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Abstract: 
A simple method has been proposed to distinguish the normal and abnormal hearing subjects 

(conductive or sensorineural hearing loss) using acoustically stimulated EEG signals. Auditory Evoked 
Potential (AEP) signals are unilaterally recorded with monaural acoustical stimulus from the normal and 
abnormal hearing subjects with conductive or sensorineural hearing loss. The extracted features are applied 
to machine-learning algorithms to categorize the AEP signal dynamics into their hearing threshold states of 
the subjects. To classify the normal hearing and abnormal hearing subjects with conductive or sensorineural 
hearing loss. To detect the hearing loss for all including neonates, infants and multiple handicaps which 
helps to improve their quality of life. 
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I. INTRODUCTION 

EEG 

ElectroEncephaloGraphic (EEG) signals stem from 

measuring electric potentials (microvolts) using electrodes 

placed on the scalp according to the international 10-20 

system (Jasper, 1958), as can be seen in figure 1.1. The 

electrode labels correspond to cortex areas, thus (F) denotes 

Frontal, (C) denotes Central, (T) denotes Temporal, (P) 

denotes Parietal and (O) denotes Occipital. Odd numbers 

correspond to the left side of the brain, smaller numbers being 

more medial locations than larger numbers, whileeven number 

correspond to the right side of the brain. The letter (z) denotes 

the central line, between the nose and the Putamen Magnum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The International 10-20 EEG Electrode Placement 

Scheme. Electrodes Marked in Red are the Ones Used in 

this Study 

EEG-based BCI 

• Mental activities producing distinct EEG signals. 

• EEG hardware for signal acquisition 

 

 

 

Examples of  EEG signals in different levels of 

consciousness 

 

Digital EEG signal processing (usually) consisting 
of: 

(i) Preprocessing.  
(ii) Feature selection.  
(iii) Feature extraction. 
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A machine learning classifier for pattern recognition, 
translating EEG processed signals into computer commands. 

• The output action, which also serves as feedback to 
the user. 

 

EEG Processed Signals into Computer Commands 

 

II. RELATED WORK 

The ERP responses of twenty-nine 6-month-olds, 
nineteen 12-month-olds and ten adults to an auditory stimulus 
were derived from ElectroEncephaloGram (EEG) recordings. 
The most relevant wavelet coefficients corresponding to the 
first- and second-order moment sequences of the ERP signals 
were then identified using a feature selection scheme that 
made no a priori assumptions about the features of interest. 
These features are then fed into a classifier for determination 
of age group. To develop a high performance Machine 
Learning (ML) approach for predicting the age and 
consequently the state of brain development of infants, based 
on their Event Related Potentials (ERPs) in response to an 
auditory stimulus. 

The Continuous Time Wavelet Entropy (CTWE) of 
Auditory Evoked Potentials (AEP) has been characterized by 
evaluating the Relative Wavelet Energies (RWE) in specified 
EEG frequency bands. Thus, the rapid variations ofCTWE 
due to the auditory stimulation could be detected in post-
stimulus time interval. This approach removes the probability 
of missing the information hidden in short time intervals. 
Thediscrete time and continuous time wavelet based wavelet 
entropy variations werecompare donnon target and target AEP 
data. It was observed that CTWE can also be an alternative 
method to analyze entropy as a function of time. 

Electro Encephalo Graphy (EEG) signals as the key 
indicator. Two timed of main features, spike rhythm city, 
autoregressive model using Levinson–Durbin algorithm and 
frequency domain features such as power spectral density 
estimation by Burg’s and Yule–Walker methods are applied. 
Feed forward and feedback neural network models are used to 
distinguish the stimuli and non-stimuli EEGs. The neural 
network models are configured optimally by varying the 
hidden neurons and learning algorithms and their performance 
are evaluated in terms of specificity, sensitivity and 

classification accuracy. It can be concluded from the 
experimental study that the proposed methodology can be 
applied for neonatal healthcare applications. 

The EEG data acquisition system was tested on 5 
healthy young adults and the results were compared to those 
obtained using a commercial equipment (CADWELL 7200). 
The results show that the early brain stem evoked potential 
latencies, related to the hearing process can be detected, even 
when the system is operated in non-ideal locations for 
conducting hearing tests. Thus the results suggest that the 
equipment can be used in clinics without special facilities (i.e. 
sound proof rooms) as part of routine diagnostic activities. 
 

III. PROPOSED ANALYSIS  

Waveform Components 

Wave I: The ABR wave I response is the far-field 
representation of the compound auditory nerve action 
potential in the distal portion of Cranial Nerve (CN). The 
response is believed to originate from afferent activity of the 
CN fibers (first-order neurons) as they leave the cochlea and 
enter the internal auditory canal.A study by Lin et al indicated 
that in the assessment of ABR in patients with Idiopathic 
Sudden Sensorineural Hearing Loss (ISSNHL), wave I 
latency is significantly associated with hearing outcomes, with 
a trend toward prolongation found between patients with 
complete hearing recovery and those experiencing only slight 
recovery. 

Wave II: The ABR wave II is generated by the proximal EEG 
Signal nerve as it enters the brain stem. 

Wave III: The ABR wave III arises from second-order 
neuron activity (beyond CN) in or near the cochlear nucleus. 
Literature suggests wave III is generated in the caudal portion 
of the auditory pons. The cochlear nucleus contains 
approximately100,000 neurons, most of which are innervated 
by eighth nerve fibers. 

Wave IV: The ABR wave IV, which often shares the same 
peak with wave V, is thought to arise from pontine third-order 
neurons mostly located in the superior olivary complex, but 
additional contributions may come from the cochlear nucleus 
and nucleus of lateral lemniscus. 

Wave V: Generation of wave V likely reflects activity of 
multiple anatomic auditory structures. The ABR wave V is the 
component analyzed most often in clinical applications of the 
ABR. Although some debate exists regarding the precise 
generation of wave V, it is believed to originate from the 
vicinity of the inferior colliculus. The second-order neuron 
activity may additionally contribute in some way to wave V. 
The inferior colliculus is a complex structure, with more than 
99% of the axons from lower auditory brainstem regions 
going through the lateral lemniscus to the inferior colliculus. 

Auditory Brainstem Response Evaluation 
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In addition to retro cochlear pathologies, many 
factors may influence ABR results, including the degree of 
sensorineural hearing loss, asymmetry of hearing loss, test 
parameters and other patient factors. These influences 
factored in when performing and analyzing an ABR result.

Visual Evaluation 

Findings Suggestive of Retro Cochlear Pathology May 
Include Any 1 or More of the Following: 

• Absolute latency interaural difference wave V (IT5) 
– Prolonged. 

• I-V interpeak interval interaural difference 
Prolonged.  

• Absolute latency of wave V - Prolonged as compared 

with normative data. 
• Absolute latencies and interpeak intervals latencies  

Wave I-III, I-V, III-V - Prolonged as compared with 
normative data.  

• Absent auditory brainstem response in the involved 
ear.  

In general, ABR exhibits a sensitivity of over 90% and a 
specificity of approximately 70-90%. 

• OtoAcoustic Emissions (OAEs) are sounds 
measured in the external ear canal that reflect 
movement of the outer hair cells in the cochlea. 

• Energy produced by outer hair cell motility 
serves as an amplifier within the cochlea, 
contributing to better hearing. 

• Indeed, normal outer hair cells are essential for 
perfectly normal auditory function.

Echo Passes from Cochlea to Analysis Section
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ochlea to Analysis Section 

Auditory Brainstem Response in Surgery

• Intraoperative Monitoring: 

Response (ABR), often used intra operatively with 
electroco chalcography, provides early identification 
of changes in the neurophysiologic 
peripheral and central nervous systems. This 
information is useful in the prevention of 
neurotologic dysfunction and the preservation of 
postoperative hearing loss. For many patients with 
tumors of CN VIII or the cerebellopontine angle, 
hearing may be diminished or completely lost 
postoperatively, even when the auditory nerve has 
been preserved anatomically.

• Auditory Brainstem Response Evaluation: 

I, which is generated by the cochlear end of CN, 
provides valuable real-time information 
blood flow to the cochlea. Because ischemia is a 
primary cause of surgery-related hearing loss, wave I 
is monitored closely for any shift in latency or 
decrease of amplitude. 

Wave I-II and I-III inter peak intervals can 
provide distal and proximal information during CN 
VIII surgeries. 

Wave V and the I
latencies are monitored for shifts or alterations in 
latency and amplitude. The I
information regarding the integrity of CN to the 
auditory brain stem. 

Auditory Pathway

• Limitations: Wave V alterations occurring 

intraoperatively do not necessarily reflect changes in 

hearing status. Changes in latency may instead be 

caused by resynchronization of neurons or other 

outside factors. Also, a potential time delay ex

between the actual occurrence of insult and when the 

shift in wave V appears. Patients with preexisting 
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Auditory Brainstem Response in Surgery 

Intraoperative Monitoring: Auditory Brainstem 
Response (ABR), often used intra operatively with 
electroco chalcography, provides early identification 
of changes in the neurophysiologic status of the 
peripheral and central nervous systems. This 
information is useful in the prevention of 
neurotologic dysfunction and the preservation of 
postoperative hearing loss. For many patients with 
tumors of CN VIII or the cerebellopontine angle, 

ng may be diminished or completely lost 
postoperatively, even when the auditory nerve has 
been preserved anatomically. 

Auditory Brainstem Response Evaluation: Wave 
I, which is generated by the cochlear end of CN, 

time information regarding 
blood flow to the cochlea. Because ischemia is a 

related hearing loss, wave I 
is monitored closely for any shift in latency or 

III inter peak intervals can 
l information during CN 

Wave V and the I-V inter peak interval 
latencies are monitored for shifts or alterations in 
latency and amplitude. The I-V latency provides 
information regarding the integrity of CN to the 

 

tory Pathway 

Wave V alterations occurring 

intraoperatively do not necessarily reflect changes in 

hearing status. Changes in latency may instead be 

caused by resynchronization of neurons or other 

outside factors. Also, a potential time delay exists 

between the actual occurrence of insult and when the 

shift in wave V appears. Patients with preexisting 
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sensorineural hearing loss may have poor waveform 

morphology and no wave I response. 

The Levenberg-Marquardt Algorithm 

In the following, vectors and arrays appear in boldface and is 
used to denote 
transposition. Also, ||.|| and | | . | |oo  denote the 2 and infinity 
norms respectively. 
Let / be an assumed functional relation which maps a 
parameter vector p € R 

m to an estimated measurement vector 

� = �	���, �	 ∈ 
	�	An initial parameter e € t=nx-2 
intimate p0 and a measured vector x are provided and it is 
desired to find the vector 
p+ that best satisfies the functional relation /, i.e. minimizes 
the squared distance 
with.  The basis of the LM algorithm is a linear approximation 
to in the neighborhood of . For a small, a Taylor series 
expansion leads to the approximation The Levenberg-
Marquardt (LM) method consists on an iterative least-square 
minimization of a cost function based on a modification of the 
Gauss-Newton method. Let’s state the problem formally 
before defining the algorithm. We will assume that derivatives 
of the cost functions are not available in closed form, so they 
will be approximated by finite-difference approximation 

 
X * -= Arg minx (F(x)) 

The function may sometimes include a 
comparison to some reference, or observed, data. A very 
simple, linear example would be x* (f(x)). However in the 
following we assume can have any form: 

 
F(x) = (f1(x) …..fm (x)) 

Step 1: The Hessian of the error function is the $ n \times n $ 
matrix of second order derivatives ($n$ being the length of the 
parameter vector), and it’s approximated by: 

H(x) = J(x)t J(x) 

Step 2 :If we don’t have closed form expressions for the 
derivatives needed for the Jacobian, we can estimate them 
from finite differences using some increments for each 

individual variable : 

 

Step 3: Then, the LM method minimizes the following linear 
approximation of the actual error function: 

F(x+h)≅ 
�ℎ� = 	���� + 	ℎ����� +
�

�
ℎ	�	�����ℎ 

Step 4 : Now, denote as for $t=0,1,2,…$ the sequence of 

iterative approximations to the optimal set of parameters . 

The first intial guess must be provided by the user. Then, 

each iteration of the LM method performs:

 

Algorithm Implementation 

H = JT (x) J (x) 

g= JT( x ) f (x) 

found = || g || ∞ ≤ �� 

¥ = T max (diag ( H )) 

  While ( Not Found) and (k < k max) 

   Htm = -( H(x) + I) -1 g(x) 

   If (|| htm || < e2 (||x|| + e2) 

  Found = true  

Else  

  X’ = x + hm  

  L = � =
�������� �′

������	������
=	

��������′ �

������	����′��
 

  If ( l> 0) 

   X =X’ 

   H= JT(x) J(x) 

   G= JT(x)f(x) 

found = || g || ∞ ≤ �� 

   ∞= v(1/2,1 –(2l -1)3 

   V= 2 

   Else  

   V =2v 

  End 

End 

 

IV. EVALUATION RESULT  

First, the effects of brain rhythm on perceiving 
auditory frequency of 1000 Hz and their auditory response for 
the PSGB19 and SEGB19 features have been investigated 
using feed forward neural network. Table 1 shows the 
classification performance of MLPN using PSGB19 and 
SEGB19 for left and right ears at hearing frequency of 1000 
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Hz. Form Table 1, PSGB19 has the maximum classification 
accuracy of 94.45% and 96.75% for the left and right ears in 
distinguishing the normal hearing, conductive hearing loss 
and sensorineural hearing loss subjects. Further, it was 
observed that SEGB19 features has the classification accuracy 
of 92.29% and 93.45%for the left and right ears in 
distinguishing the normal hearing, conductive hearing loss 
and sensorineural hearing loss subjects. 

 

MLPN results using PSGB19 and SEGB19 

 

 

Performance of the Release Code with Optimal Layer 

Rates 

Second, the effects of brain rhythm on perceiving 

auditory frequency of 1000 Hz and their auditory response for 

the PSGB19 and SEGB19 features have been investigated 

using feedback neural network. Table 2 shows the 

classification performance of ELN using PSGB19 and 

SEGB19 for left and right ears at hearing frequency of 1000 

Hz. Form Table 2, PSGB19 has the maximum classification 

accuracy of 90.32% and 92.45% for the left and right ears in 

distinguishing the normal hearing, conductive hearing loss 

and sensorineural hearing loss subjects. Further, it was 

observed that SEGB19 features has the classification accuracy 

of 88.97% and 90.74% for the left and right ears in 

distinguishing the normal hearing, conductive hearing loss 

and sensorineural hearing loss subjects. 

 

ABR with Sensorial Layers with SVC 

ELN Results using PSGB19 and SEGB19 Features 

 

PSNR with PLR 

Final when comparing the classification performance 
of the observed results of MLPN with ELN, applied to 
PSGB19 features, it was observed that MLPN outperformed 
ELN by 3% to 4% in classifying the normal hearing, 
conductive hearing loss and sensorineural hearing loss 
subjects. When comparing the classification performance of 
the observed results of MLPN with ELN, applied to SEGB19 
features, it was observed that MLPN outperformed ELN by 
2% to 3% in classifying the normal hearing, conductive 
hearing loss and sensorineural hearing loss subjects.  

From the analysis, it can be observed that the PSGB features 
obtained from the nineteen channels can be used to distinguish 
the normal hearing, conductive hearing loss, sensorineural 
hearing loss subjects. From the results, it was evident that 
AEP signals elicited from the auditory stimuli determines the 
functional integrity of the auditory system. From the results, it 
indicates that asymmetric response in the classification 
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performance for left and right ears was reported, which shows 
that the significant differences may be due to the inherent 
more active perception of the auditory stimuli made by the 
right ears while compared to the left ears. 

Electrode Reduction 

Feature selection method is used to choose a subset 
of input feature vectors which can reduce the size of 
redundant features and able to predict the output class with 
accuracy comparable with the complete input feature dataset. 
In this study, feature selection has been proposed based on the 
feature PSGB19 values because it has achieved the maximum 
classification accuracy when compared with SEGB19 
features. This study proposes feature score index, where 
gamma power values estimated from the nineteen electrode 
channels have been used as a scoring function. High score of 
gamma power from the corresponding channel reflects the 
potential channels with more discriminative information than 
other channels. Further, sorting 19 gamma power values in the 
descending order provides with the information of 
discriminative electrode channels capacity. 

Displays the gamma power score index from the 
nineteen electrode channels. The effects of hearing processing 
have been found statistically that gamma power derived from 
brain locations reflects hearing response to the stimuli. In this 
study, eight potentially significant channels were selected 
based on their gamma power score index, P4, C4, F8, T3, T5, 
T4, T6, O2. As can been seen, the features derived from the 
temporal lobes has more involved in processing the auditory 
sensory responses than other regions. The selected eight 
channels yield the classification accuracy of 86% in 
discriminating the normal hearing, conductive hearing loss and 

sensorineural hearing loss subjects. 
 

 
 

V.CONCLUSION  

a BCI paradigm based on the modulation of 
exogenously evoked auditory ERP signals by a simultaneous 
endogenously executed motor imagery task. It have proved 
that the motor imagery task changes the auditory ERP signal 
enough to be classified for BCI use, and without the use of 
computational and time costly machine learning techniques 
usually incorporated in classic BCI paradigms. It also shown 
the potential for shortening the training period, so as to open 
the possibility of an individual per-subject and per-session 
calibration stage, in the order of minutes, and by that, 
addressing the current BCI challenges stemming from inter-
subject and inter-session variability issues. Even though 70-

80% of correct classification does not seem like a lot, surely 
not enough to connect any locked-in patient to control 
.Properly trained in producing highly synchronized and 
consistent mental activities. The 20% incorrectly classified 
samples might be attributed to this fact. Although producing 
robust, across subjects, classification results, a true per-subject 
calibration would necessitate finding the best latency and 
electrodes for each subject. Future studies of our BCI 
paradigm should involve an automated parameter 
optimization technique for improving classification accuracy. 
 

FUTURE WORK 

Further improvements to the neural-based vocoder 
implementation need to be made. For example, it would be 
very interesting to explore how more complex functionality 
(such as inhibition, synaptic learning, adaptation...etc) affects 
the output of the synthesizer, and whether the output from 
those models differs perceptually from the current one. Over 
and above, the spread or activity from one electrode to nearby 
neural populations should be explored as a function of the 
electrode location (basal vs. apical) as opposed to using the 
same current spread people for all electrodes. Moreover, the 
model parameters need tobe tested with CI subjects who have 
normal hearing in one ear. Additionally, psychophysical tests 
can be carried out using theaforementionedstimulation 
methods in order to assess how closethe vocoder simulations 
are in capturing the cues perceived via CI stimulation. This is 
a very crucial step to tune the model's output to more closely 
resemble the sounds perceived by CI subjects. 
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