
International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 102

Tamil language support for the open source operating
system 1 K. Ravi Kumar, 2P. Karthik

1Asst.professor, Dept.of.Computer science, Tamil University (Established by the Govt.of.Tamilnadu),
Thanjavur-613010.

2Research Scholar, Dept.of.Computer Science, Tamil University, Thanjavur-613010.
---*****************-------------------------
Abstract: We propose in this world widely available Tamil software today is written and documented in
English, and uses English as the medium to interact with users and company. This has the advantage
of a common language of communication between developers, maintainers and users from different
countries. In a country like India, an of the population does not know English. Given this fact,
availability of native language software will crucial help as in the process of taking the benefits of
the "information revolution" to the marginalized sections of society and to achieve appropriate social
use of information technology
 Keywords: operating system, key code.
---*****************-------------------------

Introduction: All language has its own set of native
attributes. These attributes could include the
country’s cultural conventions, language
specific scripts (fonts), format of date and
time, representation of numbers, currency-
symbols etc. The formal description of these
attributes together with associated
translations targeted to a native language,
constitute the Locale for the particular
language or country.
Anternationalization and Localization Internationalization refers to the process
by which a package is made aware of and is
enabled to support multiple languages. This is
a generalization process, by which the
programs are not tied to a specific language
for user-interaction and other locale-specific
attributes and instead, use generic ways of
doing the same. Localization refers to the
process, which provides the necessary
information specific to a language or country
to an internationalized package. This is a
particularization process by which generic
methods already implemented in an
internationalized package are customized for
a particular language or country. The retrieval
of the native attributes encompassed by
Locale and usage of the same depends on the
operating system and the programming
environment.
1.2 problem analysis: This paper content generation in a
particular language to take place, input and

display mechanisms need to be in place for
that language. Encoding, font and display
supports need to be provided for the
particular language. This support is largely
dependent on the operating system and the
programming environment. This paper
addresses these aspects of the process of
Native Language Support, for the Linux
Operating System. The choice of Linux as the
operating system has been motivated by the
fact that Linux is a robust and stable
operating system and is free.
 The Linux operating system has two
interfaces, namely the console and the X
Window System. The RAM requirement for
the console is about 4MB whereas for a
minimal X Window system, the RAM
requirement is 6-8 MB. The X Window
System however has a user-friendly graphical
interface.
 This paper deals with the various tasks
involved in the development of Native
Language Support for the Linux operating
system, both for the console as well as for the
X Window System, with mutual
compatibility.
 Developing a native language interface at
an operating system level is a better
proposition compared to developing it at an
application level as the former enables all the
applications running on top of the operating
system to inherit the interface with no or
minimal modification. An application
developed in the console-based environment
must work without requiring any

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 103

modification in the X-environment. Further,
once support has been developed for a
particular language, the effort to enable any
other Indian Language support should require
changes to the configuration only. To meet
this requirement, ISCII in consonance with
the Inscript keyboard layout has been used,
so that the keyboard and sound mappings are
uniform across all the Indian languages.
ISCII includes ASCII as a subset. In the
subsequent sections, we address the issues
involved in providing Indian language
support for the Linux operating system, for
the console and the X Window environment,
and also suggest solutions for the same.
SUPPORT ON LINUX OS: Linux offers high flexibility for
customization of the keyboard-input display
pipeline. This flexibility is offered both in the
console and in the X Window System. At the
input level, Linux offers the flexibility to
manipulate the mapping tables that specify
the key codes/actions generated by the keys
of the keyboard. The character consequently
displayed depends on the font that is loaded.
Linux provides easy mechanisms to load
fonts for the console as well as for the X
Window System. The high level of flexibility
offered by Linux was an encouraging factor
for the choice of Linux as the platform for
our effort. The detailed mechanisms for the
keyboard handling and display handling for
the console and the X Window System are
given in the subsequent sections.
The keyboard driver support: The keyboard-input mechanism at the
console level in Linux is as follows: When a
key is pressed, the keyboard controller sends
scan codes to the kernel keyboard driver. The
keyboard driver sends whatever it receives to
the application program when it is in scan
code mode for example, when the X Window
System runs. Otherwise, it parses the stream
of scan codes into key codes, display content
level Tamil action
2.2 The X Window and keyboard The keyboard-input mechanism under
the X Window System is as follows: The X
server generates a keyPress event when a key
is pressed and a keyRelease event when the
key is released. Under X, the keyboard gets
attached to the window or the sub-window,
which has the focus. All the keyboard events
are directed to the window, which has the
focus. The X keyboard model is broken into
two layers: server-specific codes called
keycodes which represent the physical keys,
and serverindependent symbols called
keysyms which represent the letters or words

that appear on the keys. The keycode is an
integer with value between 8 and 255 and
uniquely identifies the key. The keycodes
have to be mapped to ASCII characters
before they can be used. The X server decides
the keycode to be generated for a specific
physical key. Each key, including the
modifiers, has a unique keycode. Although
the keycode generated for the common
alphanumeric keys may be the same for many
workstations, it is not guaranteed to be so.
Therefore, applications do not use the raw
keycode. Instead, the server-dependent
keycode is translated to meaningful
characters by a two-step process:

 The first step involves translating
the keycode to a symbolic name,
known as keysym.

 The second step involves converting
the keysym to an ASCII text string
that can be used for displaying and
for saving in files or buffers

 The display mechanism under the X
Window System is as follows: Unlike text
display terminals, X displays can show text in
varying sizes and shapes. The X server
retrieves the symbols from a font by indexing
based on character code. There are mainly
two types of fonts – Bitmap-based fonts and
Outline-based or curve-based fonts. Outline-
based fonts are becoming popular because of
their scalability. True Type Fonts (TTF) are
widely regarded as the best scalable fonts for
low-resolution devices like displays. Xfstt is a
freely available font server for True Type
fonts and supplies fonts to the X window
system display servers. Thus, a high level of
flexibility of customizing the keyboard input
and display mechanisms is provided for the X
Window System as well.
3 Issues of Tamil Language and key action The various issues involved in providing
Native Language Support for the console and
the X Window System environment of the
Linux operating system are discussed in this
section.
Key code font action: Linux uses the PC Screen Font (PSF)
format for display purposes for the console.
Neither the PSF format, nor the kernel
modules implementing the display
mechanism, viz., console and video drivers,
supports variable width fonts. Moreover, the
width of a font glyph is fixed at 8 pixels. This
does not pose a problem for the English
characters where even the glyph with the
largest width, “m” can be represented legibly
in 8 pixels. Also, the mean deviation of width
of characters is very less in English, and

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 104

hence the aesthetic appeal of characters is not
affected because of the fixed width of the
glyphs.
 applications running in it support only
English and other foreign languages, which
do not demand variable width glyphs.
The variable width of the glyphs has an
implication in the X Window System as well,
namely, the window width, and this also
needs to be addressed. Normally, the virtual
terminal and the applications running in it
have a window width that accommodates 80
English characters. But when Indian language
characters are also considered, the width of
the window to accommodate any 80 Indian
characters will be uncomfortably high. To
overcome this problem, the width of the
window should be set independent of the
width of the widest character.
 Further, under the X Window System,
when Indian characters are involved, the
column-pixel relation, which is uniform in the
case of a window that supports only English,
has to be modified to accommodate Indian
scripts.
Key code support language Clusters Another feature in Indian languages is the
concept of vowel and consonant cluster
formations. Consonant-vowel clusters of
Indian languages result in non-trivial
modified versions of the consonant. Besides,
the glyph ordering is also different in
different languages. For example, consider
the vowel modifier sounding like the English
character ‘e’, applied to the consonant
sounding: ‘ka’. In Hindi, this takes the form:
E + Ê = ÊE ; But in Tamil it takes the form: è
+ ¤ = A. In some cases, the consonant may et
sandwiched between the components of the
vowel modifier. For example, consider the
vowel modifier sounding like the English

character ‘O’, applied to the consonant è
(Ka). The resultant character is: ªè£. Editing
operations also need to be taken care of while
working with vowel modifiers. For example,
if backspace is pressed at a character ªè£, it
should give è, not ªè. A cursor-positioning
request to go to the next column should place
the cursor after ªè£, and not after.

5.1 Editor
To enable open source with support for
Indian languages, the user interface and
system responses need to be changed. So, the
frequently used string literals in the LISP
code have been made into variables in the
format For each language, a file of these
definitions is to be maintained. And
depending on the desired language, these
definitions are to be loaded.

 Further, some language-dependent files
kept under subdirectories with the respective
language names are loaded to enable the
Indian language support. LISP functions have
been defined to select the desired Indian
language and load appropriate files. These are
briefly explained below:

 Indian-init : This is used to load a
default Indian language.

 select-indian-language <language> :
This function depending
onthe<language> will load the
“<language>Msg.el” file, which
holds the definitions in the
<language>. Also the language
dependent files from the
subdirectory <language> will be
loaded.

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 105

 These plug-in functions and files are kept
in the site dependent startup directory. For
enabling 8-bit support, so that emacs does not
discard the 8th bit from input, “(set-input-
mode nil nil 1) “ is inserted in the startup file.
To load an Indian language, the following
code is inserted in the startup file:

 require ‘Indian-msg ; To use the
Indian-msg.el file.

 select-indian-language ‘Malayalam;
Select the Indian language
Malayalam.

IV. CONCLUSIONS Among them, the homomorphism key
agreement allows authorized users get more
control key and in order to achieve the
purpose of file sharing. The encryption and
decryption functionalities are performed at
the CS that is a trusted third party in the
SeDaSC methodology. The proposed
methodology can be also employed to mobile
cloud computing due to the fact that
compute-intensive tasks are performed at the
CS. We described the permissions provided
by the services, their semantics, and the
access-granting techniques that are used to
apply these permissions to users.
Additionally, a set of protocols for sharing
data securely in several public storage clouds
were presented. These protocols were by
extending an ideal set of properties required
for sharing data between users of a cloud
service.

V. REFERENCES [1] J. Wu, P. WyckoffandD. K. Panda,“PVFS
over InfiniBand: Design and Performance
Evaluation”,In: Proceedings of 2003
International Conference on Parallel
Processing, (2003), pp. 107-115.
[2] S. A. Weil, K. T. Pollack and S. A.
Brandt, „Dynamic Metadata Management for
Petabyte-Scale File Systems”, In:
Proceedings of the ACM/IEEE
SuperComputing Conference, pp. 35-47.
[3] D. Ellard, J. Ledlie and P. Malkani,
“Passive NFS Tracing of Email and Research
Workloads”, In: Proceedings of the Second
USENIX Conference on File and Storage
Technologies (FAST’03), San Francisco, CA,
(2003) March, pp. 203-216.
[4] M. Kallahalla, E. Riedel, R.
Swaminathan, Q. Wang, and K. Fu,“Scalable
secure file sharing on untrusted storage,” in
Proc. OfFAST, 2003, pp. 29-42.
[5] E. Goh, H. Shacham, N. Modadugu, and
D. Boneh, “Sirius:Securing remote untrusted
storage,” in 2003, pp.131-145.

[6] Google drive. https://drive.google.com/

