve this

problem. Below we will briefly describe the main

idea of these algorithms, the concrete realization of

the algorithm can be found in related articles [7, 8,

9, 10].

1)Bucket Algorithm

The main idea of bucket algorithm is divided into

two steps. The first step is to first create a bucket

for each subquery in each query and then consider

each subquery separately to determine which views

may be relevant to the subquery, to be relevant to

the subquery, and to be compared with the

comparison predicate of the original query View

into the appropriate bucket. The second step is to

consider the possibility of all the combinations in

the bucket, each containing one view atom in each

bucket, indicating that a query is overridden and

that the rewrite is included in the original query,

and if so, to Rewrite focus, the final result of the

bucket algorithm is the union of these rewrite.

Example 1 Consider a query that looks for the

film's more prominent movie director.

Q1(ID,Dir):-Movie(ID,Title,Year,Genre),Revenue(ID,Amount),Dire

ctor(ID,Dir),Amount≥500

Suppose we have the following view：

V1(I,G):-Movie(I,T,Y,G),Revenue(I,A),I≥2000,A≥600

V2(I,A):-Movie(I,T,Y,G),Revenue(I,A)

V3(I,D,Y):-Movie(I,T,Y,G),Director(I,D),I≤1000

First, the bucket algorithm creates a bucket for

each subquery in query Q1. For bucket Movie,

views V1, V2, and V3 all have subqueries

associated with them, so add these three views to

the bucket movie. Table 1 shows the contents of

each bucket:

Movie(ID,Title,Year,Genre) Revenue(ID,Amount) Director(ID,Dir)

V1(ID,Genre) V1(ID,G’) V3(ID,Dir,Y’)

V2(ID,A’) V2(ID,Amount)

V3(ID,D’,Year)

The variable with the ' in the above table

indicates that there is no variable in the bucket's

mapping field. The second step in the algorithm is

to combine the elements in each bucket, combine

the first element in each bucket, and get the

following query:

q1(ID,Dir) :- V1(ID,Genre),V1(ID,G’),V3(ID,Dir,Y’)

Further consider finding that the intersection of

views V1 and v3 are empty sets, because they

contain the IDs of disjoint movies, thus excluding

this combination. Consider the following

combination:

q2(ID,Dir) :- V2(ID,A’),V2(ID,Amount),V3(ID,Dir,Y’)

Obviously, q2 is not included in the original

query Q1 because Q1 requires Amount ≥ 500, but

we can obtain the following include override by

adding the predicate Amount ≥ 500 and deleting a

redundant subquery V2 (ID, A '):

q2’(ID,Dir) :- V2(ID,Amount),V3(ID,Dir,Y’),Amount≥500

2) The Inverse-rules Algorithm

The key idea of the algorithm is to construct a set

of rules that reverse the definition of a view, that is,

how to calculate tuples of database relations from

view tuples. The following an example of the idea

of the algorithm.

Consider a view of the previous example:

V(Dir,Amount) :- Director(ID,Dir),Revenue(ID,Amount)

We can construct the following inverse rules

based on the view:

R1: Director(f1(Dir,Amount),Dir) :- V(Dir,Amount)

R2: Revenue(f1(Dir,Amount),Amount) :- V(Dir,Amount)

Intuitively, these two inverse rules show that if

there is a tuple of (Dir, Amount) in view V, we can

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 84

deduce that there exists a constant c such that the

relational data tables Director (c, Dir) and Revenue

(c, Amount), Where c is denoted by f1 (Dir,

Amount) and item f1 (Dir, Amount) is called

SKolem [7], indicating a certain constant depending

on the values Dir, Amount and function f1.

Example 2 Suppose there is such a query, find

out the director Jack's income per film,

Q(Amount) :- Director(ID,Jack),Revenue(ID,Amount)

And we know that view V contains three tuples:

{(Jack, 5000), (Jack, 8000), (Tom, 6000)}, we can

get the following tuple according to the inverse rule:

Director：

{(f1(Jack,5000),Jack) , (f1(Jack,8000),Jack) ,

(f1(Tom,6000),Tom)}

Revenue：

{(f1(Jack,5000),5000) , (f1(Jack,8000),8000) ,

(f1(Tom,6000),6000)}

The query Q is applied to the above extension,

the result of the query can eventually be 5000 and

8000.

3)MiniCon Algorithom

The beginning of the MiniCon algorithm is

somewhat similar to the bucket algorithm,

considering which views have subqueries related to

subqueries in the query. But unlike bucket

algorithms, once a partial mapping of subquery g of

query Q to a partial query g1 of view V is found,

the connection predicate is shifted to the query Q

(ie multiple occurrences in the subquery Variable)

and find the minimal additional subquery set that

you need to connect with view V to rewrite query Q.

The mapping information of these variables and the

minimal additional sub-query set constitute a MCD

(MiniCon Description). The second step in the

algorithm is to combine these MCDs to generate

query rewrites. Compared with the bucket

algorithm, the MCD is constructed in a different

way and does not require inclusion checking in the

second stage, so it is more efficient than the bucket

algorithm. The following example illustrates the

idea of MiniCon algorithm.

Example 3 Consider the following query, check

out the movie starring movie director information.

Q3(Title,Year,Dir) :- Movie(ID,Title,Year,Genre),Director(ID,Di

r),Actor(ID,Dir)

And given the following view:

V1(D,A) :- Director(I,D),Actor(I,A)

V2(T,Y,D,A) :- Movie(I,T,Y,G),Director(I,D),Actor(I,A)

The bucket algorithm creates a bucket for each

subquery in query Q3, and view V1 is added to the

two buckets, Director (ID, Dir) and Actor (ID, Dir).

However, a careful analysis reveals that in fact view

V1 is not useful for query rewriting, because view

V1 is useful and must be linked to Movie (ID, Title,

Year, Genre) and join predicate ‘I’ does not appear

In the head of V1 In the above example, the

MiniCon algorithm can find that view V1 can not

be used for query overwriting, so MCDs are no

longer created for it. Create an MCD for view V2,

{A-> D, V2 (T, Y, D, D), Title-> T, Year-> Y, Dir-

> D, {1,2,3}}. The second phase is to combine

MCDs so that all subqueries in the query are

overwritten to create conjunctions and output the

union of the conjunctions.

4)Algorithom comparison

The advantage of the bucket algorithm is that it

uses the number of elements in a bucket of

predicates compared to the query, effectively

reducing the amount of rewrite that needs to be

considered. However, bucket algorithms do not

consider the interactions between different

subqueries in queries and views, so buckets may

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 85

contain views that can not be used for rewriting,

reducing efficiency. MiniCon algorithm overcomes

this problem, and because of the way of

constructing MCD, the second phase of MiniCon

algorithm does not need to include check, and

further improves the efficiency. The advantage of

the inverse rule algorithm is conceptually simple, it

is based on the logic of the method of reverse. From

the efficiency to consider, MiniCon better.

E. Comparison of two mapping methods

Query rewriting under GAV mapping only needs

to expand the original global pattern-based query

according to the rules, which is simple and direct.

However, when the system needs to increase or

decrease the data source, it is very inflexible

because the data source is increased or decreased

This means that the global schema needs to be

redefined.

Mapping a new data source to LAV implies

adding a new view definition to that data source,

leaving other data sources unaffected, so adding or

subtracting data sources is easier and more flexible,

but the associated algorithms Corresponding to

more complicated.

V. DATA CONSISTENCY IN INTEGRATED SYSTEMS

The integrity of the database refers to the

correctness and rationality of the data. It reflects the

original appearance of the entity in the real world.

Therefore, whether or not the database has

completeness determines whether it truly describes

the real world or not and whether it makes any

sense on its own. In order to maintain the integrity

of the data, the database management system

(DBMS) must provide a mechanism to check that

the data meets the given constraints. In essence, a

data integration system can also be thought of as a

DBMS, and it must also ensure that the data satisfy

the integrity constraints so that valid data is

returned for queries submitted by the user. There is

a case where some data, even after satisfying their

respective data source integrity constraints, may

violate the integrity constraints defined in the

integrated global schema, resulting in inconsistent

DB instances based on the global schema, After the

data consistency maintenance. However, for many

reasons, integrity constraints may not be enforced

or satisfied. For example, views in virtualization

integration that provide queries do not actually save

data, so the view's integrity constraints do not

actually act on the data, but the integrity constraints

are handled during the query. This raises the

question of how to obtain consistent query results

from a database that does not satisfy consistency.

F. Data repairs

One way is to repair the original inconsistent

database, making the database data in a state of

consistency, and then from a consistent database

query. Here involves a concept of distance. Given a

database instance r, we denote by∑)(r the set of

formulas{ raP |)(
_

╞)(
_

aP }, where P is the relation

name,
_

a is a tuple.

Difinition 1.The distance △△△△(r,r’) between database

instances r and r’ is the symmetric difference:

△△△△(r,r’)=(∑)(r -∑)'(r)U (∑)'(r -∑)(r)

Difinition 2.For the database instance r, r', r'',

r' r≤ r'' if △△△△(r,r') ⊆△△△△(r,r''), i.e., the distance between

r and r' is less than or equal to r and r ''distance.

Difinition 3.Given a database instance r and r', r' is

a repair of r if r'╞ IC and r’ r≤ -minimal, i.e., r 'is a

database instance that satisfies the integrity

constraint and has the smallest distance from r.

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 86

Example 4Consider two tables, D1 and D2, that

have a table Student, with the primary key ID, for

each of them fulfilling its primary key constraint:

D1.Student：

ID Name nationalit

y

1001 Jack US

1004 Tom China

1006 Jame UK

D2.Student：

ID Name nationalit

y

1001 Paul US

1005 Cathy China

When we integrate these data, we get a table that

does not satisfy the consistency:

Student：

ID Name nationalit

y

1001 Jack US

1001 Paul US

1004 Tom China

1005 Cathy China

1006 Jame UK

Based on the idea of repair, two repairs for the

Student table are:

Student'：

ID Name nationalit

y

1001 Jack US

1004 Tom China

1005 Cathy China

1006 Jame UK

Student''：

ID Name nationalit

y

1001 Paul US

1004 Tom China

1005 Cathy China

1006 Jame UK

G. Obtain consistent data directly

Data repair techniques attempt to identify and

correct errors in the data and can be used to restore

the database to a consistent state. However, the fix

is preferably semi-automatic and may not be

feasible or not acceptable for some applications. In

addition, a single repair strategy may not be suitable

for some environments, users may want to try

different repair strategies, or may retain all data,

including even inconsistent data. In [12], a method

is proposed that can directly rewrite queries to

obtain consistent data directly from an inconsistent

database and apply the method to a ConQuer

system. Here's a simple example to explain his

ideas.

Example 5 Consider the following does not meet

the consistency of the database, store the user's ID

custID and the user's account balance balance,

where custID is the primary key. Note that the

following table violates the primary key constraint,

probably because its data comes from more than

one data source.

 custID balance

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 87

t1 c1 500

t2 c1 3000

t3 c2 2600

t4 c2 2800

t5 c3 4000

Consider a query that requires the user to find out

that the account balance is more than 2000:

Q4：select custID from CustBalance where balance>2000

If you query directly on the table, you get {c1, c2,

c2, c3}. c1 appears in the above result is because c1

has another account balance to meet the query Q4,

that is, t2. However, closer examination reveals that

user c1 has an account balance below 2000, as

shown by tuple t1, so c1 should not appear in the

query result. In addition, user c2 appears twice in

the result. In this example, the expected query result

that satisfies the consistency should be {c2, c3}.

Although there are two accounts for user c2 in the

table, the balance of both accounts satisfies the

query Q4 condition, so As a result of the inquiry.

For the sake of consistency, the ConQuer system

rewrites the original query, and for the example

above it will produce the following rewrite:

select distinct custID

from CustBalance as cb

where balance > 2000 and

not exists (select *

from CustBalance as cb'

where cb'.custID=cb.custID and cb'.balance

 ≤2000)

The rewritten query execution in the original does

not meet the consistency of the data table, we can

get the desired results {c2, c3}. In the rewritten

query, the keyword distinct is used to exclude

duplicate elements in the result, and a nested

subquery uses the keyword not exists to filter out

inconsistent data and eventually obtain consistent

data. The realization of specific algorithm can refer

to [12].

VI. CONCLUSION

This article describes the overall architecture of

the data integration system, as well as some of the

key modules of the algorithm description and

comparison. After years of research, data

integration technology has also been more and more

applied to various fields. Today, integrated data

sources are also being extended to unstructured

Web data by traditional structured data such as

relational databases, semi-structured data such as

XML. We believe that with the continuous

development of computer technology, some

problems in data integration will be solved very

well, and the application of data integration will

also be more extensive.

REFERENCES

[1] CHEN Yue-Guo, WANG Jing-Chun, A Review of Data Integration,

Computer Science,2004,vol.31.

[2] ZhangHai Li, Research on Integrity Constraints in Integrated

Data,JiNan University,2016.

[3] Maurizio Lenzerini, Data Integration: A Theoretical Perspective,

Symposium on Principles of Database Systems , 2002 :233-246.

[4] Diego Calvanese, Giuseppe De GiacomoData, Integration: A Logic-

Based Perspective, Ai Magazine , 2005 , 26 (1) :59-70.

[5] L Bertossi, L BravoConsistent, Query Answers in Virtual Data

Integration Systems, Inconsistency Tolerance , 2005 , 3300 :42-83.

[6] PA Bernstein ,LM Haas, Information integration in the

enterprise,ACM , 2008 , 51 (9) :72-79.

[7] AY Halevy, Answering queries using views: A survey, Vldb Journal,

2001 , 10 (4) :270-294.

[8] R Pottinger ， A Halevy, MiniCon: A scalable algorithm for answering

queries using views, Vldb Journal , 2001 , 10 (2-3) :182-198.

[9] AY Halevy, Theory of Answering Queries Using Views, ACM , 2000 ,

29 (4) :40-47.

International Journal of Computer Techniques – Volume 4 Issue 6, November - December 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 88

[10] AY Levy, A Rajaraman, JJ Ordille, Querying Heterogeneous

Information Sources Using Source Descriptions, Stanford Infolab,

1996 :251--262.

[11] Arenas M, Bertossi L, Chomicki J. Consistent query answers in

inconsistent databases[C]// 1999:68-79 .

[12] Fuxman A, Fazli E. ConQuer: efficient management of inconsistent

databases[C]// ACM SIGMOD International Conference on

Management of Data. ACM, 2005:155-166.

