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Abstract—We compare the utility of models of different structures in the hand for predicting skeletal maturity in young
people. Bone age assessment is important for diagnosing and monitoring growth disorders. Statistical models of bone
shape and appearance have been shown to be useful for estimating skeletal maturity. In this work we investigate the
effect of the choice of region to model on the prediction performance. By analysing the performance on a dataset of 170
digitized radiographs of normal children we show that improvements in accuracy can be achieved by using models of
the joint complexes and bones constructed by automatic registration, compared to ones built from manual annotation.
We also investigate how sets of joint complexes and bones can best be combined to estimate overall skeletal age. Our
results show that the best predictions are obtained from 13 RUS complexes and their combination into eight bone
complexes. The mean absolute prediction errors of 0.80 (13 joint complexes) , 0.81(eight bone complexes) years for
females and 0.93, 0.94 years for males respectively, demonstrates that similar results are obtained whether we use
many local models of individual joints, or a smaller number of models of groups of bones.

Index Terms—Bone Age assessment, Statistical Appearance Models, Groupwise Registration.
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1 INTRODUCTION

A widely used method of estimating skele-
tal maturity is to examine the bones and
joints of the non-dominant hand in a radio-
graph. A significant difference between the
bone age and the actual age of a child is an
indication of growth abnormalities. The main
methods used in clinical practice are those
of Greulich and Pyle(GP) [5] and Tanner and
Whitehouse(TW2/3) [12]. The GP method in-
volves comparing the whole image with an
atlas, while the TW2 method involves scoring
each of a number of different bone complexes
- it is less subjective but significantly slower.
Both methods are subject to inter- and intra-
observer variability. While there is no contro-
versy as to points where growth occurs, there
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is a difference of opinion as to coverage areas
and specific bones to observe while estimat-
ing skeletal maturity. The GP method observes
28 growth points while the TW3 observes 13
growth points.

There have been many attempts to au-
tomate the bone age assessment procedure.
These range from classical image analysis meth-
ods [8], [10], machine learning techniques [6],
[1], [15], and model based methods [9], [16],
[7]. The majority of these studies are restricted
to isolated areas in the hand. This process of
reducing skeletal maturity to a single isolated
bone complex is not entirely wrong, but it loses
vital complimentary information available from
the estimation of other growth complexes [12].
It is indeed desirable to have as many bones as
are biologically important for analysis of ma-
turity information to get a good estimation of
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skeletal maturity. There are a range of possible
choices of models, from using single models
of the whole hand, to averaging the predic-
tions of local models of individual joints and
bones. This paper investigates the effect of the
choice of region to model on the prediction
performance. The most closely related work
to that presented here is that of Thodberg et
al.[14], who showed how Active Appearance
Models [3], [13] can be used to locate the bones
of the hand and how the parameters of the
associated appearance models can be combined
with other texture measures to predict skeletal
age. Whereas Thodberg et al. used models of
the individual bones, we build local appearance
models of the regions around the bones and
joints and compare with models of individual
bones containing the complexes. We perform
a set of systematic experiments to investigate
which structures are most significant for pre-
diction of skeletal age.

In our approach we manually annotated a
set of points on the bones in a set of digitized ra-
diographs of children’s hands. We constructed
shape and appearance models of each of 20
joints and bone complexes. We also construct
combined bone models of bones using equiv-
alent combination bones and complexes. The
parameters of the resulting models were used
in a linear regressor to predict the chronological
age of the child. The best results were obtained
by averaging over 13 bone complexes and 8
equivalent bones. The result of the average of
seven Carpal bones was also compared with
that of a single model of the seven bones. In
the following we describe the key components
of the work and present quantitative results.

2 RELATED WORK

3 METHODS

3.1 Data Set

We have access to a database of radiographs of
the non-dominant hand of normally developing
children. The children were enrolled on a bone
ageing study at the University of Manchester.
Their ages ranged between 5 years and 20
years. In the following work we used a subset

of 170 (87 male and 83 female) digitized radio-
graphs of normal children.

3.2 Construction of Statistical Appearance
Models
Statistical appearance models [3], [4] were gen-
erated by combining a model of shape varia-
tion with a model of texture variation. Each
radiograph was manually annotated with 330
points around important structures (Figure 1a).
Statistical models of shape and texture (intensi-
ties in the reference frame) were constructed by
applying Principal Component Analysis (PCA)
to the resulting annotations, leading to linear
models of the form

x = x̄ + Psbs g = ḡ + Pgbg (1)

where x̄ is the mean shape, ḡ is the mean
texture, Ps,Pg are the main modes of shape and
texture variation and bs,bg are the shape and
texture model parameter vectors. Combining
the shape and texture models gives a combined
appearance model of the form

x = x̄ + Qsc g = ḡ + Qgc (2)

where Qs, Qg are matrices describing the modes
of variation derived from the training set and c
is a combined vector of appearance parameters
controlling both shape and texture.

3.3 Groupwise registration
The manual annotation only uses a few points
for each local bone complex model, so does not
represent details of the bone shape. To improve
the density of the correspondences we applied
a ‘groupwise’ non-rigid registration algorithm,
similar to that in [11], [2], initialised with the
manual points. For each structure we defined
a dense triangulated mesh on one image, then
used the manual annotation to propagate this
to the other images using thin-plate spline in-
terpolation. We then estimated the mean shape
and texture and applied a non-rigid registra-
tion approach to improve the correspondence
between each image and the mean. The process
is repeated until convergence, leading to an
accurate, dense correspondence across the set.
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Fig. 1. (a) Radiograph with manually annotated points. (b) Bone
Age growth points based on TW method. RUS bones: Ra-
dius(1), Ulna(2), Metacarpal I, III, V, Proximal phalanges I, III, V
(10,15,16) , Middle phalanges III, V (14,17), Distal phalanges I,
III, V (12,13,18); Carpal bones: Capitate(4), Hamate(5), Trique-
tral(8), Lunate(3), Scaphoid (6), Trapezium(7) and Trapezoid(9).
(c) The first mode appearance variation of models from three
joint complexes (Metacarpal III, Radius and Capitate) from man-
ual markup(left) and after automatic registration (right).

Models of shape, texture and appearance were
then constructed from the resulting points. We
built a set of models of 7 local carpal models
and a combined one, 13 RUS local model and
8 combined bone models of bones and growth
complexes known to be important in estimating
bone age [12] – see Figure 1b. Figure 2 shows
examples of modes of variation of the appear-
ance models for four of the local models and
the mode of variation of the bone model that
combines them. The figure also shows separate
and combined models for Carpal bones.
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Fig. 2. The first mode appearance variation of models from
five joint complexes with their corresponding combined bone
model (a)Metacarpal1 (b)Proximal Phalanges 1 (c)combined
bone model (mc-ppha1) (d)Metacarpal3 (e) proximal phalanges
3 (f) combined bone model (mc-ppha3) (g) Middle phalanges3
(h) distal phalanges3 (i)combined bone model (mp-dpha3). (j)
Proximal phalanges1 (k) distal phalanges 1 (l) combined bone
model (ph-dpha1) (m)Capitate (n) Lunate (o) Combined Carpal
Model

3.4 Estimation of skeletal maturity

Given the appearance models we can com-
pute shape, texture and appearance parameter
vectors for each structure on each image. We
performed experiments that showed that ap-
pearance parameters correlate with age better
than either shape or texture parameters alone.
We use classical linear regression of the form:

A = wTp + A0 (3)

where A is the predicted age, w is a vector of
weights, p is the parameter vector and A0 is the
intercept constant. In the following we describe
experiments comparing the performance of dif-
ferent models and combinations of models.

4 EXPERIMENTS

A total of 170 images (87 male children and
83 female children) were annotated with 330
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points (Figure 1a). Shape, texture and appear-
ance models were built based on the results
of the (manually initialised) automatic registra-
tion. Images of males and females were pooled
to create the models.

For each model we computed the shape,
texture and appearance c parameters for every
image. We then evaluated the utility of linear
age prediction models using a Leave-One-Out
(LOO) paradigm. We trained linear regressors
to predict age on all but one image, then tested
the prediction on the left-out image. Since male
and female children are known to develop at
different rates, different regressor models were
used for the male and the female sets. We
evaluated performance using the mean abso-
lute error between prediction and chronological
age. This is a more robust measure than using
the RMS error, which is prone to corruption by
outliers.

We performed initial experiments based on
established growth complex considering the 13
RUS bone complexes and 20 Bone complexes.
Table 1 compares the average performance of
single local appearance models build with and
without automatic registration for 20 growth
complexes. It demonstrates that overall the reg-
istration improves the quality of the predic-
tions.

Female Male
Models from manual markup 1.47±0.08 1.26±0.07
Automatic registration 1.35±0.08 1.20±0.04

TABLE 1
Average performance of single bone complex models, with and
without automatic registration (Mean absolute error in years).

Table 2 shows the prediction errors for the
average performance of single local models,
Overall this shows that the predictions based
on appearance parameters give the best perfor-
mance, though the improvement is not clearly
significant with this size of dataset. The texture
parameters in female show a marginally better
performance, this may be due to the large num-
ber of older female children in our dataset. We
intend to further explore the possibilities from
texture parameters in future.

We performed experiments comparing a
single model of all carpals bones with the pre-

Female
Shape Tex. App.

Average - RUS13 1.35±0.07 1.18±0.07 1.18±0.05
Average - 20 Complexes 1.48±0.07 1.31±0.07 1.35±0.08

Male
Shape Tex. App.

Average - RUS13 1.23±0.03 1.23±0.05 1.16±0.05
Average - 20 Complexes 1.32±0.05 1.24±0.04 1.20±0.04

TABLE 2
Average performance of local models - Mean absolute

predictions error (years) of RUS13 complexes and 20 bone
complexes.

diction based on the average of that from each
individual carpal bone model. See row 5 of
Figure 2 for the image of the models. Table 4
(rows 2 and 3) shows the resulting prediction
errors. The difference between the individual
bones average mean absolute errors is not sig-
nificant. However the errors are comparatively
high. This justifies the exclusion of carpal bones
from skeletal maturity estimation in line with
recent medical studies [12].

We performed further experiments to com-
pare the performance of individual bone com-
plexes (joints) with combined model of bones
which combine two or more complexes. We use
the 13 RUS bone complexes shown in Figure
1b. Proximal joints were combined within the
13 RUS Complexes to give a total of eight
models. Eight examples of RUS 13 bone com-
plexes and how they are constituted into four
bone models are shown in Figure 2 (first 4
rows). Additional combinations of complexes
not shown are metacarpal5 + proximal pha-
langes5 (mc-ppha5) and middle phalanges 5 +
distal phalanges 5 (mp-dpha5). Six combined
bone models plus Radius and Ulna are com-
pared with the 13 RUS complexes. The mean
absolute errors of the combined bone models
versus the average error of the two equivalent
complexes are shown in Table 3 (rows 6 and
7). The results show that the combined bone
models are slightly more effective than the in-
dividual based models, but the difference is not
statistically significant.

Overall age prediction can be improved by
averaging the ages estimated from each local
bone model over the set (Aµ = 1

n

∑N
i=1Ai, where

Ai is the prediction from the ith local model). We
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Female
Combined model Equiv average

mc-ppha1 1.01±0.09 1.18±0.12
mc-ppha3 1.18 ±0.10 1.00±0.10
mc-ppha5 0.98±0.11 1.23±0.10
mp-dpha3 1.26±0.13 1.52±0.14
mp-dpha5 1.27±0.12 1.11±0.10
ph-dpha1 1.10±0.10 1.14±0.11
Average err 1.13±0.11 1.19±0.11

Male
Combined model Equiv average.

mc-ppha1 1.00±0.09 1.12±0.09
mc-ppha3 1.16±0.09 0.95±0.08
mc-ppha5 1.15±0.11 1.15±0.10
mp-dpha3 1.28±0.09 1.34±0.11
mp-dpha5 1.07±0.10 1.31±0.11
ph-dpha1 1.21±0.10 1.14±0.10
Average err 1.14±0.10 1.17±0.10

TABLE 3
Average performance of local models - Mean absolute

predictions error (years) of RUS13 complexes and 20 bone
complexes.

computed the average from predictions of eight
combine bone models versus 13 RUS complexes
and results are shown in Table 4 (rows 4 and 5).

Female Male
20 local models (RUS + Carpals) 0.92 ±0.09 0.92 ±0.07
Individual Carpal bones’ model 1.30±0.10 1.00±0.08
Combined carpal model (not av) 1.32±0.14 1.16±0.09

Combined bone models 0.81 ±0.08 0.94 ±0.08
13 RUS local models 0.80 ±0.09 0.93±0.08

TABLE 4
Mean absolute predictions error (years) using average

predictions of constituent bone models.

5 DISCUSSION AND CONCLUSIONS

This work confirms earlier work [14] that good
predictions of chronological age can be made
using simple linear predictors based on the
parameters of appearance models of bones and
joint complexes of the hand. The mean absolute
prediction errors of 0.80, 0.81 years for males
and 0.93, 0.94 years for females are encour-
aging. The average of predictions from Table
4 shows a small difference between between
the 8 combined models and the 13 RUS joint
complexes. The results of a combined Carpals’
model versus average of single Carpal models
shown in Table 4 also shows a small difference.
This suggests that it may not matter whether

a combined bone models or single complex
models are used. The mean absolute prediction
errors correspond to root mean square errors of
about 1.1 and 1.2 years. Thodberg et al. [14]
describe a system based on appearance models
of the bones, which achieves an RMS error of
0.87 years between predicted age and chrono-
logical age on a large dataset, using a set of
linear predictors for each bone (one for each
of several age ranges). We are currently ex-
tending our dataset, and will explore whether
non-linear models and multiple predictors can
further improve our results.
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