
International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 105

 Hybrid Algorithm of Adaptive Inertia Weight Particle

Swarm and Simulated Annealing
XiaoHua. Meng

1
, YanFei. Lin

2
, DaSheng Qin

3

1,2,3
Department of Computer Science and Technology, Jinan University, Guangzhou, China

--************************----------------------------------

Abstract:
In order to address the weakness of particle swarm optimization’s tendency to easily fall into local

optimum in solving large scale combinational optimization problem, considering the balance that inertia

can control between local search ability and global search ability, the paper proposed an improved hybrid
particle swarm optimization algorithm (PSO) by adopting the self-adaptive inertia weight model and local

search strategy of simulated annealing algorithm. Not only increases the variety of particles according to
their distance to global optimum, but also enhances the local search ability of the algorithm. The Traveling

Salesman Problem (TSP) is adopted to validate the efficiency of the proposed algorithm. By comparing
with inertia weight linear decreasing particle swarm optimization, adaptive inertia weight particle swarm

optimization and simulated annealing (SA) algorithm, experiments demonstrate that our method has a
more promising results, proves it a more efficient modified algorithm.

Keywords —Particle Swarm Optimization algorithm, large scale combination optimization problem,

inertia weight, simulated annealing (SA).

--************************----------------------------------

I. INTRODUCTION

In terms of NP problem, the problem scale is

often large and it is hard to gain the desired optimal

solution via accurate algorithm in a reasonable time.

However, this problem can be solved well by

selecting and applying a proper intelligent

algorithm. Generally speaking, intelligent algorithm

cannot guarantee that the optimal solution can be

obtained, but it can gain the approximately optimal

solution in a reasonable time. By weighing the

advantages and disadvantages in the game of

calculation time and answer quality, intelligent

algorithm is a better choice to solve such large-

scale combinational optimization problem when
compared with accurate algorithm.

Proposed by Doctor Kennedy and Doctor
Eberhart[1] in 1995,particle swarm optimization

algorithm(PSO algorithm) is an intelligent
optimization algorithm. At the beginning, PSO

algorithm will generate a group of particles at
random (i.e. random solutions) and initial

movement velocities of particles. Then it will

approach the optimal solution through continuous

iteration, and the final result will converge into the

optimal solution. As for particle swarm

optimization, all particles in the process of particle

swarm evolution use the same inertia weight. In this

way, the difference among the particles will reduce

gradually and the particle velocity will drop. Finally

it will tend to be 0.The particle will wander near the

optimal solution, but optimal solution of the

problem cannot be found accurately. Only a local

optimal solution can be gained. If the particle

swarm velocity becomes 0,the particle swarm

cannot evolve anymore. In another word, it cannot

seek optimal solution of the problem by jumping
out from the local optimal solution. Therefore,

faced with complex problems, PSO algorithm has
weak solving ability, and can hardly gain a more

accurate optimal solution during the later period.
By directing at the defect of PSO algorithm to fall

into local optimum easily when solving complex
problems, this paper improves the algorithm. Firstly,

different pairs of particles are classified according

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 106

to the distance between the particles and global

optimal solution, and different inertia weights are

set for particles of different types, so as to increase

the diversity of particles. Secondly, by aiming at the

weakness of PSO algorithm in local searching

ability, this paper adds the local searching strategy

of simulated annealing algorithm into this algorithm.

When the algorithm cannot find a more optimal

solution after searching for several times, the

neighborhood of individual optimal solution in the

particles will be searched, thus local searching

ability of the algorithm can be enhanced. Finally,

performance of the algorithm is verified through

experiment. A comparison is made between this
algorithm and linear decreasing inertia weight

particle swarm optimization algorithm and
simulated annealing algorithm(SA).The result

shows that the algorithm proposed in this paper has
a better effect when solving the travelling salesman

problem;it is an improved algorithm with relatively
high efficiency.

II. PSO ALGORITHM

1) Basic PSO algorithm

In PSO algorithm, the state of particle at time t

in the n-dimensional space can be expressed as �� = (���, ���, … , ��), and velocity of the particle

is �� = (���, ���, … , ��) . The optimal position

experienced by the individual particle is recorded

as pbest, and the optimal position experienced by the

particle swarm is recorded as ����� . Then the

velocity and position of the particle at time t+1 can

be updated according to the following formula: ��(� + �) = ���(�) + ����	�()������ −������������++++����������������				������������������������−−−−������������ (1) ��(� + �) = ��(�) + ��(� + �) (2)

In the formula, � represents the inertia weight; �� and �� indicate the acceleration constants.

Therefore, the algorithm flow of basic PSO

algorithm can be described as the following steps:

Step1: Set the inertia weight and acceleration

constants of the algorithm and initialize a group of

particles and velocities. The optimal position �����

experienced by each individual particle is set as the

initial position, and the optimal position �����
experienced by the particle swarm is the optimal

value among all ����� values;

Step2: Update the velocities and positions of

particles according to formula (1) and formula (2);

Step 3: Calculate the adaptive value of each

particle;

Step 4: Compare the adaptive value of each

individual particle with the adaptive value of the

best position ����� experienced by it; if the new

position is better than the original position, please

update the original ����� ;

Step 5: Compare the adaptive value of each

individual particle with the adaptive value of the

best position ����� experienced by the particle

swarm; it there is a better position, please update

the original �����;
Step 6: Check whether the termination

condition (generally speaking, the algorithm has

reached the maximum number of iterations, the
optimal solution of particle swarm does not change

after iteration for several times, or the optimal

solution searched has reached the minimum

adaptive threshold) is satisfied; terminate iteration

of the algorithm if one condition is met; otherwise,

return to Step 2 for further iteration.

2) Discrete particle swarm optimization algorithm

In the continuous space, the optimal position of
individual particle and the optimal position of

particle swarm will influence the particle velocity
and guide the particles to approach the two points.

In discrete combinational optimization problem, the
state of particle is expressed with a sequence of

integers, and the connotations of various symbols in
the particle updating equation cannot maintain the

connotations in continuous problem. A change is
needed. Here the operation of particles is redefined

by referring to the studies of Clerc
[2]

 and other

scholars.

Definition 1 Commutator: Suppose that the

particle state is �(�, �,∙∙∙,) ; the operation of

commutator �"� �, #$ is defined as follows: to

exchange the values corresponding to � and #
positions in �.

For instance, � = (�, �, %, &) �	� �"� �, #$ =(', �); then �(= � + �"(', �) = (�, �, %, &).

Definition 2 Velocity: The list of one or

multiple commutators is velocity,� = (�"�, �"�,∙∙∙,,,,����""""				.

International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 107

Definition 3 Addition Operation: The updating

equation ��(= �� + ��′of particles means to make

commutators in ��′ act on position �� in order and

to get a new position ��′ ; addition of velocities �� + �# means to connect the commutator list of the

second velocity �# to the end of the commutator list

of the first velocity �� , and to treat the new list

gained as the new velocity.

Nature 1 Particle velocity has directivity.

For instance, � = (�, �, %, &) ,�� = (', �)(�, �) ,

and �� = (�, �)(', �) ; then �(= � + �� =(�, %, �, &) and �((= � + �� = (%, �, �, &) .

Therefore, if the order of commutators is changed,

totally different results might be gained.

Definition 4 Subtraction Operation: The

difference between positions of two particles is �(− �, and a velocity can be gained.

Definition 5 Multiplication Operation: For the

real number � ∈ (', �), length of the velocity is

supposed as + commutators; then �� means to cut

the velocity list and to take the first �, (INT)
commutators as the new velocity.

With the above definitions, calculation can be
conducted for particles in discrete problems

according to the updating formula (�) and (�) of
standard PSO algorithm.

III. IMPROVED ALGORITHM AEPSO-SA

1) Dynamically adjusted inertia weight

Shi and Eberhart studied the influence of inertia

weight on the searching ability of PSO algorithm
[3]

;

they discovered that when the value of � was large,

global searching ability of the algorithm would be

strong and there was a high possibility to jump out
from the local optimal solution; when the value of � was small, the particle movement was mainly
affected by individual optimal solution and group

optimal solution, the local searching ability would
be strong, and it was beneficial to algorithm

convergence. The balance between local searching
ability and global searching ability of particles in

PSO algorithm can be controlled by setting the
inertia weight. Shi and Eberhart proposed a linear

decreasing method of dynamically adjusting the

inertia weight according to the number of iterations.

At the initial stage of algorithm operation, a large

inertia weight will be used to guarantee global

searching ability of the algorithm; later a small

inertia weight will be used to enhance local

searching ability of the algorithm and to accelerate

convergence of the algorithm. Linear decreasing

inertia weight PSO algorithm is one of the common

PSO algorithms applied at present.

The strategy of linear decreasing inertia weight

can improve the algorithm effect to some extent,

but it still has some defects. Firstly, if the value of

inertia weight � decreases too fast, the algorithm

might fall into local searching before finding the

position of extreme point. At the same time, if the

value of � is high at the initial stage, it might

directly skip the global optimal region when

searching the global optimal region at the earlier

stage. As a result, the algorithm accuracy will drop.
Secondly, in each iteration process, all particles use

the same inertia weight, which will make the
difference among particles reduce in the iteration

process. Thereby, the particle velocity will decline
gradually and tend to be 0 ultimately. It can fall into

local optimal solution easily. Therefore, the

adjustment for the value of inertia weight ω should

not only rely on the number of iterations but also
depend on the evolution degree of particle

population. Different values of inertia weight �

should be used for particles of different evolution

degrees, so as to increase the difference among

particles and to better control the balance between
global searching ability and local searching ability

of particles. Thus a better searching effect can be
realized. By aiming at this, this paper proposes an

algorithm of dynamically adjusting inertia weight,
i.e. AEPSO.

In the optimization process of particle swarm,
each particle will approach the position of group

optimal solution. By centering on the optimal

solution ����� of particle swarm, the distance

between each particle and the central point is

calculated as the judgment basis for the evolution

degrees of particles. Different inertia weights will

be set for particles of different evolution degrees.

The specific setting is as follows: In the iteration

process, the distance (��, ��, ⋯ , �/) between each

particle and the central pointgbest is calculated; the

distances are arranged in an ascending order and the

particles are numbered according to the distances;

number of the particle which is the closest to the

International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 108

central position is 0, and number of the particle

which is the furthest to the central position is N − 1;

the array 34���5/6 is used to record the number of

each particle. The control factor 7� for inertia

weight of each particle is calculated according to

the number, and the specific calculation formula is

as follows:

7� = 89, 34���5�6 < ,�/�, ,�/ ≤ 34���5�6 ≤ ,�/<, 34���5�6 > ,�/ >

 (%)

In the formula, , � and , � are control parameters

used to divide the evolution degrees of particles,

and ,� < ,� < �; / means the scale of particles; 9

and < are adjustment parameters which represent
the inertia weight change ratio of particles of

different evolution degrees. Inertia weight will be
updated according to the following formula: �� = 7� ?�@� − (�@� − �@�) ��	AB�_DE/F (4)

In the formula,� @� and �@�	 are initial value

and final value of inertia weight; ��	 and AB�_DE/ are the current number of iterations and
maximum number of iterations.

2) Local searching strategy with simulated annealing

idea

When the inertia weight � of particles is

dynamically adjusted by calculating the distance

from particles to the global optimal solution �����,
the solving accuracy of particles and convergence

rate of the algorithm are effectively improved.

However, the defects of PSO algorithm are not

solved. The convergence rate of PSO algorithm is

high at the initial stage and particles sway in a sine

wave state. Under the influence of global optimal

solution, particles approach the global optimal

solution gradually. With the evolution of particles,

when the positions of particles become close to the

global optimal solution, the particle velocity will

decrease and even turn into 0. In this way, particles
might stay near the optimal solution rather than find

global optimal solution of the problem. It can find a
local optimal solution only. When the velocity of

particle swarm becomes 0, particles will lose
evolution ability. As a result, the algorithm cannot

jump out from the local optimal solution and find

the global optimal solution.

Simulated annealing algorithm conducts

searching in the neighborhood of the solution, and

this is a local searching strategy. However,

simulated annealing algorithm might accept an

inferior solution. Thus flexibility of the algorithm is

increased and the hunting zone is expanded. The

algorithm has a strong ability to enter the region of

global optimal solution and to jump out from the

local optimal solution. However, if the problem

involves a large scale, it has to search the

neighborhood of the current solution, which will

reduce the global searching ability of simulated
annealing algorithm. In order to reach the region of

global optimal solution, a long time is needed.
Several second-best solutions are often

distributed in the realm of an optimal solution, so
strengthening the searching ability for regions near

second-best solutions will provide a higher
possibility to find the optimal solution. Based on

this, this paper adds a local searching strategy into

PSO algorithm. A threshold value G""H is set for

the number of iterations by referring to the idea in

simulated annealing algorithm. If the current global

optimal solution does not change when the number

of iterations exceeds G""H , the algorithm will

search the region of individual optimal solutions,

and start an annealing process. In this way, places

near the local optimal solutions can be searched,

and the algorithm will jump out from these local

optimal solutions at the same time.

Steps of AEPSO-SA algorithm proposed in this

paper are as follows:

Step 1: Set acceleration constants of the

algorithm and initialize a group of particles and

velocities. The optimal position ����� experienced

by each individual particle is set as the initial
position, and the optimal position ����� experienced by the particle swarm is the

optimal value among all ����� values. Set the

initial temperature as �'. The iterative step of each

temperature is I/ and the threshold value of

annealing process is G""H = ';

Step 2: Calculate the distance between each

individual particle and the global optimal position,

arrange the distances in order, number the particles

according to the order, and calculate the inertia

International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 109

weights of particles according to formula (%) and

(&);
Step 3: Update the velocities and positions of

particles according to formula (�) and formula (�);

Step 4: Calculate the adaptive value of each

particle;

Step 5: Compare the adaptive value of each

particle with the adaptive value of the best position ����� experienced by it; if the new position is
better than the original position, please update the

original �����;
Step 6: Compare the adaptive value of each

individual particle with the adaptive value of the

best position ����� experienced by the particle

swarm; it there is a better position, please update

the original ����� and meanwhile set the value of G""H as 0;

Step 7: Inquire the value of G""H and judge

whether simulated annealing is needed. If the value

of G""H reaches the set value, enter Step 8;

otherwise, go to Step 9;

Step 8: Start a simulated annealing process and

conduct neighborhood searching for the optimal

positions ����� of all individual particles for I/

times. If a solution better than the current global

optimal position ����� is found, update the global

optimal position ����� . As for new solutions
searched, judge whether to replace the individual

optimal position ����� according to Metropolis

criterion. Set the value of G""H as 0 after

simulated annealing process;
Step 9: Update the temperature according to

the number of iterations, and add 1 to the value of G""H;

Step 10: Check whether the termination

condition (generally speaking, the algorithm has

reached the maximum number of iterations, the

optimal solution of particle swarm does not change

after iteration for several times, or the optimal

solution searched has reached the minimum

adaptive threshold) is satisfied; terminate iteration

of the algorithm if one condition is met; otherwise,

return to Step 2 for further iteration.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

1) Experimental results

In order to verify the effectiveness of AEPSO-

SA algorithm, AEPSO-SA algorithm is tested by

utilizing the travelling salesman problem.

Travelling salesman problem (TSP) is an issue to

seek the optimal path. This is an issue to solve a

path to different cities that can minimize the total

travelling cost when a traveller wants to travel to

many cities by starting from one city and the

traveller will return to the first city after visiting all

cities. City problem TSP14 (Burma14), city

problem 30 (Oliver30) and city problem 48 (att48)

are adopted for test in the experiment. Experimental

results of the following algorithms are compared

with the results of AEPSO-SA algorithm: linear

decreasing inertia weight PSO algorithm, adaptive

inertia weight AEPSO algorithm mentioned in this
paper, and simulated annealing (SA)algorithm.

Parameter setting of various algorithms is as
follows:

Linear decreasing inertia weight PSO algorithm:

The maximum number of iterations AB�DE/ =�''' ; particle scale / = J' ; � @� = '. LJ ; � @�	 = '. &; G � = G� = �.

SA algorithm: The initial temperatureTT = 250.0;

cooling times: Q = &''; coefficient of temperature

drop �� = '. LR ; iterative step under each

temperature:/ = &'.

AEPSO algorithm: AB�DE/ = �''' ; , � = �S ; , � = &S; 9 = �. J; < = '. R.

AEPSO-SA algorithm: AB�DE/ = �''' ; other

parameters are the same with the above two

algorithms.

Each algorithm is tested for 30 times, and the test

results are shown in Table 1.
Table 1 Test results of various algorithms

Problem

Existing

optimal
solution

Algorithm
Average
solution

Optimal
solution

Worst
solution

Times of acquiring the

optimal solution

Burma14 30.8785

PSO 31.32403 30.8785 32.54418 8

AEPSO 31.07592 30.8785 32.15857 18

SA 30.8785 30.8785 30.8785 30

AEPSO-

SA
30.8785 30.8785 30.8785

30

Oliver30 423.74

PSO 609.358 527.378 683.494 0

AEPSO 577.346 485.935 669.287 0

SA 428.654 423.74 441.103 7

AEPSO-

SA
424.105 423.74 425.510

22

att48 10628

PSO 21508.7 18931 25971 0

AEPSO 18827.9 16079 22092 0

SA 11042.4 10752 11366 0

AEPSO-
SA

10686.9 10628 10782
3

2) Performance analysis

According to data in Table 1, for city problem 14

with a small scale, all the 4 algorithms can gain a

good result; SA algorithm and AEPSO-SA

algorithm can obtain the global optimal solution

International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017

ISSN :2394-2231 http://www.ijctjournal.org Page 110

every time. When the city scale expands to 30,

standard PSO algorithm falls into the local optimal

solution easily; the solving accuracy of improved

AEPSO algorithm is increased, but the result is not

ideal. SA algorithm and AEPSO-SA algorithm can

gain the global optimal solution for multiple times,

but the results of SA algorithm fluctuate greatly and

the times of acquiring the global optimal solution

are much fewer when compared with AEPSO-SA

algorithm. When the problem scale expands to 48,

both PSO algorithm and AEPSO algorithm can

hardly gain a good solution; SA algorithm and

AEPSO-SA algorithm can get a value close to the

global optimal solution. SA algorithm does not gain
the global optimal solution, but AEPSO-SA

algorithm obtains the global optimal solution for
three times. Moreover, AEPSO-SA algorithm is

better than SA algorithm in the average solution
and worst solution.

V. CONCLUSIONS

This paper analyzes the key role of inertia weight

in PSO algorithm, and introduces a strategy of

dynamically adjusting the inertia weight.

Meanwhile, by aiming at the weakness of PSO

algorithm in local searching ability, simulated

annealing idea is added into the algorithm as a local

searching strategy. An improved hybrid PSO

algorithm, AEPSO-SA is proposed. According to

the experimental results, the hybrid algorithm

possesses higher solving accuracy and stronger

ability of jumping out from the local optimal

solution than PSO algorithm and simulated

annealing algorithm. Therefore, it is an improved

algorithm with relatively high efficiency.

REFERENCES
[1] Kennedy J. Particle swarm optimization[J]. Proceedings of IEEE

International Conference on Neural Networks, 1995, 4(8):129-132.
[2] Clerc M, Kennedy J. The particle swarm - explosion, stability, and

convergence in a multidimensional complex space[J]. IEEE

Transactions on Evolutionary Computation, 2002, 6(1):58-73.
[3] Shi Y, Eberhart R. A modified particle swarm

optimizer[C]//Evolutionary Computation Proceedings, 1998. IEEE

World Congress on Computational Intelligence., The 1998 IEEE

International Conference on. IEEE, 1998: 69-73.
[4] REN Zihui and WANG Jian. New Adaptive Particle Swarm

Optimization Algorithm with Dynamically Changing Inertia

Weight[J].Computer Science, 2009, 36(2): 227-229.
[5] LI Zhiyong, MA Liang, and ZHANG Huizhen.Adaptive Cellular

Particle Swarm Algorithm for Solving 0/1 Knapsack

Problem[J].Computer Engineering, 2014, 40 (10): 198-203.
[6] WANG Fang. Hybrid Algorithmof Particle Swarm and Simulated

Annealing and its Application in Logistics Distribution[D].East China

University of Science and Technology, 2011.
[7] WANG Yonggui, LIN Lin, and LIU Xianguo. Research on Text

Clustering Algorithm Based on Improved Particle Swarm
Optimization[J].Computer Engineering, 2014, 40(11): 172-177.

