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Abstract: 
In order to address the weakness of particle swarm optimization’s tendency to easily fall into local 

optimum in solving large scale combinational optimization problem, considering the balance that inertia 

can control between local search ability and global search ability, the paper proposed an improved hybrid 
particle swarm optimization algorithm (PSO) by adopting the self-adaptive inertia weight model and local 

search strategy of simulated annealing algorithm. Not only increases the variety of particles according to 
their distance to global optimum, but also enhances the local search ability of the algorithm. The Traveling 

Salesman Problem (TSP) is adopted to validate the efficiency of the proposed algorithm. By comparing 
with inertia weight linear decreasing particle swarm optimization, adaptive inertia weight particle swarm 

optimization and simulated annealing (SA) algorithm, experiments demonstrate that our method has a 
more promising results, proves it a more efficient modified algorithm. 
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I. INTRODUCTION 

In terms of NP problem, the problem scale is 

often large and it is hard to gain the desired optimal 

solution via accurate algorithm in a reasonable time. 

However, this problem can be solved well by 

selecting and applying a proper intelligent 

algorithm. Generally speaking, intelligent algorithm 

cannot guarantee that the optimal solution can be 

obtained, but it can gain the approximately optimal 

solution in a reasonable time. By weighing the 

advantages and disadvantages in the game of 

calculation time and answer quality, intelligent 

algorithm is a better choice to solve such large-

scale combinational optimization problem when 
compared with accurate algorithm. 

Proposed by Doctor Kennedy and Doctor 
Eberhart[1] in 1995,particle swarm optimization 

algorithm(PSO algorithm) is an intelligent 
optimization algorithm. At the beginning, PSO 

algorithm will generate a group of particles at 
random (i.e. random solutions) and initial 

movement velocities of particles. Then it will 

approach the optimal solution through continuous 

iteration, and the final result will converge into the 

optimal solution. As for particle swarm 

optimization, all particles in the process of particle 

swarm evolution use the same inertia weight. In this 

way, the difference among the particles will reduce 

gradually and the particle velocity will drop. Finally 

it will tend to be 0.The particle will wander near the 

optimal solution, but optimal solution of the 

problem cannot be found accurately. Only a local 

optimal solution can be gained. If the particle 

swarm velocity becomes 0,the particle swarm 

cannot evolve anymore. In another word, it cannot 

seek optimal solution of the problem by jumping 
out from the local optimal solution. Therefore, 

faced with complex problems, PSO algorithm has 
weak solving ability, and can hardly gain a more 

accurate optimal solution during the later period. 
By directing at the defect of PSO algorithm to fall 

into local optimum easily when solving complex 
problems, this paper improves the algorithm. Firstly, 

different pairs of particles are classified according 
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to the distance between the particles and global 

optimal solution, and different inertia weights are 

set for particles of different types, so as to increase 

the diversity of particles. Secondly, by aiming at the 

weakness of PSO algorithm in local searching 

ability, this paper adds the local searching strategy 

of simulated annealing algorithm into this algorithm. 

When the algorithm cannot find a more optimal 

solution after searching for several times, the 

neighborhood of individual optimal solution in the 

particles will be searched, thus local searching 

ability of the algorithm can be enhanced. Finally, 

performance of the algorithm is verified through 

experiment. A comparison is made between this 
algorithm and linear decreasing inertia weight 

particle swarm optimization algorithm and 
simulated annealing algorithm(SA).The result 

shows that the algorithm proposed in this paper has 
a better effect when solving the travelling salesman 

problem;it is an improved algorithm with relatively 
high efficiency. 

II. PSO ALGORITHM 

1)  Basic PSO algorithm 

In PSO algorithm, the state of particle   at time t 

in the n-dimensional space can be expressed as �� = (���, ���, … , ��	), and velocity of the particle 

is �� = (���, ���, … , ��	) . The optimal position 

experienced by the individual particle is recorded 

as pbest, and the optimal position experienced by the 

particle swarm is recorded as ����� . Then the 

velocity and position of the particle at time t+1 can 

be updated according to the following formula: ��(� + �) = ���(�) + ����	�( )������ −������������++++����������������				������������������������−−−−������������              (1) ��(� + �) = ��(�) + ��(� + �)                  (2) 

In the formula, � represents the inertia weight;  ��  and ��  indicate the acceleration constants. 

Therefore, the algorithm flow of basic PSO 

algorithm can be described as the following steps: 

Step1: Set the inertia weight and acceleration 

constants of the algorithm and initialize a group of 

particles and velocities. The optimal position �����  

experienced by each individual particle is set as the 

initial position, and the optimal position ����� 
experienced by the particle swarm is the optimal 

value among all �����  values; 

Step2: Update the velocities and positions of 

particles according to formula (1) and formula (2); 

Step 3: Calculate the adaptive value of each 

particle; 

Step 4: Compare the adaptive value of each 

individual particle with the adaptive value of the 

best position �����  experienced by it; if the new 

position is better than the original position, please 

update the original ����� ; 

Step 5: Compare the adaptive value of each 

individual particle with the adaptive value of the 

best position  �����  experienced by the particle 

swarm; it there is a better position, please update 

the original �����; 
Step 6: Check whether the termination 

condition (generally speaking, the algorithm has 

reached the maximum number of iterations, the 
optimal solution of particle swarm does not change 

after iteration for several times, or the optimal 

solution searched has reached the minimum 

adaptive threshold) is satisfied; terminate iteration 

of the algorithm if one condition is met; otherwise, 

return to Step 2 for further iteration. 

2)  Discrete particle swarm optimization algorithm  

In the continuous space, the optimal position of 
individual particle and the optimal position of 

particle swarm will influence the particle velocity 
and guide the particles to approach the two points. 

In discrete combinational optimization problem, the 
state of particle is expressed with a sequence of 

integers, and the connotations of various symbols in 
the particle updating equation cannot maintain the 

connotations in continuous problem. A change is 
needed. Here the operation of particles is redefined 

by referring to the studies of Clerc
[2]

 and other 

scholars. 

Definition 1 Commutator: Suppose that the 

particle state is  �( �,  �,∙∙∙,  	) ; the operation of 

commutator �"� �,  #$  is defined as follows: to 

exchange the values corresponding to  �  and  # 
positions in �. 

For instance, � = (�, �, %, &) �	� �"� �,  #$ =(', �); then �( = � + �"(', �) = (�, �, %, &). 

Definition 2 Velocity: The list of one or 

multiple commutators is velocity,� = (�"�, �"�,∙∙∙,,,,����""""				. 
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Definition 3 Addition Operation: The updating 

equation ��( = �� + ��′of particles means to make 

commutators in ��′ act on position �� in order and 

to get a new position ��′ ; addition of velocities �� + �# means to connect the commutator list of the 

second velocity �# to the end of the commutator list 

of the first velocity �� , and to treat the new list 

gained as the new velocity. 

Nature 1 Particle velocity has directivity. 

For instance, � = (�, �, %, &) ,�� = (', �)(�, �) , 

and �� = (�, �)(', �) ; then �( = � + �� =(�, %, �, &)  and  �(( = � + �� = (%, �, �, &) . 

Therefore, if the order of commutators is changed, 

totally different results might be gained. 

Definition 4 Subtraction Operation: The 

difference between positions of two particles is �( − �, and a velocity can be gained. 

Definition 5 Multiplication Operation: For the 

real number  � ∈ (', �), length of the velocity  is 

supposed as + commutators; then �� means to cut 

the velocity list and to take the first �,  (INT) 
commutators as the new velocity. 

With the above definitions, calculation can be 
conducted for particles in discrete problems 

according to the updating formula (�) and (�) of 
standard PSO algorithm. 

III. IMPROVED ALGORITHM AEPSO-SA 

1) Dynamically adjusted inertia weight 

Shi and Eberhart studied the influence of inertia 

weight on the searching ability of PSO algorithm
[3]

; 

they discovered that when the value of � was large, 

global searching ability of the algorithm would be 

strong and there was a high possibility to jump out 
from the local optimal solution; when the value of �  was small, the particle movement was mainly 
affected by individual optimal solution and group 

optimal solution, the local searching ability would 
be strong, and it was beneficial to algorithm 

convergence. The balance between local searching 
ability and global searching ability of particles in 

PSO algorithm can be controlled by setting the 
inertia weight. Shi and Eberhart proposed a linear 

decreasing method of dynamically adjusting the 

inertia weight according to the number of iterations. 

At the initial stage of algorithm operation, a large 

inertia weight will be used to guarantee global 

searching ability of the algorithm; later a small 

inertia weight will be used to enhance local 

searching ability of the algorithm and to accelerate 

convergence of the algorithm. Linear decreasing 

inertia weight PSO algorithm is one of the common 

PSO algorithms applied at present. 

The strategy of linear decreasing inertia weight 

can improve the algorithm effect to some extent, 

but it still has some defects. Firstly, if the value of 

inertia weight � decreases too fast, the algorithm 

might fall into local searching before finding the 

position of extreme point. At the same time, if the 

value of �  is high at the initial stage, it might 

directly skip the global optimal region when 

searching the global optimal region at the earlier 

stage. As a result, the algorithm accuracy will drop. 
Secondly, in each iteration process, all particles use 

the same inertia weight, which will make the 
difference among particles reduce in the iteration 

process. Thereby, the particle velocity will decline 
gradually and tend to be 0 ultimately. It can fall into 

local optimal solution easily. Therefore, the 

adjustment for the value of inertia weight ω should 

not only rely on the number of iterations but also 
depend on the evolution degree of particle 

population. Different values of inertia weight � 

should be used for particles of different evolution 

degrees, so as to increase the difference among 

particles and to better control the balance between 
global searching ability and local searching ability 

of particles. Thus a better searching effect can be 
realized. By aiming at this, this paper proposes an 

algorithm of dynamically adjusting inertia weight, 
i.e. AEPSO. 

In the optimization process of particle swarm, 
each particle will approach the position of group 

optimal solution. By centering on the optimal 

solution �����  of particle swarm, the distance 

between each particle and the central point is 

calculated as the judgment basis for the evolution 

degrees of particles. Different inertia weights will 

be set for particles of different evolution degrees. 

The specific setting is as follows: In the iteration 

process, the distance (��, ��, ⋯ , �/) between each 

particle and the central pointgbest is calculated; the 

distances are arranged in an ascending order and the 

particles are numbered according to the distances; 

number of the particle which is the closest to the 
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central position is 0, and number of the particle 

which is the furthest to the central position is N − 1; 

the array 34���5/6 is used to record the number of 

each particle. The control factor 7�  for inertia 

weight of each particle is calculated according to 

the number, and the specific calculation formula is 

as follows: 

7� = 89,                 34���5�6 < ,�/�,    ,�/ ≤ 34���5�6 ≤ ,�/<,                 34���5�6 > ,�/ >
 

 (%) 
 

In the formula, , � and , � are control parameters 

used to divide the evolution degrees of particles, 

and ,� < ,� < �; / means the scale of particles; 9 

and <  are adjustment parameters which represent 
the inertia weight change ratio of particles of 

different evolution degrees. Inertia weight will be 
updated according to the following formula: �� = 7� ?�@� − (�@� − �@�	) ��	AB�_DE/F          (4) 

In the formula,� @�  and �@�	  are initial value 

and final value of inertia weight; ��	 and AB�_DE/ are the current number of iterations and 
maximum number of iterations. 

 
2) Local searching strategy with simulated annealing 

idea 

When the inertia weight �  of particles is 

dynamically adjusted by calculating the distance 

from particles to the global optimal solution �����, 
the solving accuracy of particles and convergence 

rate of the algorithm are effectively improved. 

However, the defects of PSO algorithm are not 

solved. The convergence rate of PSO algorithm is 

high at the initial stage and particles sway in a sine 

wave state. Under the influence of global optimal 

solution, particles approach the global optimal 

solution gradually. With the evolution of particles, 

when the positions of particles become close to the 

global optimal solution, the particle velocity will 

decrease and even turn into 0. In this way, particles 
might stay near the optimal solution rather than find 

global optimal solution of the problem. It can find a 
local optimal solution only. When the velocity of 

particle swarm becomes 0, particles will lose 
evolution ability. As a result, the algorithm cannot 

jump out from the local optimal solution and find 

the global optimal solution. 

Simulated annealing algorithm conducts 

searching in the neighborhood of the solution, and 

this is a local searching strategy. However, 

simulated annealing algorithm might accept an 

inferior solution. Thus flexibility of the algorithm is 

increased and the hunting zone is expanded. The 

algorithm has a strong ability to enter the region of 

global optimal solution and to jump out from the 

local optimal solution. However, if the problem 

involves a large scale, it has to search the 

neighborhood of the current solution, which will 

reduce the global searching ability of simulated 
annealing algorithm. In order to reach the region of 

global optimal solution, a long time is needed. 
Several second-best solutions are often 

distributed in the realm of an optimal solution, so 
strengthening the searching ability for regions near 

second-best solutions will provide a higher 
possibility to find the optimal solution. Based on 

this, this paper adds a local searching strategy into 

PSO algorithm. A threshold value G""H is set for 

the number of iterations by referring to the idea in 

simulated annealing algorithm. If the current global 

optimal solution does not change when the number 

of iterations exceeds G""H , the algorithm will 

search the region of individual optimal solutions, 

and start an annealing process. In this way, places 

near the local optimal solutions can be searched, 

and the algorithm will jump out from these local 

optimal solutions at the same time. 

Steps of AEPSO-SA algorithm proposed in this 

paper are as follows: 

Step 1: Set acceleration constants of the 

algorithm and initialize a group of particles and 

velocities. The optimal position ����� experienced 

by each individual particle is set as the initial 
position, and the optimal position ����� experienced by the particle swarm is the 

optimal value among all �����  values. Set the 

initial temperature as �'. The iterative step of each 

temperature is I/  and the threshold value of 

annealing process is G""H = '; 

Step 2: Calculate the distance between each 

individual particle and the global optimal position, 

arrange the distances in order, number the particles 

according to the order, and calculate the inertia 
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weights of particles according to formula (%) and 

(&); 
Step 3: Update the velocities and positions of 

particles according to formula (�) and formula (�); 

Step 4: Calculate the adaptive value of each 

particle; 

Step 5: Compare the adaptive value of each 

particle with the adaptive value of the best position �����  experienced by it; if the new position is 
better than the original position, please update the 

original �����; 
Step 6: Compare the adaptive value of each 

individual particle with the adaptive value of the 

best position �����  experienced by the particle 

swarm; it there is a better position, please update 

the original ����� and meanwhile set the value of G""H as 0; 

Step 7: Inquire the value of G""H and judge 

whether simulated annealing is needed. If the value 

of G""H  reaches the set value, enter Step 8; 

otherwise, go to Step 9; 

Step 8: Start a simulated annealing process and 

conduct neighborhood searching for the optimal 

positions �����  of all individual particles for I/ 

times. If a solution better than the current global 

optimal position ����� is found, update the global 

optimal position ����� . As for new solutions 
searched, judge whether to replace the individual 

optimal position �����  according to Metropolis 

criterion. Set the value of G""H  as 0 after 

simulated annealing process; 
Step 9: Update the temperature according to 

the number of iterations, and add 1 to the value of G""H; 

Step 10: Check whether the termination 

condition (generally speaking, the algorithm has 

reached the maximum number of iterations, the 

optimal solution of particle swarm does not change 

after iteration for several times, or the optimal 

solution searched has reached the minimum 

adaptive threshold) is satisfied; terminate iteration 

of the algorithm if one condition is met; otherwise, 

return to Step 2 for further iteration. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

1) Experimental results 

In order to verify the effectiveness of AEPSO-

SA algorithm, AEPSO-SA algorithm is tested by 

utilizing the travelling salesman problem. 

Travelling salesman problem (TSP) is an issue to 

seek the optimal path. This is an issue to solve a 

path to different cities that can minimize the total 

travelling cost when a traveller wants to travel to 

many cities by starting from one city and the 

traveller will return to the first city after visiting all 

cities. City problem TSP14 (Burma14), city 

problem 30 (Oliver30) and city problem 48 (att48) 

are adopted for test in the experiment. Experimental 

results of the following algorithms are compared 

with the results of AEPSO-SA algorithm: linear 

decreasing inertia weight PSO algorithm, adaptive 

inertia weight AEPSO algorithm mentioned in this 
paper, and simulated annealing (SA)algorithm. 

Parameter setting of various algorithms is as 
follows: 

Linear decreasing inertia weight PSO algorithm: 

The maximum number of iterations AB�DE/ =�''' ; particle scale / = J' ; � @� = '. LJ ; � @�	 = '. &; G � = G� = �. 

SA algorithm: The initial temperatureTT = 250.0; 

cooling times: Q = &''; coefficient of temperature 

drop �� = '. LR ; iterative step under each 

temperature:/ = &'. 

AEPSO algorithm: AB�DE/ = �''' ; , � = �S ; , � = &S; 9 = �. J; < = '. R. 

AEPSO-SA algorithm: AB�DE/ = �''' ; other 

parameters are the same with the above two 

algorithms. 

Each algorithm is tested for 30 times, and the test 

results are shown in Table 1. 
Table 1 Test results of various algorithms 

Problem 

Existing 

optimal 
solution 

Algorithm 
Average 
solution 

Optimal 
solution 

Worst 
solution 

Times of acquiring the 

optimal solution 

Burma14 30.8785 

PSO 31.32403 30.8785 32.54418 8 

AEPSO 31.07592 30.8785 32.15857 18 

SA 30.8785 30.8785 30.8785 30 

AEPSO-

SA 
30.8785 30.8785 30.8785 

30 

Oliver30 423.74 

PSO 609.358 527.378 683.494 0 

AEPSO 577.346 485.935 669.287 0 

SA 428.654 423.74 441.103 7 

AEPSO-

SA 
424.105 423.74 425.510 

22 

att48 10628 

PSO 21508.7 18931 25971 0 

AEPSO 18827.9 16079 22092 0 

SA 11042.4 10752 11366 0 

AEPSO-
SA 

10686.9 10628 10782 
3 

 

2) Performance analysis 

According to data in Table 1, for city problem 14 

with a small scale, all the 4 algorithms can gain a 

good result; SA algorithm and AEPSO-SA 

algorithm can obtain the global optimal solution 
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every time. When the city scale expands to 30, 

standard PSO algorithm falls into the local optimal 

solution easily; the solving accuracy of improved 

AEPSO algorithm is increased, but the result is not 

ideal. SA algorithm and AEPSO-SA algorithm can 

gain the global optimal solution for multiple times, 

but the results of SA algorithm fluctuate greatly and 

the times of acquiring the global optimal solution 

are much fewer when compared with AEPSO-SA 

algorithm. When the problem scale expands to 48, 

both PSO algorithm and AEPSO algorithm can 

hardly gain a good solution; SA algorithm and 

AEPSO-SA algorithm can get a value close to the 

global optimal solution. SA algorithm does not gain 
the global optimal solution, but AEPSO-SA 

algorithm obtains the global optimal solution for 
three times. Moreover, AEPSO-SA algorithm is 

better than SA algorithm in the average solution 
and worst solution. 

V. CONCLUSIONS 

This paper analyzes the key role of inertia weight 

in PSO algorithm, and introduces a strategy of 

dynamically adjusting the inertia weight. 

Meanwhile, by aiming at the weakness of PSO 

algorithm in local searching ability, simulated  

annealing idea is added into the algorithm as a local 

searching strategy. An improved hybrid PSO 

algorithm, AEPSO-SA is proposed. According to 

the experimental results, the hybrid algorithm 

possesses higher solving accuracy and stronger 

ability of jumping out from the local optimal 

solution than PSO algorithm and simulated 

annealing algorithm. Therefore, it is an improved 

algorithm with relatively high efficiency. 
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