
International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 23

Executing SQL Queries over Encrypted Data: A Survey
Taipeng Zhu*

*(Department of Computer Science, Jinan University, Guangzhou-510632, China)

--************************---------------------------------

Abstract:
 This paper presents an overview of recent secure database systems, which are capable of executing

SQL queries over encrypted data. Data security issues in a cloud database system which database-as-a-

service model is one of most import concerns, a simple and effective way to guarantee confidentiality is to
encrypt data before storing. Meanwhile, the ability to operate on encrypted data in the cloud needs to be

guaranteed. In those systems, different encryption schemes are promoted and the capabilities of executing
SQL queries over encrypted data have software and hardware implementation.

Keywords — SQL Queries, Encrypted Data, Secure Database Systems, Encryption Schemes.

--************************----------------------------------

I. INTRODUCTION

Encrypting data to store at the server where its

data is not entirely controllable by the owner of data
is an available solution to defend sensitive

information exposure. While it is not arbitrary to
execute SQL queries over encrypted data, for

ciphertexts may lose its original features, for

example, length, format; their plaintext’s

comparison, arithmetic operations may no longer

support or partially support as well. For realizing

SQL queries over encrypted data with decryption in
advance, there have been various solutions in recent

years, in which software-based and hardware-based
cryptographic are constructed.

In general, there are much ways to build secure
database systems, for example, encryption at rest,

secure server, fully homomorphic encryption. All

representative researches in recent years are listed

in Table 1.

Table 1. List of researches on executing SQL queries over encrypted data

Time(Year) System Paper

2002 [1] Executing SQL over encrypted data in the database-service-provider model

2011 CryptDB[2] CryptDB: protecting confidentiality with encrypted query processing

2011 TrustedDB[4] Trusteddb: A trusted hardware-based database with privacy and data confidentiality

2013 MONOMI[3] Processing analytical queries over encrypted data

2013 Cipherbase[6] Secure database-as-a-service with cipherbase

2014 SDB[8] Secure query processing with data interoperability in a cloud database environment

The earlier research of executing SQL over
encrypted data [1] proposes that SQL is executed

over the encrypted data by rewriting a relational

algebraic similarly to be executed over the

unencrypted data. Decrypting data and complex

queries are executed on the client. But there are

some limitations on searching and querying on

encrypted data, for example, certain queries with

joining and sorting are not supported or highly

inefficient. Moreover, in order to solve these

problems, DBMS is required to be modified or
some of queries are performed on the client.

In contrast, CryptDB proposes a database proxy

layer to encrypt and decrypt data so that the internal

structure of DBMS is not modified, namely

CryptDB uses native DBMS [2]. It proposes three

key ideas, the first is to execute SQL query on

encrypted data, the second is to adopt adjustable

encryption strategies for different queries, and the

third is to chain encrypted keys to user passwords.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 24

More detail in the second idea, CryptDB encrypts

data by an ‘onion’ in which different query is based

on different encrypting algorithm. SQL queries

such as equality selection, equality join, order,

range join, text searching, SUM of integer data and

etc. can be performed.

Stephen et al. points out that CryptDB only

supports queries including computation and hardly

supports analytical query [3]. Therefore, MONOMI

is established based on the design of CryptDB,

which can process the complex analytical query and

large data set. As executing analytical load to

encrypted data on the server is very difficult,

MONOMI proposes an executing method of
splitting client/server. Splitting executing allows

MONOMI to execute part of queries to encrypted
data on untrusted server and performed through the

scheme the same with CryptDB, while the rest of
queries are executed after decrypting data on the

trusted client.
Different from CryptDB and MONOMI in which

different encrypting algorithms are used to different

queries, A secure query processing system(SDB) in

[8] is realized through a group of security operators

(e.g.,× , ± , π, ⊕ , ⋈S with data interoperation

which can efficiently support a quantity of complex
SQL query including all TPC-H benchmark queries

on the server. In view of the limitations of fully and
partially homomorphic encryption, SDB does not

adopt homomorphic encryption algorithm adopted

in CryptDB and MONIMI instead of using a secret-

sharing scheme in SMC model [24] and the solution

in ShareMind [25].

Hacigümüs thinks that hardware encryption is

better than software encryption [26]. As a result,

TrustedDB [4] and Cipherbase [6] take a hardware

approach to provide data security. A security

coprocessor unit (SCPU) hardware is introduced in

TrustedDB. Sumeet Bajaj deems any encryption

methods based on software have an inherent defect

that expression is limited, so it is best to guarantee

the privacy of data through trusted hardware. Hence,
TrustedDB provides more secure data protection by

SCPU hardware, and supported query types are not
limited.

Cipherbase adopts from TrustDB the idea of
combining trusted hardware and commodity servers

in a single box, but has a more sophisticated and

fine-grained hardware-software co-design.

Cipherbase combines encryption at rest, secure

server and fully homomorphic encryption to archive

orthogonal security, and it is implemented by using

FPGAs [27]. It has the completeness, user-defined

confidentiality and efficient properties, which is a

full-fledged SQL database system that supports the

full generality of a database system while providing

high data confidentiality. What’s more, it allows

organizations to develop their applications and set

their data security goals relatively independently of

any performance, scalability or cost considerations.

The cost and the performance constraint of

TrustedDB and Cipherbase is higher than methods
of software.

II. SCHEMES OF EXECUTING SQL

QUERIES OVER ENCYPTED DATA

There are two things to handle when executing
SQL queries over encrypted data, one thing is query

rewriting, where we need rewrite an original query
over unencrypted relations into a corresponding

query over encrypted relations to run on the server;

the other is post-processing to results of the server

query, in which the decryption and additional

processes are necessary. The execution of query

rewriting is associated with encryption schemes,

and the encryption schemes determine the security

properties of the whole system.

A. Software-based Design

Paper in [1] proposed a solution in the database-

service-as-provider model and its architecture is in

Fig 1, where the encrypted database is augmented

with additional information, and it developed an

algebraic framework for query rewriting over
encrypted representation. In detail, for each relation

R(A1, A2, …, An), the encrypted relation stored on
the server is as follow:

R
S
(etuple, A1

S
, A2

S
, …, An

S
)

Where the attribute etuple stores an encrypted string

that corresponds to a tuple in relation R and is
encrypted by block cipher such as AES, Blowfish,

DES. Each attribute Ai
S
 corresponds the index for

the attribute Ai that will be used for query

processing at the server.

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 25

Fig 1. The service-provider architecture.

It proposes some partition function to map the

domain of values of attribute into partitions,

identification functions to assign an identifier to

each partition of attribute and a mapping function

that maps a value in the domain of attribute to the

identifier of the partition, which all are auxiliary to
store encrypted data. More concretely about the

mapping functions, there are two types of mapping
functions, the one is order preserving and the other

is random so the allowed operations in mapping

conditions include {=, <, >, ≤,≥ }, the detail

conditions are specified in Table 2. It is only

necessary to create an index for attributes involve in

search and join predicates.

Table 2. Supported mapping conditions.

Conditions

Attribute = Value

Attribute < Value

Attribute > Value

Attribute1 = Attribute2

Attribute1 < Attribute2

Condition1 ∨ Condition2, Condition1 ∧ Conditions2

In CryptDB [2], a key insight that make it

practical is that SQL uses a well-defined set of

operators, each of them supports efficiently over

encrypted data. CryptDB is applied a SQL-aware

encryption strategy to execute SQL queries over

encrypted data and provides adjustable query-based

encryption to guarantee to reveal the least

information to meet the encryption algorithms. It

provides to prevent a curious DBA or other external
attacker from learning private data, guards against

the application server, proxy, and DBMS server
infrastructures with being compromised arbitrarily,

and its architecture is shown in Fig. 2.

Fig. 2. CryptDB’s architecture.

CryptDB enables the DBMS server to execute

SQL queries on encrypted data almost as if it were
executing the same queries on plaintext data, and is

of high transparency to clients. Processing a query
in CryptDB involves four steps:

1) The application issues a query, which the proxy

intercepts and rewrites: it anonymizes each table and column
name, and, using the master key MK, encrypts each constant

in the query with an encryption scheme best suited for the

desired operation.

2) The proxy checks if the DBMS server should be
given keys to adjust encryption layers before executing the

query, and if so, issues an UPDATE query at the DBMS

server that invokes a UDF to adjust the encryption layer of the

appropriate columns.

3) The proxy forwards the encrypted query to the

DBMS server, which executes it using standard SQL

(occasionally invoking UDFs for aggregation or keyword

search).

4) The DBMS server returns the (encrypted) query

result, which the proxy decrypts and returns to the application.

To implement the adjustable encryption,

CryptDB uses onions of encryption. Onions are a

novel way to compactly store multiple ciphertexts
within each other in the database and avoid

expensive re-encryptions. Each of layers in onions

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 26

is applied different encryption algorithm to cater to

the required operations for query. Onion encryption

layers are show in Fig. 3.

Fig. 3. Onion encryption layers and the classes of computation they allow.

CryptDB has been implemented on both MySQL

and Postgres. Example of relation and
corresponding encrypted relation is as shown in Fig.

4. Each attribute is applied different encryption
algorithm to meet one operation that the data type

of its original attribute supports.

Fig. 4. Example of relation and corresponding encrypted relation.

MONOMI [3] introduces split client/server query

execution based on CryptDB to support arbitrarily

complex queries over encrypted data. In addition, a

number of techniques that improve performance for

certain kinds of queries, including pre-row

precomputation, spec-efficient encryption, grouped

homomorphic addition, and pre-filtering, are

introduced. Its architecture is shown in Fig. 5,

where MONIMI prototype consists of three major

components, designer, ODBC library, and

encryption database.

MONOMI’s designer runs on a trusted client

machine and determines an efficient physical
design for an untrusted server during system setup.

Then application issue unmodified SQL queries
using the MONOMI ODBC library, which is the

component that has access to the decryption keys
during normal operation and uses the planner to

determine the best split client/server execution plan
for the application’s query. Finally, given an

execution plan, the library issues one or more

queries to the encrypted database.

Fig. 5. The architecture of MONOMI prototype.

As MONOMI’s design builds on CryptDB, it

adopts the similar encryption schemes and inherits

similar security properties. Given the possibility

that some encryption schemes may leak more

information than necessary, MONOMI never stores

plaintext data on the server, and allows the

administrator to further restrict the encryption

schemes used for especially sensitive columns.

SDB [8] shares similar flavors with

SMC/SharedMind in that sensitive data is

decomposed into shares to process a secure query.

Unlike ShareMind where multiparties are involved,

SDB requires only two parities – the trusted data

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 27

owner (DO) and one untrusted service provider

(SP), and it provides a set of efficient operators

with data interoperability which different operators

share the same encryption and thus an operator can

be applied on the results of another operator. SDB

can be integrated seamlessly with existing DBMSs

and utilize many of their functionality, and the

architecture of SDB is shown in Fig. 6. It uses

MySQL to store the encrypted data.

Fig. 6. SDB’s architecture.

SDB encrypts sensitive data using a secret-

sharing method and non-sensitive data are stored as

plaintexts. The various operators can be applied to

both encrypted data and plain data, or a mixture of

them. The supported secure primitive operators are

depicted in Table 3. Since its encryption scheme is

based on modular arithmetic, its operators are

applicable only to data values of integer domains.

Table 3. List of secure primitive operators.

Operator Expression Description

× A×B Vector dot product of two columns of the same table

± A±B Vector addition/subtraction of two columns of the same table

= A=B
Equality comparison on two columns of the same table and output a

binary column of ‘0’ and ‘1’

> A>B
Ordering comparison on two columns of the same table and output a

binary column of ‘0’ and ‘1’

π πS(R) Project table R on attributes specified in an attribute set S

⊕ R1⊕R2 Cartesian product of two relations

⋈S R1⋈SR2 Equijoin of two relations on a set of join keys S

⋈ R1⋈R2 Natural join between two relations

GroupBy GroupBy(R, A) Group rows in relation R by column A’s values

Sum/Avg Sum/Avg(R, A) Sum or average the value of column A in relation R

Count Count(R) Count the number of rows in a relation

Each sensitive data item is split into two shares,

one kept at the DO and another at the SP. From the

description about the encryption procedure in [8], it
can be demonstrated that the encrypted relation

stored on the server corresponding relation R(A) is
as follow:

R
S
(row-id, A

S
)

Where row ids are encrypted using an additive

homomorphic encryption, e.g., SIES [33], and their
corresponding plaintext are used in encrypting

column A’s values.

B. Hardware-based Design

TrustedDB [4] is an outsourced database

prototype that allows clients to execute SQL queries

with privacy and under regulatory compliance
constraints without having to trust the server

provider. The cryptographic constructs are based on
trapdoor function in TrustedDB, and currently

viable trapdoors are based on modular
exponentiation in large fields and viable

homomorphisms involve a trapdoor for computing
the ciphertexts. TrustedDB extends SQL syntax by

deploying keywords to designate whether one

attribute is sensitive or not. In TrustedDB, all

decryptions are performed within the secure

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 28

confinements of the SCPU. The architecture of TrustedDB is shown in Fig. 7.

Fig. 7. TrustedDB architecture.

TrustedDB is an approach that combines the

secure servers and encryption at rest approaches,

and it runs a lightweight SQLite database on the

SCP and a more feature-rich MySQL database on
the commodity server.

Cipherbase [6] has a novel architecture that
tightly integrates custom-designed trusted hardware

for performing operations on encrypted data
securely, and is an extension of Microsoft SQL

Server. It features a novel hardware/software co-
design that leverages customized hardware in which

the keys can be stored in a tamper-proof way in

order to enable computations on encrypted data in

the cloud in a secure fashion. The Cipherbase

system provides the same features as traditional

database systems (e.g., support for full SQL,

transaction, and recory). Fig. 8 gives an overview of

the Cipherbase system. The SQL statements are

processed in the server just like in any other

database system. The TM (for Trusted Module) is

used as submodule for core operations over

encrypted data, and is placed inside the UM.

Fig. 8. Cipherbase’s architecture.

Cipherbase grarantees orthogonal security, and it

is implemented by using field programmable gate

arrays (FPGAs [27]). Moreover, its key idea is to

simulate fully homomorphic encryption on top of

non-homomorphic encryption schemes by

integrating trusted hardware and it uses trusted
hardware to implement a core set of basic

primitives to operate on encrypted data.

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 29

III. DATE TYPES, OPERATORS AND

ENCRYPTION SCHEMES

When it comes to standard SQL data types, there

are six basic data types, integer, floating-point, bool,

character, binary, datetime. All the data types may

have various keywords in a specified database

system. Moreover, each data type has its basic

operators to handle, and the detailed basic operators

of each data type are specified in Table 4.

Table 4. Data types and their basic operators.

Data Type Basic Operators

INTEGER/FLOATING-

POINT

Equality (=, <> and etc.)

Comparison (>, >=, <, <= and etc.)

Arithmetic (+, -, ×, /, %)

BOOL Equality (=, <> and etc.)

CHARACTER

Equality (=, <> and etc.)

Comparison (>, >=, <, <= and etc.)

Word Search (LIKE, NOT LIKE and

etc.)

BINARY
Equality (=, <> and etc.)

Comparison (>, >=, <, <= and etc.)

DATETIME
Equality (=, <> and etc.)

Component (year, month, day and etc.)

Although no one encryption algorithm makes

ciphertext retain all the properties of the plaintext,

partial properties may be holding over ciphertext,

for instance, block ciphers are deterministic

encryption algorithms that support query with

equality comparison, partially homomorphic

encryption algorithms support addition or

multiplication arithmetic. Consequently, both

CryptDB and MONOMI employ different

encryption functions to support different operators.

As well as the Cipherbase system if the security

model allows to do [7].

There are a number of solutions to support

operations on encrypted data among the SQL
queries. The CryptDB and MONOMI prototype

illustrate that they support integer type, character
type and binary type. Among them, Blowfish and

AES are applied to encrypt data of all considered
data type to cater to query with equality check, they

use Paillier and EIGamal to encrypt the integer data
for summation and production. The encryption

schemes [34] in CryptDB are shown in Fig. 9.

Fig. 9. Encryption Schemes in CryptDB.

A. Order-Preserving Encryption

To support comparison check on encrypted data,
the original are adopted the order-preserving

encryption algorithm. It means that if x < y, then
OPEK(x) < OPEK(y), for any secret key K. The

other SQL query clauses or aggregate functions,
such as ORDER BY, MIN, MAX, SORT, etc. can

be performed as well. An order preserving

encryption scheme (OPES) [9] is introduced for

numeric data to allow comparison operations to be

directly applied on encrypted data, without
decrypting then operands in advance. The basic

idea of OPES is to take as input a user-provided
target distribution and transform the plaintext

values in such a way that the transformation
preserves the order while the transformed values

follow the target distribution. This scheme does not

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 30

reveal any information about the original values

apart from the order. OPES works in three states:

1) Model: The input and target distributions are

modeled as piece-wise linear splines.

2) Flatten: The plaintext database P is transformed into
a “flat” database F such that the values in F are uniformly

distributed.

3) Transform: The flat database F is transformed into

the cipher database C such that the values in C are distributed

according to the target distribution.

Note that

pi < pj � fi < fj � ci < cj:
The OPES encryption scheme can be directly

applied to 32-bit integers and positive 32-bit single

precision floating points. Negative floating point

and 64-bit double precision floating point values

can be encrypted in a similar scheme. The plaintext

values are 32-bit integers, and both flattened and

final ciphertext values are 64-bit long.
The order-preserving symmetric encryption (OPE)

in [10] is the first provably secure such scheme,
where a security notion in the spirit of

pseudorandom functions (PRFs) and related
primitives asking that an OPE scheme look “as-

random-as-possible” subject to the order-preserving
constraint is proposed instead of indistinguishability

against chosen-plaintext attack (IND-CPA). It

proposed LayzSample and LazySampleInv

algorithm in aid of encryption and decryption

procedures. The encryption and decryption equation

of OPE are as follows:

c = EncK
HG(D, R, m), m = DecK

HG(D, R, c)

where c and m respectively represent the ciphertext

and plaintext, a random � ∈ ��� in key-space, the

plaxintext are ciphertext spaces are sets of

consecutive integers D, R, Algorithm Enc
HG, Dec

HG

are the same as LazySample, LazySampleInv

respectively. OPE not only allows efficient range

queries, but also allows indexing and query

processing to be done exactly and as efficiently as
for unencrypted data. OPE is capable of being

applied to integer, character, binary data type.
In CryptDB system, an encryption scheme that

computes order queries is constructed and called
mutable order-preserving encoding, or mOPE,

which achieves ideal IND-OCPA security [11]. The
model of OPE consists of a trusted OPE client and

an untrusted OPE server. The encoding scheme is

as illustrated in Fig. 10. Each node in the OPE Tree

contains a DET ciphertext, and Child pointers are

labeled with 0 or 1 to indicate the path encoding.

Fig. 10. Overview of mOPE’s data structures.

[11] points out that any stateful OPE scheme that

is IND-OCPA secure has ciphertext size

exponential in the plaintext size. On average,

mOPE stores 40 bytes per encrypted value, when

encrypting 64-bit values. It also presents an

extension of mOPE, called stOPE, that archives this

stronger definition.

B. Word Search

There have been a log of researches on searing on

encrypted data. In general, there are two types of

approaches. One possibility is to build up an index

that. An alternative is to perform a sequential scan

without an index. The advantage of the former is

that it may be faster than the sequential scan when

the documents are large, while storing and updating

the index may be of substantial overhead. So that

the approach of using an index is more suitable for

mostly-read-only data. Some of them encryption

schemes only allows performing full-word keyword

searches, some others may support fuzzy keyword

search. The typically researches in recent years are
listed in Table 5.

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 31

Table 5. Schemes of searching on encrypted data.

Time(Year) Scheme Paper

2000 Sequential Scan[12]
Practical techniques for searches on

encrypted data

2004
Conjunctive Keyword

Search[13]

Secure conjunctive keyword search over

encrypted data

2010 Fuzzy Keyword Search[14]
Fuzzy keyword search over encrypted

data in cloud computing

2010
Ranked Keyword

Search[15]

Secure ranked keyword search over

encrypted cloud data

2014
Multi-Keyword Ranked

Search[16]

Privacy-preserving multi-keyword fuzzy

search over encrypted data in the cloud

2016 Personalized Search[17]

Enabling personalized search over

encrypted outsourced data with efficiency

improvement

Queries with LIKE, NOT LIKE and etc., which

need fuzzy match, can be handled by word search

schemes. Nevertheless, when the data are encrypted,

the database built-in function of LIKE may be not

capable of adopting directly, so a user-defined
function (UDF) should be created to substitute to

perform LIKE operation.

C. Format-Preserving Encryption

Format-preserving encryption (FPE) encrypts a
plaintext of some specified format into a ciphertext

of identical format. The data type of DATETIME in
database is exact identical format, like as “YYYY-

MM-DD HH::MM::SS”. If values of DATETIME

are able to be encrypted as their original format so

that their ciphertexts can be stored as the same

DATETIME data type. The build-in functions, such

as year, month, day, can be directly utilized in

database in that situation. For example, a column

“prod_date” is anonymized as “c_prod_date” in

database, and a plantext “2017-05-09:23:12:08” is

encrypted as “2008-10-17:12:13:50” by FPE.

When the client submit a query, where an atom

“year(prod_date) = 2017” is involved in where

clauses, the query rewriter module would rewrite

the atom as “year(c_prod_date) = 2008” so that we
do not need to create a UDF to perform year

function if the encryption algorithm supports the
components to encrypt with the same encryption

schemes. It means that FPE is suitable for
encrypting “2017” as “2008” as well.

There have been various format-preserving

encryptions to meet different formats [18-21], but

for DATETIM type format-preserving encryption,

the existing solutions do not much. [22] proposed a

format-preserving encryption to encrypt
DATETIME field in database. DATETIME type

has format constraint and natural constraint, so a
key problem is its domain. The FPE scheme for

DATETIME is based on “rank-then-cipher” mode
and further a new approach named “reference-based

offset encryption” is proposed to resolve the FPE
problem on DATETIME domain.

D. Encryption Schemes on Floating-Point

As traditional homomorphic encryption schemes

do not support floating-point data type and do some

arithmetic operations over ciphertexts, CryptDB

and MONOMI which all are applied homomorphic

encryption schemes do not take float-point into

account. To allows the floating-point arithmetics of

ciphertexts, thus computing encryptions of most

significant bits of m1+m2 and m1m2, given

encryptions of floating-point number m1 and m2, a

floating-point homomorphic encryption (FPHE)

scheme is constructed [28], which is based on BGV

scheme [29].
[30] constructs a first fully homomorphic

encryption scheme FHE4FX that can
homomorphically compute addition and/or

multiplication of encryption fixed point numbers

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 32

without knowing the secret key, which is based on

FV scheme[31,32].

IV. SQL QUERY STATEMENTS

All kinds of solutions are qualified to perform all

basic SQL queries, so that make executing SQL

queries over encrypted data practical. A standard

query statement mainly consists of SELECT clause,

FROM clause and WHERE clause, and its form is

as follows:

SELECT *| column_name| expr| aggregate_func (column), …
FROM table_name| , table_name1| [INNER| OUTER| FULL| LEFT| RIGHT] JOIN table_name1 ON join_condition

[WHERE where_clauses]

[GROUP BY column_name| , column_name1,… [HAVING having_conditions]]
[ORDER BY column_name [ASC| DESC] | , column_name1 [ASC| DESC], …]

Where SELECT clause and WHERE clause are

diverse in forms. When it comes to supported SQL

queries, the main considerations are whether the

SELECT clause and WHERE clause are supported

or not. WHERE clauses are all arithmetic atoms

that returns a boolean value.

Even though there are a number of research on

executing SQL queries over encrypted data, they

have the query statement limitations more or less. It

does not support both computations and comparison

on the same column, such as WHERE

salary>age*2+10 in CryptDB [35], but it can be
handled by splitting client/server query execution

which is proposed in MONOMI. CryptDB can
handle four out of 22 TPC-H queries, while

MONOMI executes 19 out of 22 TPC-H queries by
splitting client/server execution. As for A query

with, such as SUM(ps_supplycost * ps_availqty)>

value, which also involves addition, comparison

and multiplication, MONOMI’ encryption schemes

cannot support directly over encrypted data.

Encryption scheme adopted by SDB can support

complex operations executed on the server, and all

queries in the TPC-H benchmark are natively

supported. Whereas it has some limitations, for

example, SDB does not natively support operators

which their output results are non-integer values,

e.g., square root (√) [7]. In addition, there are

some limitations in TrustedDB as well, for example,

query parser in TrustedDB cannot parse multi-level

nested sub-queries and views defined by user [4].

V. CONCLUSIONS

This paper reviews the solutions that executing
SQL queries over encrypted data. All of them

support the basic data types and basic query

statements with different encryption schemes and

implementation mechanism. The software-based

implementations are less costly but support type

and functionality are more limited. In contrast, the

hardware implementations have the cost overhead

and performance limitations. Most of the secure

model work as trusted proxy to provide secure

channel.

REFERENCES
[1] Hacigümüş H, Iyer B, Li C, et al. Executing SQL over encrypted data

in the database-service-provider model[C]//Proceedings of the 2002

ACM SIGMOD international conference on Management of data.
ACM, 2002: 216-227.

[2] Popa R A, Redfield C, Zeldovich N, et al. CryptDB: protecting

confidentiality with encrypted query processing[C]//Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles.

ACM, 2011: 85-100.

[3] Tu S, Kaashoek M F, Madden S, et al. Processing analytical queries

over encrypted data[C]//Proceedings of the VLDB Endowment. VLDB
Endowment, 2013, 6(5): 289-300.

[4] Bajaj S, Sion R. Trusteddb: A trusted hardware-based database with

privacy and data confidentiality[J]. IEEE Transactions on Knowledge
and Data Engineering, 2014, 26(3): 752-765.

[5] Bajaj S, Sion R. Trusteddb: A trusted hardware based outsourced

database engine[C]//VLDB, DEMO. 2011.
[6] Arasu A, Blanas S, Eguro K, et al. Secure database-as-a-service with

cipherbase[C]//Proceedings of the 2013 ACM SIGMOD International

Conference on Management of Data. ACM, 2013: 1033-1036.

[7] Arasu A, Blanas S, Eguro K, et al. Orthogonal Security with

Cipherbase[C]//CIDR. 2013.

[8] Wong W K, Kao B, Cheung D W L, et al. Secure query processing

with data interoperability in a cloud database

environment[C]//Proceedings of the 2014 ACM SIGMOD international

conference on Management of data. ACM, 2014: 1395-1406.

[9] Agrawal R, Kiernan J, Srikant R, et al. Order preserving encryption for

numeric data[C]//Proceedings of the 2004 ACM SIGMOD

international conference on Management of data. ACM, 2004: 563-574.

[10] Boldyreva A, Chenette N, Lee Y, et al. Order-preserving symmetric

encryption[C]//Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer Berlin Heidelberg,

2009: 224-241.

[11] Popa R A, Li F H, Zeldovich N. An ideal-security protocol for order-

preserving encoding[C]//Security and Privacy (SP), 2013 IEEE

Symposium on. IEEE, 2013: 463-477.

[12] Song D X, Wagner D, Perrig A. Practical techniques for searches on

encrypted data[C]//Security and Privacy, 2000. S&P 2000. Proceedings.

2000 IEEE Symposium on. IEEE, 2000: 44-55.

International Journal of Computer Techniques – Volume 4 Issue 3, May – June 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 33

[13] Golle P, Staddon J, Waters B. Secure conjunctive keyword search over

encrypted data[C]//International Conference on Applied Cryptography

and Network Security. Springer Berlin Heidelberg, 2004: 31-45.
[14] Li J, Wang Q, Wang C, et al. Fuzzy keyword search over encrypted

data in cloud computing[C]//INFOCOM, 2010 Proceedings IEEE.

IEEE, 2010: 1-5.

[15] Wang C, Cao N, Li J, et al. Secure ranked keyword search over

encrypted cloud data[C]//Distributed Computing Systems (ICDCS),

2010 IEEE 30th International Conference on. IEEE, 2010: 253-262.

[16] Wang B, Yu S, Lou W, et al. Privacy-preserving multi-keyword fuzzy

search over encrypted data in the cloud[C]//INFOCOM, 2014

Proceedings IEEE. IEEE, 2014: 2112-2120.

[17] Fu Z, Ren K, Shu J, et al. Enabling personalized search over encrypted
outsourced data with efficiency improvement[J]. IEEE transactions on

parallel and distributed systems, 2016, 27(9): 2546-2559.

[18] Mattsson U, Blomkvist K. Data type preserving encryption: U.S. Patent

7,418,098[P]. 2008-8-26.

[19] Brier E, Peyrin T, Stern J. BPS: a format-preserving encryption

proposal[J]. Submission to NIST, available from their website, 2010.

[20] Pauker M J, Spies T, Martin L W. Data processing systems with

format-preserving encryption and decryption engines: U.S. Patent

7,864,952[P]. 2011-1-4.

[21] Palgon G, Chambers J, Konisky D. System and methods for format

preserving tokenization of sensitive information: U.S. Patent

8,458,487[P]. 2013-6-4.

[22] Liu Z, Jia C, Li J, et al. Format-preserving encryption for

datetime[C]//Intelligent Computing and Intelligent Systems (ICIS),

2010 IEEE International Conference on. IEEE, 2010, 2: 201-205.

[23] Bellare M, Ristenpart T, Rogaway P, et al. Format-preserving

encryption[C]//International Workshop on Selected Areas in
Cryptography. Springer Berlin Heidelberg, 2009: 295-312.

[24] Yao A C. Protocols for secure computations[C]//Foundations of

Computer Science, 1982. SFCS'08. 23rd Annual Symposium on. IEEE,

1982: 160-164.
[25] Bogdanov D, Jagomägis R, Laur S. A universal toolkit for

cryptographically secure privacy-preserving data mining[C]//Pacific-

Asia Workshop on Intelligence and Security Informatics. Springer

Berlin Heidelberg, 2012: 112-126.

[26] Hacigumus H, Iyer B, Mehrotra S. Providing database as a

service[C]//Data Engineering, 2002. Proceedings. 18th International

Conference on. IEEE, 2002: 29-38.

[27] Mueller R, Teubner J, Alonso G. Data processing on FPGAs[J].

Proceedings of the VLDB Endowment, 2009, 2(1): 910-921.

[28] Cheon J H, Kim A, Kim M, et al. Floating-Point Homomorphic
Encryption[J]. IACR Cryptology ePrint Archive, 2016, 2016: 421.

[29] Yagisawa M. Fully Homomorphic Encryption without bootstrapping[J].

IACR Cryptology ePrint Archive, 2015, 2015: 474.

[30] Arita S, Nakasato S. Fully Homomorphic Encryption for Point

Numbers[J]. IACR Cryptology ePrint Archive, 2016, 2016: 402.

[31] Fan J, Vercauteren F. Somewhat Practical Fully Homomorphic

Encryption[J]. IACR Cryptology ePrint Archive, 2012, 2012: 144.

[32] Lepoint T, Naehrig M. A comparison of the homomorphic encryption

schemes FV and YASHE[C]//International Conference on Cryptology

in Africa. Springer International Publishing, 2014: 318-335.

[33] Papadopoulos S, Kiayias A, Papadias D. Secure and efficient in-

network processing of exact SUM queries[C]//Data Engineering

(ICDE), 2011 IEEE 27th International Conference on. IEEE, 2011:

517-528.

[34] Popa R A, Zeldovich N, Balakrishnan H. Guidelines for Using the

CryptDB System Securely[J]. IACR Cryptology ePrint Archive, 2015,

2015: 979.
[35] Popa R A, Zeldovich N, Balakrishnan H. CryptDB: A practical

encrypted relational DBMS[J]. 2011.

