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Abstract: 
            This paper presents an overview of recent secure database systems, which are capable of executing 

SQL queries over encrypted data. Data security issues in a cloud database system which database-as-a-

service model is one of most import concerns, a simple and effective way to guarantee confidentiality is to 
encrypt data before storing. Meanwhile, the ability to operate on encrypted data in the cloud needs to be 

guaranteed. In those systems, different encryption schemes are promoted and the capabilities of executing 
SQL queries over encrypted data have software and hardware implementation. 
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I.     INTRODUCTION 

Encrypting data to store at the server where its 

data is not entirely controllable by the owner of data 
is an available solution to defend sensitive 

information exposure. While it is not arbitrary to 
execute SQL queries over encrypted data, for 

ciphertexts may lose its original features, for 

example, length, format; their plaintext’s 

comparison, arithmetic operations may no longer 

support or partially support as well. For realizing 

SQL queries over encrypted data with decryption in 
advance, there have been various solutions in recent 

years, in which software-based and hardware-based 
cryptographic are constructed.  

In general, there are much ways to build secure 
database systems, for example, encryption at rest, 

secure server, fully homomorphic encryption. All 

representative researches in recent years are listed 

in Table 1.  

 

Table 1. List of researches on executing SQL queries over encrypted data 

Time(Year) System Paper 

2002 [1] Executing SQL over encrypted data in the database-service-provider model 

2011 CryptDB[2]  CryptDB: protecting confidentiality with encrypted query processing 

2011 TrustedDB[4]  Trusteddb: A trusted hardware-based database with privacy and data confidentiality 

2013 MONOMI[3]  Processing analytical queries over encrypted data 

2013 Cipherbase[6]  Secure database-as-a-service with cipherbase 

2014 SDB[8]  Secure query processing with data interoperability in a cloud database environment 

 

The earlier research of executing SQL over 
encrypted data [1] proposes that SQL is executed 

over the encrypted data by rewriting a relational 

algebraic similarly to be executed over the 

unencrypted data. Decrypting data and complex 

queries are executed on the client. But there are 

some limitations on searching and querying on 

encrypted data, for example, certain queries with 

joining and sorting are not supported or highly 

inefficient. Moreover, in order to solve these 

problems, DBMS is required to be modified or 
some of queries are performed on the client.  

In contrast, CryptDB proposes a database proxy 

layer to encrypt and decrypt data so that the internal 

structure of DBMS is not modified, namely 

CryptDB uses native DBMS [2]. It proposes three 

key ideas, the first is to execute SQL query on 

encrypted data, the second is to adopt adjustable 

encryption strategies for different queries, and the 

third is to chain encrypted keys to user passwords. 
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More detail in the second idea, CryptDB encrypts 

data by an ‘onion’ in which different query is based 

on different encrypting algorithm. SQL queries 

such as equality selection, equality join, order, 

range join, text searching, SUM of integer data and 

etc. can be performed. 

Stephen et al. points out that CryptDB only 

supports queries including computation and hardly 

supports analytical query [3]. Therefore, MONOMI 

is established based on the design of CryptDB, 

which can process the complex analytical query and 

large data set. As executing analytical load to 

encrypted data on the server is very difficult, 

MONOMI proposes an executing method of 
splitting client/server. Splitting executing allows 

MONOMI to execute part of queries to encrypted 
data on untrusted server and performed through the 

scheme the same with CryptDB, while the rest of 
queries are executed after decrypting data on the 

trusted client. 
Different from CryptDB and MONOMI in which 

different encrypting algorithms are used to different 

queries, A secure query processing system(SDB) in 

[8] is realized through a group of security operators 

(e.g.,× , ± , π, ⊕ , ⋈S with data interoperation 

which can efficiently support a quantity of complex 
SQL query including all TPC-H benchmark queries 

on the server. In view of the limitations of fully and 
partially homomorphic encryption, SDB does not 

adopt homomorphic encryption algorithm adopted 

in CryptDB and MONIMI instead of using a secret-

sharing scheme in SMC model [24] and the solution 

in ShareMind [25].  

Hacigümüs thinks that hardware encryption is 

better than software encryption [26]. As a result, 

TrustedDB [4] and Cipherbase [6] take a hardware 

approach to provide data security. A security 

coprocessor unit (SCPU) hardware is introduced in 

TrustedDB. Sumeet Bajaj deems any encryption 

methods based on software have an inherent defect 

that expression is limited, so it is best to guarantee 

the privacy of data through trusted hardware. Hence, 
TrustedDB provides more secure data protection by 

SCPU hardware, and supported query types are not 
limited.  

Cipherbase adopts from TrustDB the idea of 
combining trusted hardware and commodity servers 

in a single box, but has a more sophisticated and 

fine-grained hardware-software co-design. 

Cipherbase combines encryption at rest, secure 

server and fully homomorphic encryption to archive 

orthogonal security, and it is implemented by using 

FPGAs [27]. It has the completeness, user-defined 

confidentiality and efficient properties, which is a 

full-fledged SQL database system that supports the 

full generality of a database system while providing 

high data confidentiality. What’s more, it allows 

organizations to develop their applications and set 

their data security goals relatively independently of 

any performance, scalability or cost considerations. 

The cost and the performance constraint of 

TrustedDB and Cipherbase is higher than methods 
of software. 

II.    SCHEMES OF EXECUTING SQL 

QUERIES OVER ENCYPTED DATA 

There are two things to handle when executing 
SQL queries over encrypted data, one thing is query 

rewriting, where we need rewrite an original query 
over unencrypted relations into a corresponding 

query over encrypted relations to run on the server; 

the other is post-processing to results of the server 

query, in which the decryption and additional 

processes are necessary. The execution of query 

rewriting is associated with encryption schemes, 

and the encryption schemes determine the security 

properties of the whole system. 

A. Software-based Design 

Paper in [1] proposed a solution in the database-

service-as-provider model and its architecture is in 

Fig 1, where the encrypted database is augmented 

with additional information, and it developed an 

algebraic framework for query rewriting over 
encrypted representation. In detail, for each relation 

R(A1, A2, …, An), the encrypted relation stored on 
the server is as follow: 

R
S
(etuple, A1

S
, A2

S
, …, An

S
) 

Where the attribute etuple stores an encrypted string 

that corresponds to a tuple in relation R and is 
encrypted by block cipher such as AES, Blowfish, 

DES. Each attribute Ai
S
 corresponds the index for 

the attribute Ai that will be used for query 

processing at the server.  
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Fig 1. The service-provider architecture. 

 

It proposes some partition function to map the 

domain of values of attribute into partitions, 

identification functions to assign an identifier to 

each partition of attribute and a mapping function 

that maps a value in the domain of attribute to the 

identifier of the partition, which all are auxiliary to 
store encrypted data. More concretely about the 

mapping functions, there are two types of mapping 
functions, the one is order preserving and the other 

is random so the allowed operations in mapping 

conditions include {=, <, >, ≤,≥ }, the detail 

conditions are specified in Table 2. It is only 

necessary to create an index for attributes involve in 

search and join predicates.  

 

Table 2. Supported mapping conditions. 

Conditions 

Attribute = Value 

Attribute < Value 

Attribute > Value 

Attribute1 = Attribute2 

Attribute1 < Attribute2 

Condition1 ∨ Condition2, Condition1 ∧ Conditions2 

 

In CryptDB [2], a key insight that make it 

practical is that SQL uses a well-defined set of 

operators, each of them supports efficiently over 

encrypted data. CryptDB is applied a SQL-aware 

encryption strategy to execute SQL queries over 

encrypted data and provides adjustable query-based 

encryption to guarantee to reveal the least 

information to meet the encryption algorithms. It 

provides to prevent a curious DBA or other external 
attacker from learning private data, guards against 

the application server, proxy, and DBMS server 
infrastructures with being compromised arbitrarily, 

and its architecture is shown in Fig. 2. 

 

 
Fig. 2. CryptDB’s architecture. 

 
CryptDB enables the DBMS server to execute 

SQL queries on encrypted data almost as if it were 
executing the same queries on plaintext data, and is 

of high transparency to clients. Processing a query 
in CryptDB involves four steps:  

1) The application issues a query, which the proxy 

intercepts and rewrites: it anonymizes each table and column 
name, and, using the master key MK, encrypts each constant 

in the query with an encryption scheme best suited for the 

desired operation. 

2) The proxy checks if the DBMS server should be 
given keys to adjust encryption layers before executing the 

query, and if so, issues an UPDATE query at the DBMS 

server that invokes a UDF to adjust the encryption layer of the 

appropriate columns. 

3) The proxy forwards the encrypted query to the 

DBMS server, which executes it using standard SQL 

(occasionally invoking UDFs for aggregation or keyword 

search). 

4) The DBMS server returns the (encrypted) query 

result, which the proxy decrypts and returns to the application. 

To implement the adjustable encryption, 

CryptDB uses onions of encryption. Onions are a 

novel way to compactly store multiple ciphertexts 
within each other in the database and avoid 

expensive re-encryptions. Each of layers in onions 
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is applied different encryption algorithm to cater to 

the required operations for query. Onion encryption 

layers are show in Fig. 3.  

 

 
Fig. 3. Onion encryption layers and the classes of computation they allow. 

 
CryptDB has been implemented on both MySQL 

and Postgres. Example of relation and 
corresponding encrypted relation is as shown in Fig. 

4. Each attribute is applied different encryption 
algorithm to meet one operation that the data type 

of its original attribute supports.  

 

Fig. 4. Example of relation and corresponding encrypted relation. 

 

MONOMI [3] introduces split client/server query 

execution based on CryptDB to support arbitrarily 

complex queries over encrypted data. In addition, a 

number of techniques that improve performance for 

certain kinds of queries, including pre-row 

precomputation, spec-efficient encryption, grouped 

homomorphic addition, and pre-filtering, are 

introduced. Its architecture is shown in Fig. 5, 

where MONIMI prototype consists of three major 

components, designer, ODBC library, and 

encryption database. 

MONOMI’s designer runs on a trusted client 

machine and determines an efficient physical 
design for an untrusted server during system setup. 

Then application issue unmodified SQL queries 
using the MONOMI ODBC library, which is the 

component that has access to the decryption keys 
during normal operation and uses the planner to 

determine the best split client/server execution plan 
for the application’s query. Finally, given an 

execution plan, the library issues one or more 

queries to the encrypted database.  

 

 

Fig. 5. The architecture of MONOMI prototype. 

 

As MONOMI’s design builds on CryptDB, it 

adopts the similar encryption schemes and inherits 

similar security properties. Given the possibility 

that some encryption schemes may leak more 

information than necessary, MONOMI never stores 

plaintext data on the server, and allows the 

administrator to further restrict the encryption 

schemes used for especially sensitive columns.  

SDB [8] shares similar flavors with 

SMC/SharedMind in that sensitive data is 

decomposed into shares to process a secure query. 

Unlike ShareMind where multiparties are involved, 

SDB requires only two parities – the trusted data 
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owner (DO) and one untrusted service provider 

(SP), and it provides a set of efficient operators 

with data interoperability which different operators 

share the same encryption and thus an operator can 

be applied on the results of another operator. SDB 

can be integrated seamlessly with existing DBMSs 

and utilize many of their functionality, and the 

architecture of SDB is shown in Fig. 6. It uses 

MySQL to store the encrypted data. 

 

 
Fig. 6. SDB’s architecture. 

 

SDB encrypts sensitive data using a secret-

sharing method and non-sensitive data are stored as 

plaintexts. The various operators can be applied to 

both encrypted data and plain data, or a mixture of 

them. The supported secure primitive operators are 

depicted in Table 3. Since its encryption scheme is 

based on modular arithmetic, its operators are 

applicable only to data values of integer domains. 

 

Table 3. List of secure primitive operators. 

Operator Expression Description 

× A×B Vector dot product of two columns of the same table 

± A±B Vector addition/subtraction of two columns of the same table  

= A=B 
Equality comparison on two columns of the same table and output a 

binary column of ‘0’ and ‘1’ 

> A>B 
Ordering comparison on two columns of the same table and output a 

binary column of ‘0’ and ‘1’ 

π πS(R) Project table R on attributes specified in an attribute set S 

⊕ R1⊕R2 Cartesian product of two relations 

⋈S R1⋈SR2 Equijoin of two relations on a set of join keys S 

⋈ R1⋈R2 Natural join between two relations 

GroupBy GroupBy(R, A) Group rows in relation R by column A’s values 

Sum/Avg Sum/Avg(R, A) Sum or average the value of column A in relation R 

Count Count(R) Count the number of rows in a relation 

 

Each sensitive data item is split into two shares, 

one kept at the DO and another at the SP. From the 

description about the encryption procedure in [8], it 
can be demonstrated that the encrypted relation 

stored on the server corresponding relation R(A) is 
as follow: 

R
S
(row-id, A

S
) 

Where row ids are encrypted using an additive 

homomorphic encryption, e.g., SIES [33], and their 
corresponding plaintext are used in encrypting 

column A’s values. 

B. Hardware-based Design 

TrustedDB [4] is an outsourced database 

prototype that allows clients to execute SQL queries 

with privacy and under regulatory compliance 
constraints without having to trust the server 

provider. The cryptographic constructs are based on 
trapdoor function in TrustedDB, and currently 

viable trapdoors are based on modular 
exponentiation in large fields and viable 

homomorphisms involve a trapdoor for computing 
the ciphertexts. TrustedDB extends SQL syntax by 

deploying keywords to designate whether one 

attribute is sensitive or not. In TrustedDB, all 

decryptions are performed within the secure 
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confinements of the SCPU. The architecture of TrustedDB is shown in Fig. 7.  

 

 

Fig. 7. TrustedDB architecture. 

 

TrustedDB is an approach that combines the 

secure servers and encryption at rest approaches, 

and it runs a lightweight SQLite database on the 

SCP and a more feature-rich MySQL database on 
the commodity server.  

Cipherbase [6] has a novel architecture that 
tightly integrates custom-designed trusted hardware 

for performing operations on encrypted data 
securely, and is an extension of Microsoft SQL 

Server. It features a novel hardware/software co-
design that leverages customized hardware in which 

the keys can be stored in a tamper-proof way in 

order to enable computations on encrypted data in 

the cloud in a secure fashion. The Cipherbase 

system provides the same features as traditional 

database systems (e.g., support for full SQL, 

transaction, and recory). Fig. 8 gives an overview of 

the Cipherbase system. The SQL statements are 

processed in the server just like in any other 

database system. The TM (for Trusted Module) is 

used as submodule for core operations over 

encrypted data, and is placed inside the UM. 

 

 

Fig. 8. Cipherbase’s architecture. 

 

Cipherbase grarantees orthogonal security, and it 

is implemented by using field programmable gate 

arrays (FPGAs [27]). Moreover, its key idea is to 

simulate fully homomorphic encryption on top of 

non-homomorphic encryption schemes by 

integrating trusted hardware and it uses trusted 
hardware to implement a core set of basic 

primitives to operate on encrypted data. 
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III. DATE TYPES, OPERATORS AND 

ENCRYPTION SCHEMES 

When it comes to standard SQL data types, there 

are six basic data types, integer, floating-point, bool, 

character, binary, datetime. All the data types may 

have various keywords in a specified database 

system. Moreover, each data type has its basic 

operators to handle, and the detailed basic operators 

of each data type are specified in Table 4.  

 

Table 4. Data types and their basic operators. 

Data Type Basic Operators 

INTEGER/FLOATING-

POINT 

Equality (=, <> and etc.) 

Comparison (>, >=, <, <= and etc.) 

Arithmetic (+, -, ×, /, % ) 

BOOL Equality (=, <> and etc.) 

CHARACTER 

Equality (=, <> and etc.) 

Comparison (>, >=, <, <= and etc.) 

Word Search (LIKE, NOT LIKE and 

etc.) 

BINARY 
Equality (=, <> and etc.) 

Comparison (>, >=, <, <= and etc.) 

DATETIME 
Equality (=, <> and etc.) 

Component (year, month, day and etc.) 

Although no one encryption algorithm makes 

ciphertext retain all the properties of the plaintext, 

partial properties may be holding over ciphertext, 

for instance, block ciphers are deterministic 

encryption algorithms that support query with 

equality comparison, partially homomorphic 

encryption algorithms support addition or 

multiplication arithmetic. Consequently, both 

CryptDB and MONOMI employ different 

encryption functions to support different operators. 

As well as the Cipherbase system if the security 

model allows to do [7].  

There are a number of solutions to support 

operations on encrypted data among the SQL 
queries. The CryptDB and MONOMI prototype 

illustrate that they support integer type, character 
type and binary type. Among them, Blowfish and 

AES are applied to encrypt data of all considered 
data type to cater to query with equality check, they 

use Paillier and EIGamal to encrypt the integer data 
for summation and production. The encryption 

schemes [34] in CryptDB are shown in Fig. 9. 

 

 

Fig. 9. Encryption Schemes in CryptDB. 

 

A. Order-Preserving Encryption 

To support comparison check on encrypted data, 
the original are adopted the order-preserving 

encryption algorithm. It means that if x < y, then 
OPEK(x) < OPEK(y), for any secret key K. The 

other SQL query clauses or aggregate functions, 
such as ORDER BY, MIN, MAX, SORT, etc. can 

be performed as well. An order preserving 

encryption scheme (OPES) [9] is introduced for 

numeric data to allow comparison operations to be 

directly applied on encrypted data, without 
decrypting then operands in advance. The basic 

idea of OPES is to take as input a user-provided 
target distribution and transform the plaintext 

values in such a way that the transformation 
preserves the order while the transformed values 

follow the target distribution. This scheme does not 
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reveal any information about the original values 

apart from the order. OPES works in three states:  

1) Model: The input and target distributions are 

modeled as piece-wise linear splines.  

2) Flatten: The plaintext database P is transformed into 
a “flat” database F such that the values in F are uniformly 

distributed.  

3) Transform: The flat database F is transformed into 

the cipher database C such that the values in C are distributed 

according to the target distribution.  

Note that   

pi < pj � fi < fj � ci < cj: 
The OPES encryption scheme can be directly 

applied to 32-bit integers and positive 32-bit single 

precision floating points. Negative floating point 

and 64-bit double precision floating point values 

can be encrypted in a similar scheme. The plaintext 

values are 32-bit integers, and both flattened and 

final ciphertext values are 64-bit long.  
The order-preserving symmetric encryption (OPE) 

in [10] is the first provably secure such scheme, 
where a security notion in the spirit of 

pseudorandom functions (PRFs) and related 
primitives asking that an OPE scheme look “as-

random-as-possible” subject to the order-preserving 
constraint is proposed instead of indistinguishability 

against chosen-plaintext attack (IND-CPA). It 

proposed LayzSample and LazySampleInv 

algorithm in aid of encryption and decryption 

procedures. The encryption and decryption equation 

of OPE are as follows: 

c = EncK
HG(D, R, m),  m = DecK

HG(D, R, c) 

where c and m respectively represent the ciphertext 

and plaintext, a random � ∈ ���  in key-space, the 

plaxintext are ciphertext spaces are sets of 

consecutive integers D, R, Algorithm Enc
HG, Dec

HG 

are the same as LazySample, LazySampleInv 

respectively. OPE not only allows efficient range 

queries, but also allows indexing and query 

processing to be done exactly and as efficiently as 
for unencrypted data. OPE is capable of being 

applied to integer, character, binary data type.  
In CryptDB system, an encryption scheme that 

computes order queries is constructed and called 
mutable order-preserving encoding, or mOPE, 

which achieves ideal IND-OCPA security [11]. The 
model of OPE consists of a trusted OPE client and 

an untrusted OPE server. The encoding scheme is 

as illustrated in Fig. 10. Each node in the OPE Tree 

contains a DET ciphertext, and Child pointers are 

labeled with 0 or 1 to indicate the path encoding.  

 

 
Fig. 10. Overview of mOPE’s data structures. 

[11] points out that any stateful OPE scheme that 

is IND-OCPA secure has ciphertext size 

exponential in the plaintext size. On average, 

mOPE stores 40 bytes per encrypted value, when 

encrypting 64-bit values. It also presents an 

extension of mOPE, called stOPE, that archives this 

stronger definition. 

B. Word Search 

There have been a log of researches on searing on 

encrypted data. In general, there are two types of 

approaches. One possibility is to build up an index 

that. An alternative is to perform a sequential scan 

without an index. The advantage of the former is 

that it may be faster than the sequential scan when 

the documents are large, while storing and updating 

the index may be of substantial overhead. So that 

the approach of using an index is more suitable for 

mostly-read-only data. Some of them encryption 

schemes only allows performing full-word keyword 

searches, some others may support fuzzy keyword 

search. The typically researches in recent years are 
listed in Table 5.   
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Table 5. Schemes of searching on encrypted data. 

Time(Year) Scheme Paper 

2000 Sequential Scan[12]  
Practical techniques for searches on 

encrypted data 

2004 
Conjunctive Keyword 

Search[13]  

Secure conjunctive keyword search over 

encrypted data 

2010 Fuzzy Keyword Search[14]  
Fuzzy keyword search over encrypted 

data in cloud computing 

2010 
Ranked Keyword 

Search[15]  

Secure ranked keyword search over 

encrypted cloud data 

2014 
Multi-Keyword Ranked 

Search[16]  

Privacy-preserving multi-keyword fuzzy 

search over encrypted data in the cloud 

2016 Personalized Search[17]  

Enabling personalized search over 

encrypted outsourced data with efficiency 

improvement 

 

Queries with LIKE, NOT LIKE and etc., which 

need fuzzy match, can be handled by word search 

schemes. Nevertheless, when the data are encrypted, 

the database built-in function of LIKE may be not 

capable of adopting directly, so a user-defined 
function (UDF) should be created to substitute to 

perform LIKE operation. 

C. Format-Preserving Encryption 

Format-preserving encryption (FPE) encrypts a 
plaintext of some specified format into a ciphertext 

of identical format. The data type of DATETIME in 
database is exact identical format, like as “YYYY-

MM-DD HH::MM::SS”. If values of DATETIME 

are able to be encrypted as their original format so 

that their ciphertexts can be stored as the same 

DATETIME data type. The build-in functions, such 

as year, month, day, can be directly utilized in 

database in that situation. For example, a column 

“prod_date” is anonymized as “c_prod_date” in 

database, and a plantext “2017-05-09:23:12:08” is 

encrypted as “2008-10-17:12:13:50” by FPE. 

When the client submit a query, where an atom 

“year(prod_date) = 2017” is involved in where 

clauses, the query rewriter module would rewrite 

the atom as “year(c_prod_date) = 2008” so that we 
do not need to create a UDF to perform year 

function if the encryption algorithm supports the 
components to encrypt with the same encryption 

schemes. It means that FPE is suitable for 
encrypting “2017” as “2008” as well.  

There have been various format-preserving 

encryptions to meet different formats [18-21], but 

for DATETIM type format-preserving encryption, 

the existing solutions do not much. [22] proposed a 

format-preserving encryption to encrypt 
DATETIME field in database. DATETIME type 

has format constraint and natural constraint, so a 
key problem is its domain. The FPE scheme for 

DATETIME is based on “rank-then-cipher” mode 
and further a new approach named “reference-based 

offset encryption” is proposed to resolve the FPE 
problem on DATETIME domain. 

D. Encryption Schemes on Floating-Point 

As traditional homomorphic encryption schemes 

do not support floating-point data type and do some 

arithmetic operations over ciphertexts, CryptDB 

and MONOMI which all are applied homomorphic 

encryption schemes do not take float-point into 

account. To allows the floating-point arithmetics of 

ciphertexts, thus computing encryptions of most 

significant bits of m1+m2 and m1m2, given 

encryptions of floating-point number m1 and m2, a 

floating-point homomorphic encryption (FPHE) 

scheme is constructed [28], which is based on BGV 

scheme [29].  
[30] constructs a first fully homomorphic 

encryption scheme FHE4FX that can 
homomorphically compute addition and/or 

multiplication of encryption fixed point numbers 
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without knowing the secret key, which is based on 

FV scheme[31,32]. 

IV. SQL QUERY STATEMENTS 

All kinds of solutions are qualified to perform all 

basic SQL queries, so that make executing SQL 

queries over encrypted data practical. A standard 

query statement mainly consists of SELECT clause, 

FROM clause and WHERE clause, and its form is 

as follows: 

 
SELECT *| column_name| expr| aggregate_func (column), … 
FROM table_name| , table_name1| [INNER| OUTER| FULL| LEFT| RIGHT ] JOIN table_name1 ON join_condition 

[WHERE where_clauses] 

[GROUP BY column_name| , column_name1,… [HAVING having_conditions]] 
[ORDER BY column_name [ASC| DESC] | , column_name1 [ASC| DESC], …] 

 

Where SELECT clause and WHERE clause are 

diverse in forms. When it comes to supported SQL 

queries, the main considerations are whether the 

SELECT clause and WHERE clause are supported 

or not. WHERE clauses are all arithmetic atoms 

that returns a boolean value.  

Even though there are a number of research on 

executing SQL queries over encrypted data, they 

have the query statement limitations more or less. It 

does not support both computations and comparison 

on the same column, such as WHERE 

salary>age*2+10 in CryptDB [35], but it can be 
handled by splitting client/server query execution 

which is proposed in MONOMI. CryptDB can 
handle four out of 22 TPC-H queries, while 

MONOMI executes 19 out of 22 TPC-H queries by 
splitting client/server execution. As for A query 

with, such as SUM(ps_supplycost * ps_availqty)> 

value, which also involves addition, comparison 

and multiplication, MONOMI’ encryption schemes 

cannot support directly over encrypted data.  

Encryption scheme adopted by SDB can support 

complex operations executed on the server, and all 

queries in the TPC-H benchmark are natively 

supported. Whereas it has some limitations, for 

example, SDB does not natively support operators 

which their output results are non-integer values, 

e.g., square root (√ ) [7]. In addition, there are 

some limitations in TrustedDB as well, for example, 

query parser in TrustedDB cannot parse multi-level 

nested sub-queries and views defined by user [4]. 

V. CONCLUSIONS 

This paper reviews the solutions that executing 
SQL queries over encrypted data. All of them 

support the basic data types and basic query 

statements with different encryption schemes and 

implementation mechanism. The software-based 

implementations are less costly but support type 

and functionality are more limited. In contrast, the 

hardware implementations have the cost overhead 

and performance limitations. Most of the secure 

model work as trusted proxy to provide secure 

channel. 
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