
International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017 

 

ISSN :2394-2231                                                   http://www.ijctjournal.org                            Page 78 

 

Edge-Oriented On-line Construction of Generalized Suffix Tree 

Jinchao Guo
1
, Jiuhui Pan

2
 

1
PG Student, Department of computer, Jinan University, China 
2
Professor, Department of computer, Jinan University, China 

 

----------------------------------------------************************------------------------------------------- 

Abstract: 

 The Suffix tree is a versatile data structure in string processing. Among the available construction 

algorithms, the algorithms based on suffix links are popular because they can operate online in linear time. 

However, the original algorithm based on node-oriented suffix links takes too much time to look up the 

correct branch. To improve the efficiency, our approach creates suffix links between edges. Relatively, it 

reduces the number of branch looking up operations and maintains the worst case linear time complexity. 

 

Keywords— Generalized Suffix tree, Linear-time algorithm, Edge-oriented suffix links  

----------------------------------------------************************------------------------------------------- 

1 INTRODUCTION  

 
The suffix tree is a trie-like data structure which contains 

all the suffixes of the given sequence. It is a versatile data 

structure in string processing, and it has been proven in [1].  

In 1973, Weiner [2] introduced suffix trees and firstly 

gave a linear-time right-to-left algorithm to construct the tree. 

The construction was greatly simplified by McCreight [3] in 

1976. His algorithm was left-to-right but it was off-line, which 

means the sequence has to be scanned before suffix tree 

construction procedure starts up. Twenty years later, Ukkonen 

[4] derived the first linear-time left-to-right on-line algorithm. 

The Ukkonen’s algorithm [4] is for streaming sequences that 

it processes the sequence symbol by symbol from left to right, 

and the tree constructed is always the suffix tree for the 

scanned part of the sequence. 

In all these algorithms, branch which identifies the 

correct outgoing edge of a given node whose label starts with 

a given symbol is time-consuming. M Senft and T Dvořák [5] 

tried to improve the performance with reduced branch 
operations. Instead of using the traditional top-down descent, 

they chose a simpler bottom-up climbing. However, on one 

hand, their algorithm produces an extra cost to maintain leaf 

suffix links; on the other hand, it requires  time in the 
worst case  that the climbing performs too more times. 

Our work replaces the node-oriented suffix link with the 

edge-oriented suffix link. With the help of it, the correct 

outgoing edge is identified at once. 

The rest of this paper is organized as follows. First, the 

related definition of the suffix tree is discussed in Section 2. 

Secondly, the related construction algorithms and out 

approach are introduced in Section 3. Finally, the conclusion 
is presented in Section 4. 

 

I. PRELIMINARIES 

A. Strings 

We use  to denote the alphabet. A string is a finite 

length sequence of symbols from . And then the empty string 

denoted by  is the string with no symbols. In this paper,  

denotes the concatenation of string  and string . 

We denote the suffix tree over a string  

of length  by . Each string  such that 

 where  is a substring of T, each 

string p such that  where  is a prefix 

of T, and each string  where  is a 

suffix of T. A generalized suffix tree  is a suffix tree 

made for a set of strings instead of a single string. It represents 

all suffixes from this set of string. 

In suffix trees or suffix tries, there are states that 

correspond to the substring of  one-to-one. We denote by  

the state that corresponds to a substring . 

B. Suffix Trie and Suffix Tree 
Formally, suffix trie is an augmented DFA (deterministic 

finite-state automaton) which has a tree-shaped transition 
graph and which is augmented with the so-called suffix link 

and auxiliary state . A suffix trie is a 6-tuple, 

, consisting of 

� a finite set of states  consisting of a finite set of 

states  corresponding to substring one-to-one 

and an auxiliary state  

� a finite set of input symbols called the alphabet  

� a transition function  
� an initial state  

� a set of final states called the leaves  

� a suffix link . 

RESEARCH ARTICLE                                     OPEN ACCESS 



International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017 

 

ISSN :2394-2231                                                   http://www.ijctjournal.org                            Page 79 

 

The transition function  is defined as follows. 

 for all  such that  where  

then we can say  has an a-transition. State root corresponds 

to the empty string , and the set  of final states corresponds 

to the set of all the suffixes. Auxiliary state  is such a state 

that for all , . Suffix link  is defined as 

a function for each state  as  such that 

 for some  , and . 
Fig. 1 shows the suffix trie over “abcabd”, it wastes space 

that each state is a node of the tree. These nodes also increase 

the lookup operation at the tree.  

⊥⊥⊥⊥

a

b

c

d

b

a

b

c

b

a

d

c

a

b

d

d

d

d

 

Fig. 1 Suffix trie over “abcabd” 

Fig. 2 shows the suffix tree over “abcabd”, which 

obviously has less nodes. This is achieved by representing 

only a subset  of the states of the suffix trie. We call 

the states in  nodes. The other states are called 

implicit states.  Set  consists of all branching states (which 
have at least two outgoing edges) and all leaves (which have 

no outgoing edges). 

⊥⊥⊥⊥     

b

d

 

Fig. 2 Suffix tree over “abcabd” 

In the suffix tree, each edge connects two nodes and is 

labelled with a non-empty substring but unlike in a suffix trie, 

the labels are not single symbols. Implicit states become 

invisible on the edge between nodes but they are still states 

that correspond to the substring of  one-to-one along with the 
nodes. 

 

 

C. Active Point and End Point 

we introduce two kinds of important states in Ukkonen’s 

algorithm [4], active point and end point. Let 

 be the states of 

 on the boundary path. Obviously,  for 

all 1 . Let  be the smallest index such that  is not a 

leaf, and let  be the smallest index such that  has a -

transition. We call  the active point and  the end point of 

. As  is a leaf and  is a nonleaf that has a  -

transition, both  and are well defined and . 
 

II. CONSTRUCTION 

A. Base Algorithm 
Before giving details of our modification, we describe 

and discuss the base algorithm based on suffix links. 

We present algorithm init in Fig. 3 and algorithm 

construct in Fig 4. To construct a , init() is evaluated at first 
to construct an empty suffix tree. Then construct(s) is 

executed for the string .  

1: init() 

2: create auxiliary node , root node root and auxiliary 

edge  between them 

3: end 

Fig. 3 Algorithm init 

1. construct(text : String) 

2. cursor ← root 

3. foreach symbol c in text do 

4. step(id, c, cursor) 

5. end 

6. end 

Fig 4 Algorithm construct 

Algorithm construct(s) is on-line. It works in steps, from 

left to right. There is one step for each symbol of the text.  

Each step turns the old tree  into a new suffix tree 

 over the string up to the current symbol .   

To update  into , we need to add to 

 a -transition for each of the states . 

For , we do this by expanding the existing edge 

because  is a leaf. For , we do this by inserting a 

-outgoing edge. Since each edge is created to a leaf, which 
means the edges represent the substring ending at the current 

end, the existing edge expand automatically. Therefore, in 

each step, all we need to do are inserting -outgoing edges for 

each of the states . In this paper, we use cursor 

to denote . For each text,  cursor is initialled to root at line 2 
in Fig 4.  

Algorithm step is presented in Fig. 5 and algorithm moveDown 

is presented in Fig. 6. Firstly, check if cursor is the end point. 

If so, move down the cursor along the edge with labels 

matching the current symbol, create the new suffix links, and 



International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017 

 

ISSN :2394-2231                                                   http://www.ijctjournal.org                            Page 80 

 

then break the loop to begin the next step.  Otherwise, the 

cursor cannot move down any more, line 7 creates a -

outgoing edge on cursor. Next, line 8 creates the new suffix 

links and line 9 moves the cursor sideways using existing 

suffix links. 

1: step(id: Integer; c: Symbol; cursor: State) 

2:     loop 
3:         if moveDown(cursor, c) then 

4:             link() 

5:             break 

6:         else 

7:             split() 

8:             nLink() 

9:             moveSideways() 

10:         end 

11:     end 

12: end 

Fig. 5 Algorithm step 

In step split, if cursor is a node, create a new edge and 

make it an outgoing edge of the cursor. Otherwise, the cursor 

is not a child of an edge, split the edge at cursor and make 

cursor a new node. 

Construction algorithms differ in creating and using 

suffix links, what procedures link, nLink and moveSideways 

do. We show the procedure moveSideways in Fig. 7. The path 

of  moving the last cursor  sideways to the new cursor  is 

different. Next, we will discuss two existing algorithms and 

our approach respectively. 

B. Ukkonen’s Original Algorithm 
In Ukkonen’s original algorithm, if cursor is the end 

point and a node at the same time, that is to say, cursor has a 

 edge; or if cursor is not the end point, a suffix 
link from the last cursor to the current cursor is created if it 

not exists.  

1: moveDown(cursor: State; c: Symbol) 

2:     if cursor is a node then 

3:         if cursor has an outgoing edge whose label starts 

with c then 
4:             move cursor down on this edge 

5:             return true 

6:         else 

7:             return false 

8:         end 

9:     else 

10:         if the next symbol of cursor is c then 

11:             move cursor one symbol down on the edge 

12:             return true 

13:         else 

14:             return false 

15:         end 
16:     end 

17: end 

Fig. 6 Algorithm moveDown 

As shown in Fig. 7, to find the next cursor , follow the 

suffix link of  to  . Then identify the correct edge below  

towards  . Moving down from  requires one or more 
branch operations. 

u

v

u’ u

u

u

uv’

u’

v’

u’

v’

TB BU EO

x’ x’ x’x x x

e e’ e e’ e e’

 

Fig. 7 procedure of moveSideways in Ukkonen’s original top-bottom 

algorithm(TB),M Senft and T Dvořák’s bottom-up algorithm(BU) and our 

edge-oriented algorithm(EO) 

C. Bottom-up Approach 
In M Senft and T Dvořák’s bottom-up approach, creating 

suffix links is similar. But there is an extra cost which is in the 

need to maintain leaf suffix links. Based on the fact that a leaf 

suffix link always leads from the last created leaf to the new 

created leaf, suffix links are created by a smart leaf 

numbering. 

 

1: Procedure link 

2:     if cursor is a node then 

3:         if the last created edge has no a suffix link then 

4:             create a suffix link from it to the outgoing edge 

of cursor whose label starts with the current symbol 

(This outgoing edge has been identified before) 
5:         end 

6:         if the last new edge (the bottom part of the last 

edge split) has no a suffix link then 

7:             create a suffix link from it to the outgoing edge 

of cursor whose label starts with its first symbol (one 

branch operation) 

8:         end 

9:     end 

10: end 

11: Procedure nLink 

12:     if the last created edge has no a suffix link then 

13:         create a suffix link from it to the new created edge 
14:     end 

15:     if the last new edge has no a suffix link then 

16:         if the edge is split on the cursor then 

17:             create a suffix link from it to the bottom part of 

the edge split 

18:         else 

19:             create a suffix link from it to the outgoing edge 

of cursor whose label starts with its first symbol (one 

branch operation) 

20:         end 

21:     end 

22: end 

Fig. 8 procedure of creating edge-oriented suffix links 

 

 

 



International Journal of Computer Techniques – Volume 4 Issue 2, Mar – Apr 2017 

 

ISSN :2394-2231                                                   http://www.ijctjournal.org                            Page 81 

 

⊥⊥⊥⊥     

b

d

⊥⊥⊥⊥     

b

d

Fig. 9 Suffix tree over the string abcabd, with dotted lines showing suffix links as in original algorithm (left)  and our approach (right) 

 

In procedure moveSideways, as shown in Fig. 7, follow the 

suffix link of  to  rather than that of its parent  to  

.There are no branch operations. But climbing from  
requires maintaining the parents of nodes. Moreover, in the 

worst time, climbing may be performed many steps. [5] have 

proven that its time complexity in worst case is not linear. 

D. Our Approach 

To reduce branch operations, we slightly modify suffix 

links. The original algorithm follows a suffix link from  to 

, and identified the correct outgoing edge. We can avoid this 

first branch operation by having a suffix link from  pointing 

to  directly. Such edge-oriented suffix links are defined as 

follows. If for first non-root state  on edge  and first state  

on edge  there is a suffix link from  to  , and the labels of 

edge  and  begin with the same symbol, then there is an 

edge-oriented suffix link from  to .  
As shown in Fig.9, we create one suffix link for each 

edge except auxiliary edge and the last created edge. When an 

edge is split, the top part remains and the bottom part is a new 
edge. The procedure of creating suffix links is presented in  

Fig. 8. 

After splitting one edge, to find the correct destination 

for the suffix link of the bottom part may require a branch 

operation (line 7 and 19), not necessary in the node-oriented 

algorithms. However, the branch operation takes place once 

and the corresponding suffix link can be used forever. Since 

there are at most  edges will be created, the complexity of 
creating suffix links retains linear.  

In procedure moveSideways, following the suffix link of 

, we can avoid the first branch operation to move the cursor 

directly to  but one or more extra branch operations are 

occasionally required. And when the edge has no a suffix link, 

which means the edge is the last created edge, the cursor can 

be set to the root directly. 

E. Generalized Suffix Tree Construction 
In the generalized suffix tree for a set of strings 

 of total length , there are  leaf states 

corresponding to  suffixes. On one hand, we pad each string 
with a unique out-of-alphabet marker to ensure no suffix is a 

substring of another. On the other hand, to identify that which 

suffix each leaf state corresponds to, we mark each leaf state 

with a string id and the offset of the suffix in the string. It can 

easily be done. For each string  ,  is executed; 
and after each edge created to the leaf state, we mark this leaf 

state with string id  and the offset of current symbol. 
 

III. CONCLUSION 
The suffix tree is important in pattern matching with a 

wide variety of applications. Improvements in its efficiency of 

construction continues to be a lively area of research. Using 

edge-oriented suffix links, our approach reduces the branch 

operations to improve on-line generalized suffix tree 

construction time while maintaining linear worst-case time 

complexity.  

 

REFERENCES 

[1] B. Smyth, "Computing patterns in strings," Addison–Wesley, 2003.  

[2] P. Weiner, "Linear pattern matching algorithms.," Switching and 

Automata Theory, pp. 1-11, 1970.  

[3] E. McCreight, "A space-economical suffix tree construction algorithm," 
JACM, pp. 262-272, 1976.  

[4] E. Ukkonen, "On-line construction of suffix trees.," Algorithmica, pp. 

249-260, 1995.  

[5] T. D. M Senft, "On-line suffix tree construction with reduced branching.," 

Journal of Discrete Algorithms, pp. 48-60, 2012.  

 

 


