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Abstract: 
To keep up with the advancements in robotics, techniques for computing and modeling of behaviors must 

be developed and researched.  Using Petri nets (PNs) to model complex systems allows for analysis and increased 

comprehension of the system itself.  PNs can be used to show the logic behind a system or to create a visual 

representation of the steps a system will take.  Although this alone can be useful, there are some areas in which 

normal PNs fail; in these cases introducing time into the nets can open modeling possibilities.  Time can be used to 

literally represent the duration of an event or can be used to implement probability into a system.  In this paper, 

Time Petri nets (TPNs) are used to model soccer playing robots whose movements are based on the proposed 

Selective Kick Opportunity Awareness Response (SKOAR) algorithm, which serves to guide the robots to the 

safest path to the goal.  After modeling, simulation and testing, it was shown that the proposed algorithm 

outperformed both the Soccer Playing Allies Referencing Tract and Coordinate Underlay System (SPARTaCUS) 

algorithm and the Rapidly-exploring Random Tree (RRT) algorithm in goal score rate by about 3% and 7%, 

respectively and in goal attempt success rate by about 5% and 17%, respectively. 
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I.     INTRODUCTION 

The field of robotics is expanding rapidly as many 

industries strive for automation.  Robots are being used 

in many different areas as people attempt to streamline 

every process.  Not only have they demonstrably 

exceeded human capabilities in speed and accuracy, they 

are often preferable in long term cost effectiveness as 

well. These trends have been reflected by innumerable 

growth in the past century as progress in this field 

continues to rapidly evolve; automated systems are 

increasingly adept at mimicking humanoid behaviors 

and can function with almost no assistance. With robots 

flourishing at every turn, the need for sophisticated 

modeling has become ever so important. However, the 

integration of robotics into everyday life is largely 

dependent on the autonomy of the robot, especially for 

humanoid models.   

A humanoid robot is a sophisticated robot whose 

structure is based on the human body, most typically 

used in studying bipedal locomotion. Humanoid NAO 

robotic platforms [26], for example, have been used in 

various applications, from simple educational tools [3] 

to genetic algorithm development for fitness-based 

sitting pose optimization using predefined motions [2] 

and object recognition using a modified simultaneous 

recurrent network [1].   

There are also many applications in a soccer robot 
environment. The Robot Soccer World Cup (RoboCup) 

is an annual international competition consisting of 

multiple leagues that promotes robotics and artificial 

intelligence (AI) research [27].  One such league, the 

Standard Platform League (SPL), uses up to 5 Aldebaran 

NAO robots [26] to play soccer games. Since success in 
these games is dependent in part on player mobilization 

and kick execution, extensive research has been 

conducted to study walking and kicking motions using 

robot subjects. There are two well adopted approaches 

for controlling biped robot’s walking in a soccer robot 

environment: Central Pattern Generator (CPG) and Zero 

Moment Point (ZMP). Bavani et al., [5] implemented 

and simulated an optimized genetic algorithm using the 

CPG approach and Strom et al. [22] proposed 

omnidirectional walking using ZMP balance metrics. 

Further research simulated and tested an adaptive 

kicking algorithm based on visual feedback as opposed 

to the typical key frame technique, but it was limited to 

short distances [15]. Learning algorithms have also been 

explored as a means of improving a robot’s ability to 

score penalty goals based on the kicking point, foot 
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trajectory, and effectiveness of previous kicks [7, 14].  

Barrett et al. [4] proposed a strategy in which they 

prioritized the quickest pre-set kick motion available that 

would advance the ball towards the goal.  

To keep up with the advancements in actual robotics, 

computing and modeling of behaviors must be 

developed and researched as well.  Petri nets (PNs) are 

one of many well-known methods researchers use for 

the modeling and simulation of robot behaviors. PNs are 

a graphical and mathematical tool that can model a 

variety of multifaceted systems. Many researchers and 

scientists have been using PNs for years to help 

visualize the problems at hand. Kuo and Lin [13] used 

agent-oriented Petri nets to model methodology of 

controlling autonomous robots.  However, this attempt 

was at the abstract level and failed to show the 

simulation results of modeling.  Zouaghi et al. [24] 

introduced a generic hybrid monitoring approach for 
autonomous mobile robots using Petri nets.  This 

technique allowed for the detection of inconsistencies 

using a model of environmental representations but 

implementation of the proposed modified Petri nets were 

constrained to modeling of the navigation process. Kim 

and Rew [9] proposed the limit cycle method for robotic 

navigation.  Their proposed method differed from two 

different approaches: the deliberative and reactive 

approaches.  These two forms of navigation suffered 

from high computational costs and difficulty of design, 

respectively.  The limit cycle method was faster and 

more efficient but failed to account for avoiding 

obstacles. 

The paper organization is as follows: Section 2 

offers background concepts key to the understanding of 

the PNs, Time Petri nets (TPNs) and their modeling 

techniques; Section 3 shows the process of the 
development of the PN including robot soccer 

competitions, scenario, and algorithm; Section 4 

explains how the algorithm was implemented in the PN 

and the results of the implementation of the algorithm; 

and Section 5 concludes the paper with a summary of 

the algorithm’s performance. 

II. BACKGROUND 

A. Petri net Definitions 

A PN is a valuable tool in graphically and 

mathematically analyzing a wide variety of scenarios or 

systems. The general concept can be described as a tuple  

PN = (P, T, A, W, M0) 

where P is a finite set of places, i.e., P = {P0, P1, 

P2, …}, T is a finite set of transitions, i.e., T = {T0, T1, 

T2, …}, A is a finite set of arcs, i.e., A ⊆ (P, T) ∪ (T, P), 

W is a weight function that assigns a weight to all 

elements in A, i.e., W: A→�, and Mi is a marking that 

assigns a whole number to every place representing the 

amount of tokens in that place after i firings, i.e., Mi: 

P→� . The initial marking, M0, is referenced in the 

description of a given PN, for example, in Fig. 1, M0 = 

(2, 1, 0) and M1 = (0, 0, 1). Finally, a set of all input 

places (or output places) for a given transition, Tn, is 

represented as IP(Tn) (or OP(Tn)). 

Pictorially, places are typically represented as circles 

and transitions as rectangles. Places are linked to 
transitions and transitions to other places through arcs 

that are represented simply as arrows. Arc weight is 

designated as a nonnegative integer value or assumed to 

equal 1 if not specified, for example, A(P1, T1) = 2, 

A(P2, T1) = 1, and A(T1, P3) = 1 as shown in Fig. 1. 

Places and transitions are often numbered or named after 

a step in a procedure. A PN fires markings known as 

tokens from place to place through the transitions 

connecting them to represent the progression of the 

procedure. Specifically, a token or number of tokens is 

fired by a transition from one place to another when it is 

enabled. A transition is enabled when all places leading 

to it are marked as true with a token [10, 17]. Typically, 

places represent conditions, transitions represent events, 

tokens represent status, and arcs transport tokens using 

rays as presented in Fig. 1.  

 

 
(a) Before firing T1 

 

 
(b) After firing T1 

Fig. 1 Graphical representation for a Petri net 

Transitions in PNs fire according to the firing rule 

[17]: a transition, Tn, is enabled if all P in IP(Tn) have 

tokens equal to the weight of the arc leading to the 

transition; an enabled transition may or may not fire 

(depending on if the event occurs); the firing of an 

enabled transition removes a number of tokens equal to 

the input arcs' weights from each input place and adds a 
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number of tokens equal to the output arcs' weights to 

each place in OP(Tn). 

There are also two useful properties in a PN 

modeling: reachability and liveness. A PN is reachable 

from M1 to Mn if and only if there is a firing sequence of 

transitions, T1, T2, … , Tn-1, that transforms M1 to Mn. A 

PN is live if and only if for every reachable state and 

every transition t, there is a state Mn reachable from Mm 

that enables t [17].  

B. Petri net Modeling 

To maintain the best balance between clarity and 

complexity, the modeling and simulation program used 

should exercise the properties described above and 

implement them in an intuitive manner without 

sacrificing analytical capabilities. Two well-known 

Petri net modeling and simulation programs, HPetriSim 

[25] and TINA [28], are used in this paper.  

HPetriSim has a graphical editor for editing and 

simulating Petri nets. It provides many functions to 

analyze models including verifying underlying 

relationships among arcs, checking for the absence of 

deadlock states during execution (liveness), and 

ensuring the completion of the PN’s execution 

(reachability). Its best attribute is simulation of system 

behavior, which shows tokens traveling from one place 

to another. One toolbox that has been developed to 

model TPNs is TIme petri Net Analyzer (or TINA).  

The TINA toolbox includes many different kits that 

allow for different methods of TPN study, such as 

textual and graphical modeling tools, structural analysis 

tools, and step simulator tools.  The NetDraw (nd) tool 

is a modeling tool that was used to graphically 

represent TPNs [28].  

In the example shown in Fig. 2(a), the transition T1 

is enabled only if the leading input place P1 is marked 

with tokens, indicting the conditions they represent are 

verified or true. If that is the case, T1 will empty the 

token of P1 and deposit tokens into the output place P2 

equal to the weight of the arc between T1 and P2 via 

the firing process as shown in Fig. 2(b). This can be 

described as being unable to take candy from a vending 

machine unless a user deposits 10 cents (five cents 

twice or ten cents once), as shown in Fig. 2(c) 

(reachability). Places and transitions can link to form a 

circle, creating a cyclical process, or may end in 
various sinks. As long as the procedure makes logical 

sense, a Petri net can simulate a looping process for 

countless runs (soundness) [17].  

When developing a Petri net model, many additional 

features must be included to ensure consistency and 

proper functionality.  For example, in Fig. 3(a), place P4 

with an inhibitor arc is introduced to prevent depositing 

a penny. As the number of tokens in place P4 satisfies 

the weight of the inhibitor arc, it will disable the 

unwanted transitions. When P4 contains a token, 

transition T5 will always be inhibited, forcing 

deterministic and desired results.  

 

 
(a) Initial setting 

 
(b) Taking 5 cents first 

 
 

(c) Ready to take 10 cents candy 

 
Fig. 2 An example of a Petri net created in the HPetriSim simulator 

 
While inhibitor arcs are useful for restricting 

transitions, many cases exist where a transition should 
instead be enabled given certain conditions. This 

introduces the need for test arcs, which allow a transition 

to fire when the weight of the arc is met. Similar to the 

inhibitor arc, the test arc does not remove tokens from 

the originating place, a very useful property when 

attempting multiple comparisons or for preserving the 

tokens of previous states as demonstrated by Fig. 3(b). If 

A(P3, T5) were a standard arc, transitions T4 and T5 

cannot both fire due to a deficiency in tokens, causing 

one to fire first in a nondeterministic nature. However, 

with the introduction of a test arc, this issue resolved by 

conserving the token upon firing A(P3, T5). By using 
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test arcs (illustrated as dotted rays) to resolve this issue, 

T5 can fire multiple times as shown in Fig. 3(b) to 

identify the total number of candies sold. Although the 

use of test and inhibitor arcs is necessary for the process 

of modeling the systems, they introduce the undesirable 

effect of remnant data (i.e., excess tokens). In most 

situations, the tokens must be cleared after use to assure 

the model functions as intended.  
 

 
(a) Inhibitor Arcs 

 
(b) Test Arcs 

Fig. 3 Transition control through arc variants 

 
Although PNs are a powerful tool on their own, 

many variants of PNs have spawned to attempt to 

diversify the situations they are able to model [20].  

Petri nets can be conjoined with time mechanics, 

yielding TPNs. 

C. Petri net Modeling 

The introduction of time into Petri net theory gives a 

way to many opportunities regarding system modeling. 

Since the real world applications incorporate time into 

all operations, therefore, a time variable is needed to 

properly model operations with Petri nets. Two different 

time-based Petri net models were introduced: Time Petri 

nets (TPNs) [16] and Timed Petri nets (TdPNs) [21]. 

The TPN is defined as a PN with time intervals, notated 

as the interval between two real numbers a and b where 

a ≤ b, assigned to each transition whereas the TdPN 

includes a finite firing duration, as a single number, to 

each transition in order to timetable processing orders. 

Timing constraints can be also statically associated with 

different timing locations: places [6], arcs [8] and 

transitions [18]. A TPN is formally described as a 6-

tuple  

TPN = {P, T, A, W, Z0, I} 

where P is a finite set of places, T is a finite set of 

transitions, A is a finite set of arcs, W is a weight 

function, and Z0 is the initial marking. I is a tuple [ai,bi] 

such that for all I: �� , �� ∈ 	�  and �� 	 	 �� . I is the 

interval of the TPN where �� is the earliest firing time 

and �� 	is the latest firing time [16]. A simple TPN model 

using TINA [28] modeling tool is shown in Fig. 4 to 

show these properties. T1 can fire at 1 time unit at the 

earliest and is guaranteed to fire by 4 time unit.  T2 can 

fire as soon as it is enabled and is guaranteed to fire 5 

time units after it gets enabled.  T3 can fire 1 time unit 

after it becomes enabled at the earliest and is guaranteed 

to fire 4 time units later.      

 

 
 

Fig. 4 Graphical model of TPN 

 
Along with the addition of time intervals, a new 

firing rule is developed to fit the new logic of the PNs.  

If the input conditions (IP) for a given transition Ti hold 

for a time t ≥ ai, then Ti can fire. If the IP for a given 

transition Ti holds for a time t = bi, then Ti will fire.  

With these additional stipulations, systems with literal 

time constraints or prioritized actions can be modeled 

using TPNs [16].  

In order to clarify the use of time intervals, an 

example of a gas station model is developed using the 

TINA modeling and simulation tool as shown in Fig. 5. 

In this model, time intervals are assigned to each 

transition to represent the real time interval of different 

events. The concept modeled in the TPN is based around 

a gas station with one worker and two pumps. At any 

given time, there can only be one car at each pump, so 

the place representing a pump inhibits the arrival of 

another car to that same pump. The two transitions, “car 

arrives 1” and “car arrives 2”, are assigned a time 

interval of [0,20], which means that as long as there is 

no car currently at the pump, a car may show up 

immediately but will be guaranteed to show up after 20 
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time units have passed. Once a car has arrived at a pump, 

the worker should approach the car if one is available 

(transition "worker arrives 1” or “worker arrives 2"). 

The time interval [1,1] means that it will always take the 

worker one time unit to get to the car. Once the worker 

has arrived and there is a car present, they will begin to 

fill up the tank. This event is assigned the time interval 

[3,5]. This accounts for the varying size and fullness of 

the gas tanks. This task can thus take as little as 3 time 

units but will not take more than 5 time units. Once a 

car’s tank is full, the car can leave and the worker 

becomes available again. 

 

 
 

Fig. 5 An example of TPN: gas station model  

 

 
(a) Markings for Z0 

 
(b) Markings for Z2 

Fig. 6 An example for p-marking and t-marking 

Adding a time component to a PN changes the 
meaning of a marking. In addition to the number of 

tokens on each place as discussed in Section 2.1, now 

called p-marking, it is necessary to consider each 

enabled transition with the amount of time that has 

passed since its last enabling and each disabled 

transition with the symbol #, called t-marking [19]. A 

TPN’s marking (Z0) can be described as a pair with a p-

marking (M0) and a t-marking (H0): Z0 = (M0, H0). 

Based on time elapsing many TPN markings can be 

generated, for example, initial markings at 0 time unit 

are M0 = (2, 0, 0) and H0 = (0, #, #, 0), and markings at 1 

time unit can be M1 = (2, 0, 0) and H1 = (1, #, #, 1) as 

shown in Fig. 6(a). In the time unit is 2, markings can be 

M2 = (1, 0, 1) and H2 = (2, #, 0, 0) as shown in Fig. 6(b).  

The time intervals can be related to probabilities of 

firing sequences of a TPN, for example, in Fig. 6(b), T1, 

T3 and T4 are enabled. T1 has updated interval as [0,3] 

and T4 resets interval after firing to [1,2] again. One of 

them will fire within 2 time units but T1 has a higher 

firing probability because T1 is enabled before T4. This 
is an import factor for time intervals so that the 

prioritization of firing sequences can be implemented. 

D. Probabilistic Analysis on Time Petri nets (TPNs) 

 

 
(a) TPN model for analyzing TFP 

 

 
 

(b) Results of testing 

 
Fig. 7 Testing and analyzing transition firing probabilities 

 

The relationship between time intervals in TPN 

models and probability of a transition firing is 

investigated. Different TPN models using TINA are 
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established in order to analyze the firing rates and time 

intervals, e.g., a model shown in Fig. 7(a). Data about 

the probability of a transition firing is collected based on 

over 900 iterations of TPN simulations. Fig. 7(a) 

illustrates a TPN model with the time interval of T1 

varying in each TPN.  An equation is developed to 

determine the probability of a transition firing given a 

TPN with time intervals assigned to each transition. Fig. 

7(b) shows the results of simulations and the probability 

of T0 depicted as the solid region and T1 shown as the 

dotted region. 

The Transition Firing Probability (TFP) equation is 

then developed to reflect the data that are collected.  Let 

Pj be a place with a token in it.  Let each transition Ti 

(where Ti ∈ zj) have a firing interval of [ai,bi] and ai , bi 

∈ 
. Let ai be the minimum time required before Ti is 

enabled and bi be the maximum time until Ti will fire, 

i.e., 0 ≤ ai ≤ bi. Let zj be the set of mutually exclusive 

transitions such that all transitions with at least one 

common place Pj in their IP where the firing of any one 

of the transitions in the set will disable all other 

transitions. Also, let yj be the minimum of all bi in zj and 

sj be the minimum of all ai in zj. Finally, if Ti is enabled, 

Nk-1 will be the number of transitions enabled in zj at 

time (k-1) and if transition Ti is not enabled, then Nk-1 = 

∞. Then,  

 

TFP	���� 	� � �
�����

� ���
����

�
��

 !��"�
    (1) 

III. DEVELOPMENT OF ALGORITHMS 

In order to demonstrate the powerful modeling 

capabilities of TPNs, a scenario is created based on 

RoboCup [27], an annual international robotics 

competition with an emphasis on autonomous soccer 

playing robots. Specifically, the regulations for the 

RoboCup Standard Platform League (SPL) are used as 

a basis to define scenario parameters, including the use 

of NAO robots, developed by Aldebaran [26], as 

subjects. The system is designed to be a realistic 

recreation of a RoboCup SPL match consisting of two 

teams of five robots each. Simulations are conducted 

with the objective of guiding one team of robots, 

henceforth referred to as Allies, to pass a ball across a 

field in an attempt to score a goal against the opposing 

team, henceforth referred to as Opponents.  

A. Soccer Field Coordination and Kicking Behavior 

Analysis 

Field specifications used in RoboCup SPL are 

described as 6m by 9m.  Modeling of a game of robot 

soccer necessitates the field to be quantified in a way 

understandable to the robots and easily communicable 

for both human planners and information exchange. The 

field should not, however, be modeled with such a 

degree of precision as to create an unnecessarily 

complex representation of the game.  By partitioning the 

field into 1.2m by 1.25m sections, a feasible and 

accurate depiction can be achieved.  This level of 

division allows for a full field resolution of 5 by 8 when 

using the individual cells shown in Fig. 8(a). Trials 

measuring the distance covered by an SPL 2015 

standard ball [26] when kicked by a NAO robot 

suggested the average length reachable to be 

approximately 1.78m, a distance slightly longer than the 

diagonal of the individual grid size proposed (1.73m). 

Based on these measurements, it is reasonably probable 

the result of a kick will shift the ball to an adjacent 

coordinate, no matter where the robot is in a particular 

cell.  Behavior of the allies is assumed to be on the 
offensive, i.e., starting with possession of the ball and 

attempting to score a goal. Conversely, behavior of the 

opponents is assumed to be defensive, i.e., attempting to 

repel the allies’ offense. Based on these conditions, the 

majority of the allies’ half of the field is not relevant for 

consideration as having the ball deep within allied 

territory implies defensive play. This allows for the 

truncation of the 5 by 8 field to a 5 by 5 field shown in 

Fig. 8(b), decreasing the complexity of the model while 

retaining all necessary information. 

 

 
 
 

 

 
(a) Individual cell size 

 
(b) Coordinate system 

 

Fig. 8 Grid size and coordinate system with field for reference 

 
Since NAO robots have curved feet, when kicking 

the ball, the angle of trajectory can vary. In order to 

account for this, it was necessary to determine the 

angular range of deviation of the ball when kicked by a 

robot.  To do so, simulations were conducted, and kick 

data were recorded and analyzed [18]. The result of the 

study identified the safe zone, i.e., 60° range in front of 

the robot, based on the vision span of the NAO robot 

[26]. Ball trajectories outside the safe zone would be 
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considered a miskick. From these simulations, it was 

determined that the robot kicked the ball into the safe 

zone 80% of the time, i.e., safe kicks [18].  

B. Previously Proposed Algorithms 

Many algorithms have been developed to optimize 

the path. Two different algorithms were selected to 

compare the proposed algorithm in this section. One 

well-known algorithm for robot path finding is the 

Rapidly-exploring Random Tree (RRT) algorithm [12, 

18] as shown in Fig. 9. The RRT algorithm offers a time 

constrained set of controls to move from a starting 

location Xinit to a desired destination Xgoal.  Finding an 

optimized path depends on the validity of the state space 

model being used [11].  Furthermore, if the robots were 

to roam the soccer field randomly, several challenges 

arise, such as advancement of the ball without a robot 

present or the advancement of the robots while the ball 

is left behind. This can be regulated by a control input α. 

An algorithm should seek to quantify the vast variables 

that a robot would face in such scenario. As a result, the 

algorithm used in this paper is designed within a specific 

system and set of parameters, similar to those featured in 

RoboCup competitions [27]. In robot soccer 

competitions such as RoboCup, kicking the ball toward 

the intended direction is a key factor for successful 

teams. Thus, executing efficient algorithms to receive 

and pass the ball is imperative.  

 

 
Fig. 9 RRT Algorithm [18] 

The Soccer Playing Allies Referencing Tract and 

Coordinate Underlay System (SPARTaCUS) algorithm 

was proposed with the four key principles: forward 

movement, side movement, passing, and opponent 

avoidance as elaborated in Fig. 10 [23]. The 

SPARTaCUS algorithm is an iterative process where 

each robot is aware of the positions of the ball, 

opponents, and fellow teammates. While the robots 

move about the playing field, SPARTaCUS takes effect 

when one robot secures the soccer ball and begins 

locating allies and identifying optimal passing partners. 

The first order of the algorithm, (xb, yb) ≠ (xoj , yoj), is a 

safety check, ensuring that opponents are not present 

near the ball. If this check fails, the first order is 

immediately terminated and SPARTaCUS instead issues 

the second order, (xb, yb) = (xb, yb), to defend the current 

position. Once the first or second order completes 

successfully, SPARTaCUS concludes and the algorithm 

reiterates [23]. 
 

 

Fig. 10 SPARTaCUS Algorithm [23] 

C. Proposed Algorithm 

Common strategies allocate up to three robots for 

offensive play while a fourth robot is stationed as a 

goalie [23]. Responsibility of the fifth robot tends to 

vary depending on algorithm implemented, though many 

institutions choose to designate it as a defensive player 
in imitation of human soccer team formations. For the 

purposes of the proposed algorithm, we assume identical 

team builds for the allies and opponents. Each team 

consists of three offensive-oriented robots possessing 

dynamic freedom of movement. Their range of operation 

on the playing field encompasses all coordinates 

described in the system. Each team also consists of one 

defensive-oriented robot and one goalie robot, both of 

which possess static freedom of movement. Their range 

of operation is confined to a single coordinate position 

to protect.  For all robots, current position and possible 

new positions are identified by coordinates. Fig. 11 

illustrates robot maneuvering using the allies as an 
example, where places represent locales and tokens 

represent current robot location. When advancing 

forward, each ally may have a maximum of 3 possible 

new coordinate positions to relocate to. These moves 

may include moving directly forward, where the x 

coordinate is unchanged, moving diagonally left, where 
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the x coordinate is decreased by 1, and moving 

diagonally right, where the x coordinate is increased by 

1. In all cases, the y coordinate is increased by 1 to 

reflect the advancing motion.  

Allies are free to move to any of these new positions 

so long as they are physically possible. Physically 

possible entails, for example, that an ally cannot move 

further left if they are in the leftmost column (1, y) or 

warp to the rightmost column (5, y) from the leftmost 

column. If by circumstance no advancing move is ideal, 

allies may move horizontally along the x-axis to a new 

position in the hopes that there will be better options 

available.  

 

 

Fig. 11 Representation of ally movement module  

The ideal movement pattern for the robots attempts 

to funnel them into the center of the field since the 

robots will have the best chance of scoring a goal while 

in X3 (i.e., the middle of the field). If they cannot reach 

the center, their next best option is to move to X2 or X4, 

directly adjacent to the center. Their lowest priority 

while still advancing forward is to move to the 

outermost columns of the field (X1 and X5). If no 

forward motion is available, the priority scheme is 

repeated for sideways movement (with the highest in the 

center and lowest at the edges). The small scale model of 
the ally robot motion shown in Fig. 11 has these 

priorities implemented using the TFP equation, eq. (1). 

For the robots on the very edge of the field, there are 

only three options for movement and for the robots in 

the middle of the field, there are five movement options, 

as previously described. Thus, there needed to be two 
separate sets of transitions with different probabilities. 

For example, a robot in the current row in the first 

column, it will be available to move ahead to X2, ahead 

to X1, and sideways to X2, with priorities highest to 

lowest respectively. By assigning a lower start time to a 

certain transition in a set of mutually exclusive 

transitions, it will have a higher priority based on the 

TFP equation, eq. (1). Table 1 shows the time intervals 

that were assigned to replicate the priority and the 

probability was calculated using the TFP equation, eq. (1) 

for both sets of transitions. 

The only other restriction in terms of movement is 

the current location of the ball. At any given moment, 

the ball should be under control of an ally. Whichever 

particular robot that happens to be will not venture 

beyond its current coordinate position. Instead, its 

objective will be to pass the ball to an adjacent ally 

ahead. Adjacency in this case is defined as either the 

same column or a neighboring column. Once the 

receiving ally has control of the ball, its objective, too, 

will be to pass the ball on ahead. In addition, allies are 

cautious not to advance too far ahead of or fall too far 

behind the ball and are no further than 1 row away from 

it at any given time. Similarly, opponents are interested 

in securing the ball for themselves and seek to remain no 

further than 1 row away from it. Assuming they are 
effectively pursuing their strategic interests, it is to be 

expected that all offensive players can be found within a 

limited bound of three rows centered on the given 

location of the ball, as seen in Fig. 12, making 

coordinated formations a critical factor for success.  

 
TABLE 1 TRANSITION FIRING PROBABILITY OF TRANSITIONS 

 
From  

X1 

Current 

To X2 

Current 

X1 

Ahead 

X2 

Ahead 

 

1T.I. [4,10] [3,10] [2,10] 
2Pr. 25 31.25 43.75 

From  

X2 
Current 

To X1 

Current 

X3 

Current 

X1 

Ahead 

X2 

Ahead 

X3 

Ahead 
1T.I. [6,10] [5,10] [4,10] [3,10] [2,10] 
2Pr. 10 13.13 17.29 23.54 36.04 

 1T.I.: Time interval given in the transition and  
2Pr.: Probability in % 

 

 

Fig. 12 Representation of dynamic opponent movement module 
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Fig. 13 describes in more detail the mechanics of the 

robots passing behavior. Ball passes are regulated to 

prioritize moves that generate favorable outcomes or are 

more likely to generate favorable outcomes. In a 

situation where multiple teammates are open to pass the 

ball to, the ally currently in control of the ball will prefer 

to pass to the teammates closer to the middle of the field, 

i.e., in decreasing order of favorability, x = 3, x = 2 or x 

= 4, and x = 1 or x = 5. The rationale for this stems from 

the probability that a robot near the center field will 

likely have more opportunities to pass the ball than a 

robot at the outskirts of the field and have higher success 

rates when attempting a goal shot given that the goal 

posts aligns with the central column in Fig. 8(b). 
 

 

Fig. 13 Representation of ball passing module 

 

Fig. 14 Representation of static opponent cell assignment module 

The greatest threat and most unpredictable variable 

in any soccer game is the action of the opposing team. 

As shown in Fig. 13, passing is influenced not only by 

ally formations, but opponent presence as well, as shown 

in Fig. 14. The greatest advantage and most crucial 

objective is to retain control of the ball. Opponent robots 

detected within the same coordinate position as the ball 

significantly raise the risk of interception. Therefore, in 

the event the ally currently possessing the ball is in close 

proximity of an opponent, control of the ball becomes 

contested. Allied passing actions are inhibited and effort 

for both teams is refocused on securing the ball. 

Contested control is resolved by whichever team is able 

to first reinforce the contested cell with a supporting 

teammate, as shown in Fig. 15. The proposed algorithm 

operates based on two assumptions; (a) that the allies 

start the game with control of the ball, and (b) do not 

lose long-term control of the ball. Therefore, if the 
opponents are able to successfully contest the ball and 

subvert control, the premise of operation is lost and 

ground for failure.  
 

 

Fig. 15 Representation of contested ball module 

The three key principles of allied movement, passing, 

and opponent avoidance are what compose the Selective 

Kick Opportunity Awareness Response (SKOAR) 

algorithm, which is further elaborated in Fig. 16. 

SKOAR can be described as a tuple consisting of the 

following notation: 

((x, y)b, (x, y)ai, (x, y)oj, α) 

where (x, y)b is the coordinate of  the ball, (x, y)a
i is the 

coordinate of offensive-oriented ally robots with i = {1, 

2, 3} to differentiate between specific teammates, (x, y)oj 

is the coordinate of opponents with j = {1, 2, 3, 4} to 

differentiate between specific opponents, and α is the set 

of all adjacent allies defined  by {(x, y)ai | (x, y)ai  = (x + 

φ, y + ψ)b ∧ (x, y)ai  ≠ (x, y)oj } with φ = {-1, 0, 1} and ψ 

= {0, 1}. Since the allied defender and goalie possess 

only static movement, they are not present in the system 
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described in Fig. 8(b) and therefore truncated from the 

set i. This condition also bars the opponent goalie from 

the set j.  

SKOAR is the culmination of the behaviors 

described by Fig. 11 through 15 where each ally robot is 

monitoring the current location of the ball and passing 

candidates of α. This algorithm is designed to run 

whenever the robot is in possession of the ball. If the 
robot is not in possession of the ball, it is moving, 

therefore these rules do not apply to their decision 

making. The algorithm first checks if control of the ball 

can be contested through (x, y)b ≠ (x , y)oj. If the risk for 

a contest is deemed too high, SKOAR deprioritizes 

candidate searching and instead instructs (x, y)b = (x, y)b 
to cease further transport of the ball. Assuming the 

contested check does pass, the algorithm then compiles 

ally positions. If an ally’s position matches the definition 

of adjacency, their coordinates are included in set α. 

Depending on the cardinality of α, there may be one, 

multiple, or no candidates to receive a pass. If |α| is 0 or 

1, there is no choice to make; the only possibility is to 

defend the position or pass the ball to the only open 

teammate, respectively. Should there be multiple 

candidates to pass to, SKOAR evaluates their position 

and prioritizes teammates farther ahead and closer to 

midfield. If all candidates are equally viable near 

midfield, preference goes to the ally to the right of the 

ball.  

 

Fig. 16 Selective Kick Opportunity Awareness Response Algorithm  

A special case occurs if yb = 5, meaning the ball has 

been escorted to very end of the opponent’s half of the 

field. In this scenario, there is the opportunity to attempt 

a goal shot. Rather than check for adjacency, allies 

concern themselves with setting up the goal shot. Xb = 3 

presents the best possibility for a straight trajectory to 

the opponent goal, therefore the allies will attempt to 

move the ball as close as possible to this coordinate and 
execute the kick. Once the first or second order 

completes successfully, SKOAR concludes and the 

algorithm reiterates. 

IV. MODELING AND SIMULATION OF 

ALGORITHMS 

Comparative studies of the SKOAR algorithm 

against contemporary alternatives were facilitated 
through TPN simulations. A TINA adaptation for every 

module described by Fig. 11 through 15 was constructed 

and assembled into a singular stepwise representation of 

a RoboCup SPL match. The Ball Passing module serves 

as the reference frame for simulation duration; for every 

pass forward made, a counter is incremented to indicate 

progress made toward the final objective of a goal shot. 

Ball Passing consults Ally Movement and Dynamic 

Opponent Movement before outputting a decision, 

shifting control of the ball to another robot. The process 

is cyclical and continues for a specified number of 

iterations, based on the length of the soccer field to be 

crossed. For these simulations, the system described in 

Fig. 8(b) is assumed as the environment for the game 

thereby establishing a maximum of 4 iterations. At the 

antepenultimate iteration, the Static Opponent Cell 

Assignment module is triggered to generate an opponent 

defender robot. Since defender robots are typically 

designated to protect the general vicinity of the penalty 

area, their maximum spawn range is much more 

constrained such that the opponent defender will not be 

first encountered by the allies until they near the goal. 

Fig. 17 illustrates the possible regions of the soccer field 

in which specific robot types may first appear.  
 

 

SKOAR Algorithm 

If (x, y)b ≠ (x , y)oj 

     I. If yb = 5 

 a) If (xb ≠ 2) ∨ (xb ≠ 3) ∨ (xb ≠ 4)  

      i. If (2, 5)ai ∈ α, then (x, y)b = (xai, yai)b 

      ii. If (4, 5)ai ∈ α, then (x, y)b = (xai, yai)b 

 b) If (xb = 2) ∨ (xb = 3) ∨ (xb = 4), then attempt goal shot 

     II. If |α| = 2 

 a) If (3, yb + 1)ai ∈ α, then (x, y)b = (xai, yai)b  

 b) Else If ((2, yb + 1)ai ∈ α) ∨ ((4, yb + 1)ai ∈ α) 

      i. If (2, yb + 1)ai ∉ α, then (x, y)b = (xai, yai)b 

      ii. If (4, yb + 1)ai ∉ α, then (x, y)b = (xai, yai)b 

      iii. If (2, yb + 1)ai ∈ α ∧ (4, yb + 1)ai ∈ α, then (x, y)b = (4, yai)b  

 c) Else If (1, yb + 1)ai ∈ α, then (x, y)b = (xai, yai)b 

 d) Else If (5, yb + 1)ai ∈ α, then (x, y)b = (xai, yai)b 

 e) Else If xb ≠ 1 

      i. If (3, yb)ai ∈ α, then (x, y)b = (xai, yai)b 

     ii. Else If ((2, yb)ai ∈ α) ∨ ((4, yb)ai ∈ α) 

          A) If (2, yb)ai ∉ α, then (x, y)b = (xai, yai)b 

          B) If (4, yb)ai ∉ α, then (x, y)b = (xai, yai)b 

          C) If (2, yb)ai ∈ α ∧ (4, yb)ai ∈ α, then (x, y)b = (4, yai)b 

     iii. Else If (1, yb + 1)ai ∈ α, then (x, y)b = (xai, yai)b 

     iv. Else If (5, yb + 1)ai ∈ α, then (x, y)b = (xai, yai)b 

     III. If |α| = 1, then (x, y)b = α 

Else (x, y)b = (x, y)b ∧	yai	�	yb 
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Fig. 17 Possible starting positions for players  

At any point, the Contested Ball module may be 

activated if the conditions for the scenario arise. In such 

a situation, Contested Ball takes precedent over Ball 

Passing and is in effect until either Ally Movement or 

Dynamic Opponent Movement yield an output that 

resolves the conflict. If the contest is resolved in favor of 

the opponents, allied control of the ball is lost and the 

trial is deemed unsuccessful as the goal was not reached. 

If the contest is resolved in favor of the allies, Ball 

Passing reassumes control and the simulation continues. 

Once the number of iterations has reached the maximum 

value, the endgame can be initiated. The success of a 

goal shot conducted by an ally robot is dependent on the 

final position of the allies. Additionally, the orientation 

of the ball and player relative to the goal has an 

observable impact on the accuracy of a kick. The most 

advantageous position is directly across the goal, 

centered at (3, 5)b in Fig. 8(b). Favorability decreases 

symmetrically the farther the ball is from this origin. The 

time intervals associated with goal shot success are 

specified based on these criteria as well as the findings 

of Ponsini et al. [18] which found physical limitations of 

robot kick accuracy. The final outcome of a simulation 

can either result in a goal scored, a goal missed, or an 

interception by the opponents preventing the goal from 

being reached. The structure of module interaction can 

be seen in Fig. 18. 

Based on these parameters, performance of SKOAR, 

SPARTaCUS, and RRT were evaluated over the course 

of 200 simulations per algorithm for a total sample size 

of 600 simulated matches. The decisions made by the 

algorithms in response to a given set of factors may 

differ, necessitating the need for three variations of the 

system described by Fig. 18.  

 

 
Fig. 18 System diagram of RoboCup SPL game simulation 

 

TABLE 2 SIMULATION RESULTS 

SKOAR 

Goal Scored Goal Missed Goal Not Reached 

52 27 121 

SPARTaCUS 

Goal Scored Goal Missed Goal Not Reached 

46 30 124 

RRT 

Goal Scored Goal Missed Goal Not Reached 

37 38 125 

 

For each model, the time intervals controlling the 

outcomes of specific modules were adapted to replicate 

a response as similar as possible to a specific 

algorithm’s methodologies and intended action. In all 

simulations run, initial conditions consisted of starting 

positions for ally robots specified at (2, 1)a1, (3, 1)a2, (4, 

1)a3, and starting position for the ball at (3, 1)b. Dynamic 

Opponents are stationed in the row directly across. With 

3 dynamic opponents and 5 possible columns to assign 

them in, 10 distinct opponent formations exist. In the 

interest of observing different ally reactions, each 

formation is tested for 20 out of the total of 200 

simulations. The outcome of these trials is listed in 

Table 2. 

Simulations conclude when a token is deposited into 

a place identifying the state of the system. From this, it 

is possible to extrapolate quantitative characteristics of 

algorithm performance. Success is dependent on the 

capability of a team to pass a ball, avoid opponents, and 

score a goal. As a result, the algorithms are evaluated 

granularly based on their ability to demonstrate 

competency in these skills. Three particular statistics 

were observed: (a) goal score rate, (b) goal attempt rate, 

and (c) attempt success rate. Due to the possibility of the 

opponents successfully contesting the ball, not every 

simulation ends in a score attempt. In real world games 
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of soccer, control of the ball is frequently exchanged 

between opposing teams. Thus, there are many cases 

where the allies are interrupted and fail to reach the end 

of the field. It can be observed from Table 2 that 

SKOAR, SPARTaCUS, and RRT are all able to navigate 

past the opponents at an approximately equal rate of 

40%, 38%, and 38%, respectively. However, in cases 

where allies are able to approach the goal, positioning is 
a defining factor to the success of a goal shot. In this 

aspect, SKOAR demonstrates a notable improvement 

over competing algorithms, shown by Fig. 19. As a 

result of more favorable positioning, SKOAR has been 

shown to improve overall score rate over SPARTaCUS 

and RRT by 3% and 7%, respectively. 

 

 
Fig. 19 Analysis of SKOAR performance compared to competing algorithms 

V. CONCLUSIONS 

In this paper, an alternative to existing robot soccer 

algorithms was proposed utilizing the unique modeling 

capabilities of Petri nets. Petri nets are a developing 

field which allow for the simulation and analysis of 
complex systems. Specifically, Time Petri nets were 

explored as a useful tool for modeling and simulation 

of robotic navigation of a soccer field. The SKOAR 

algorithm proposed enhances a robot’s ability to avoid 

opposing robots and coordinate with friendly robots to 

position themselves into strategically favorable 

formations. The accommodations for more realistic 

factors such as contested spaces in the SKOAR 

algorithm allows for more efficient planning.  

The TPN developed takes advantage of the 

different properties of PNs available in the TINA 

toolbox, including inhibitor and test arcs, and was able 

to model accurate simulations of soccer games. Using 

the data gathered from the TPN, it was illustrated how 

algorithm performance could be quantitatively studied 

and compared. From these results, it was shown that 

SKOAR yielded a higher goal score rate; 26% 

compared to 23% for SPARTaCUS and 19% for RRT. 

Further work will seek to verify these results in real 

world tests using physical robot platforms. 
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