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Abstract—We evaluate the performance of a system which addresses the problem of building detailed models of shape
and appearance of complex structures, given only a training set of representative images and some minimal manual
intervention. We focus on objects with repeating structures (such as bones in the hands), which can cause normal
deformable registration techniques to fall into local minima and fail. Using a sparse annotation of a single image we can
construct a parts+geometry (P+G) model capable of locating a small set of features on every training image. lterative
refinement leads to a model which can locate structures accurately and reliably. The resulting sparse annotations are
sufficient to initialise a dense groupwise registration algorithm, which gives a detailed correspondence between all
images in the set. We demonstrate the method on a much larger set of radiographs of the hand while comparing results
with that of the earlier work, we achieved a sub-millimeter accuracy in a prominent group.

Index Terms—Bone Age assessment, Statistical Appearance Models, Groupwise Registration, Parts + Geometry

Models (P+G).

1 INTRODUCTION

Many forms of model can be constructed if we
have accurate correspondences defined across a
set of training images. However, obtaining such
correspondences can be difficult and time con-
suming. In most early work on statistical shape
models, for instance [4], the correspondences
were created manually. More recently there
has been considerable research into automated
methods of achieving correspondence, such as
from boundaries in 2D or surfaces in 3D (eg
[6]), or more generally by directly registering
images using non-rigid registration methods or
‘groupwise’ techniques [3].

In our earlier paper we tackled the prob-
lem of registering images of objects with con-
siderable shape variation and multiple similar
sub-parts. The key problem with such data is
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one of initialisation. A common approach to
groupwise registration is to first find an affine
transformation which gives an approximate so-
lution, then perform non-rigid registration to
an evolving mean to obtain more exact results
[3]. Unfortunately, with the degree of variabil-
ity exhibited in the hands, the affine stage is
insufficient.

We use a parts+geometry model [9]. The
local geometry can be used to efficiently select
between multiple candidates for the parts. Don-
ner et al. demonstrated how a sophisticated
parts + geometry model can accurately locate
points in such images and how such a model
can be constructed automatically from a set of
images in which only one is manually anno-
tated [8]. However, the method was only eval-
uated on a small set of 12 hand radiographs.

In this paper we show how a simple parts +
geometry model can be learned from a large set
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of images using only one manually annotated
image and how this can be used to initialise
a groupwise registration algorithm, leading to
dense correspondences [1]. We extend our ear-
lier work to deal with 536 images (as opposed
to 94). The key problem is the huge variation
that exist in registering radiographs of children
and young adults for automatic determination
of skeletal maturity. This makes the original
method perform less effectively.

In the following we describe the technique
in tackling the inherent variation, demonstrate
its use and evaluate it by comparing the results
with the initial work [1].

2 RELATED WORK

Model constructions could be easy if we can es-
tablish accurate correspondences across a set of
training images. Unfortunately, obtaining such
correspondences can be difficult and time con-
suming. In most early works on statistical shape
models, for instance [4], the correspondences
were created manually. More recently there
has been considerable research into automated
methods of achieving correspondence, such as
from boundaries (eg [5]) in 2D or surfaces
in 3D (eg [6]), or more generally by directly
registering images using non-rigid registration
methods [11] or ‘groupwise” techniques [2], [3],
[14], [15].

The natural approach is thus to use a
Parts+Geometry model [13], [9], [10]. The lo-
cal geometry can be used to efficiently select
between multiple candidates for the parts. For
instance, Donner et al. [7] demonstrated how
a sophisticated parts + geometry model can ac-
curately locate points in such images. In further
work [8], they showed that such a model can be
constructed automatically from a set of images
in which only one is manually annotated. How-
ever, the method was only evaluated on a small
set of 12 hand radiographs. In related work,
Langs et al. [12] describe a method of con-
structing sparse shape models from unlabeled
images, by finding multiple interest points and
using an MDL approach to determine optimal
correspondences.

We show how a simple parts + geometry
model can be learned from a large set of images
using only one manually annotated image. We
construct an initial model from the single image
and use it to search the rest of the set. The best
results are then used to update the model in an
iterative scheme. The result is a trained model,
together with a sparse set of correspondences
across the set. These correspondences can then
be used to initialise a group based registration
algorithm, leading to dense correspondences.
Figure 1 shows the process diagram for the
steps described above.

Fig. 1. P+G models and groupwise registration process diagram

3 METHODS
3.1 Data Set

We have access to a database of radiographs of
the non-dominant hand of normally developing
children. The children were enrolled on a bone
ageing study at the University of Manchester.
Their ages ranged between 5 years and 20
years. In the following work we used a subset
of 170 (87 male and 83 female) digitized radio-
graphs of normal children.

3.2 Multi-Resolution Patch Models

Given one or more training images in which a
particular region has been annotated, we can
construct a statistical model of the region. We
assume that the region is of fixed shape, but
may vary in size and orientation. In the sim-
plest case the region is an oriented rectangle or
ellipse, centred on a point, p with scale s and
orientation 6.

If g(t) are the intensities sampled from
n pixels in the region with pose parameters
t = {p, s, 0}, normalised to have a mean of zero
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and unit variance, then the quality of fit to a
model is evaluated as

fi(g(t)) = i 195 — Gijl/0ij (1)

where g; is the vector of mean intensities for the
region and o;; is an estimate of the mean abso-
lute difference from the mean across a training
set.!

We can then search new images with such
a model, by performing an exhaustive search
at a range of positions, orientations and scales
to locate local minima of f;(g(t)). This result in
multiple responses for each patch [1].

3.3 Geometric Relationships

To disambiguate the multiple responses of a
single patch model, we create a model con-
taining a set of N patch models, together with
a model of the pairwise relationships between
them. This is a widely used and effective tech-
nique [9].

Given multiple possible candidates for each
part position (from the patch detectors), we
used a graph algorithms to locate the opti-
mal solutions. We used a variant of dynamic
programming in which a network is created
where each node can be thought of as having
at most two parents. Details of this method are
discussed in [1].

Each candidate response for part ¢ has a
pose with parameters t; = {p;,s;,0;}. The re-
lationship between part i and part j can be
represented in the cost function, f;;(t;,t;). This
can be derived from the joint PDF of the param-
eters.

In the following we take advantage of the
fact that the orientation and scale of the objects
are approximately equivalent in each image,
and simply use a cost function based on the
relative position of the points:

—d;;)"S; ((p; — pi) — dyy)
)

fij(ti t5) = ((Pj — Pi)

1. We find this form (which assumes the data has an expo-
nential distribution) gives more robust results than normalised
correlation, which is essentially a sum of squares measure.

where d;; is the mean separation of the two
points, and S;; is an estimate of the covariance
matrix.

The matching algorithm thus seeks to find
the candidates which minimise the following
function

N
F = Zfi(gi) + Z fii(Pipj)  (3)
=1 (i,7)EAres

The value of o affects the relative impor-
tance of patch and geometry matches. In the
following we use o = 0.1, chosen by prelimi-
nary experiments on a small subset of the data.
Ways of automatically choosing a good value of

« are the focus of current research.

3.4 Building the Model

We initialise a model using a set of parts de-
fined by boxes placed on a single image by
the user (for instance, the rectangles shown in
Figure 2a). This takes about one minute to do,
and allows the algorithm to take advantage of
user supplied knowledge. We then automati-
cally define a set of connecting arcs based on
the distances between the centres of the boxes.
We use a variant of Prim’s algorithm for the
minimum spanning tree, where each node has
two parent nodes, rather than one [1].

We then refine the model by applying it to
the whole dataset, ranking the results by final
tit value (per image), and building statistical
models of intensity and pairwise relationship
from the best 50% of the matches.

3.5 Dense Correspondence

At convergence we obtain a model of parts and
geometry, together with a sparse annotation of
every image in the training set. The centres
of each part region define correspondences.We
use these to initialise a groupwise registration.
We place a dense mesh of control points on
the first image, use a thin-plate spline based
on the sparse annotation to propagate these
points to all other images. We then compute
the mean shape and warp each example into
the mean. Furthermore we perform non-rigid
registration [3] to modify the control points on
each image to best match to the mean. Finally
we re-compute the mean and iterate.
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4 EXPERIMENTS

We applied the technique described above to a
set of 536 radiographs of the hands of children,
taken as part of another study?. We divided
the dataset into three age-groups. AgeGroupl
-63 images (5 - 7 yrs), AgeGroup2 -284 images
(8-13 yrs) and AgeGroup3 - 189 images (14 -
19 years) In our earlier work [1] we found
the optimal number of boxes to be 19 boxes.
These 19 boxes were annotated on one image
(see Figures 2a). For each choice of boxes on a
single image, a model of parts and geometry
was constructed and used to locate equivalent
points on other images. The models were then
rebuilt and refined as described above. Figure
2a shows the initial 19 boxes on one of the
images, together with the automatically cho-
sen connectivity. Matches with the final model
are shown in Figure 2b,c,d,e for the various
groups and an example of failure in 2f. The
found points in each of the groups were used
to initialise a groupwise algorithm as described
above. Qualitative results of the registration is
shown in Figures 3. The crispness of the images
indicate a good alignment.

Fig. 2. Example of model(a), search results with 19 parts for
set94(b) [1], AgeGroup1(c), AgeGroup?2 (d), AgeGroup3 (e) and
an example of a failure (f) respectively (see the tip of the fifth
finger near the label).

We evaluated the accuracy of the points lo-
cation by comparing with manual annotations

2. The authors would like to thank K.Ward, R.Ashby, Z.
Mughal and Prof.J.Adams for providing the images.
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Fig. 3. Final mean images after groupwise registration. a)
set94 [1], b) AgeGroup1, c)AgeGroup2 and c) AgeGroup3.

based on an evaluation framework formulated
in [1]. The mean distance errors for sparse
point errors was found to be 0.70 £ 0.08mm,
1.08 £ 0.18mm, 0.91 £ 0.15mm, 0.75 £ 0.09mm
for the set94 (images used in [1] ), AgeGroupl,
AgeGroup2, AgeGroup3 respectively. The re-
sult of AgeGroup3 14 -19, a very difficult group,
is comparable to the original result obtained in
[1]. Figure 4a presents the distribution of the
errors and compare the various groups. For the
dense correspondence accuracy, a median error
of 0.94mm, 1.38mm, 1.1mm and 1.0lmm for
the set94, AgeGroupl, AgeGroup2, AgeGroup3
respectively. These errors are higher than in
sparse point placement because the evaluation
is based on the entire image region [1]. Figure
4b presents the distribution of the errors and
compare the various groups. Note that in both
cases errors are highest for AgeGroupl. The
few number of images and very large variation
may be responsible. Sometimes there is no cor-
respondence amongst the bones.

5 DISCUSSION AND CONCLUSIONS

We have evaluated an approach for automat-
ically locating sparse correspondences across
a set of images, by constructing a parts and
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Fig. 4. Comparison of statistics of points errors for various
groups. a) Accuracy of sparse point placement and b) Errors
after groupwise registration (mm).

geometry model with an extended dataset. We
achieve an accuracy of 0.75mm on the posi-
tioning of the chosen parts. This is significantly
better than results quoted by Donner et al.[8]
(approx. 1.5mm, though on a different, smaller
dataset). The found points are sufficient to ini-
tialise a more detailed group-wise registration
which can give dense point correspondences
with approximately 1mm accuracy over the
whole hand. We can conclude that these re-
sults are comparable with our earlier work [1].
We have commenced more work on the Age-
Groupl to achieve higher accuracy.
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