
International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 35

Software Program Plagiarism Detection Using Longest Common

Subsequence Method
Mahalakshmi S.1, Kavitha S.2

1(M.Phil Research Scholar, Department of Computer Science, Auxilium College, Vellore-6) 2(HOD & Asst. Prof ,Department of Computer Science, Auxilium College, Vellore-6)
--************************--
Abstract:

Software plagiarism is an unlawfully stealing other person source code or program code this become serious
issue for common open source program company and other software companies. It violates the logical possessions
of software developers and has been a stern problem, diversity from open source code use again, software product
theft to smart phone application repackaging. This research is presents new technique for software plagiarism that
achieves to compare two programs similarity to find execution path of the program. The proposed system used the
symbolic execution and weakest requirement reasoning to capture the semantics of execution paths and to find path
distinction. Path Deviation Method is more resilient to current automatic obfuscation techniques, compared to the
existing detection mechanisms. In addition, since LCS method is a formal program semantics-based method, it can
provide a guarantee of resilience against many known obfuscation attacks. The results indicate that LCS method is
both effective and efficient in detecting software plagiarism.
Keywords— SCDG, VaPD, DKISB, MOSS,SIM,LCS,PDG,LHMM.
--************************--

I. INTRODUCTION

Software plagiarism is an act of theft other’s software

by illegitimately copying their code, applying code
obfuscation techniques to make the code look different
and then claiming that it is one’s own program in a way
violating the terms of original license. In recent years,
software plagiarism has become a serious anxiety for
honest software companies and open source communities.
It violates the intellectual property of software developers
and has been a severe problem, ranging from open source
code reuse, software product stealing to smartphone
application repackaging. The stolen code can be used by
plagiarists to reduce the cost of their software development.

The popular smartphone applications may be
repackaged and injected with malicious payload to
accelerate the propagation of malware. According to a
recent study, it was found that 1083 (or 86.0%) of 1260
malicious app samples were repackaged versions of
legitimate apps with malicious payloads. Moreover, the
booming of software industry gives plagiarists more
opportunities to steal other’s code. The burst of open
source projects (e.g., SourceForge.net has more than 430,
000 registered open source projects with 3.7 million

developers and more than 4.8 million downloads a day
provides plenty of easy targets for software thieves, since
source code is easier to understand and modify than
executable binaries.

The existing automatic code obfuscation tools (e.g.,
Loco, Sand Mark) can change the syntax of a program
while preserving its semantics and therefore will help
plagiarists to evade detection. Therefore, automated
software plagiarism detection is greatly desired. However,
automated software plagiarism detection is very
challenging. For one reason, source code of suspicious
programs is usually not available to plaintiff. The analysis
of executables is much harder than source code analysis.
Besides, code obfuscation is also an enormous obstacle to
automatic software plagiarism detection. Code obfuscation
is a technique to convert a sequence of code into a different
sequence that conserve the semantics but is much more
difficult to understand or analyze.

Rapid development of internet technologies
simplified sharing any kinds of data. Extremely notable is
also sharing the source codes. Consequently, today’s "copy
paste" generation is a subject of a notable problem of
plagiarism. It is present in many areas, from educational
and research areas to software development.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 36

There are two types of plagiarism are more occurs:
 1. Textual plagiarisms: this type of plagiarism

usually done by students or researchers in academic
enterprises, where documents are identical or typical to the
original documents, reports, essays scientific papers and art
design.

2. A Source Code Plagiarism: also done by
students in universities, where the students trying or
copying the whole or the parts of source code written by
someone else as one’s own, this types of plagiarism it is
difficult to detect.

Based on the above two facts, there are two
necessary requirements for a good software plagiarism
detection scheme

 Capability to work on suspicious executables
without the source code.

 Resiliency to code obfuscation techniques.
An important differential between source code

plagiarism and free text plagiarism is that the methods used
to detect both of these differ. Source code detection is a
well-understood area that has not recently been the focus of
much research. It is thought to be easier to detect source
code plagiarism than free text plagiarism since the
language that can be used is constrained to a set of defined
key words and since any plagiarism is most likely intra-
corpal in nature.

Free text plagiarism contains an effectively
unlimited number of possible words that can be used and
plagiarism may be intra or extra-corpal. Research on
detecting plagiarism in free text is more recent and ongoing
and has become possible due to the increasing availability
of cheap computer processing power.

A. Motivation and Scope of this Research Work

Plagiarism has become very common in

educational institutions. Students copy without any
hesitation other student’s assignments, both text and source
code, to complete their work in time or to complete their
work in a better way. Many students seldom care to put
their time and effort into doing the assignments on their
own when it is far simpler and effortless to copy from
someone else. However, it is necessary to differentiate the
original work from plagiarized work.

Software plagiarism has become a serious threat
to maintaining a healthy and trustworthy environment in
the software industry. In 2005 there was an intellectual
property lawsuit filed by Compuware against IBM. As a
result, IBM paid $140 million in fines to license
Compuware's software and an additional $260 million to

purchase Compuware's services. Examples such as this
point to a critical need for computer aided, automated
software plagiarism detection techniques that are capable
of measuring code similarity.

Fig.1 Workflow followed in traditional detection engines.

There is an alarming rise in plagiarism due to the
widespread use of internet. Internet is an enormously huge
repository of information which can be accessed easily
from almost anywhere.

This has made it very difficult to control
plagiarism. Since the task of manually detecting plagiarism
in a large document database is very tedious and time-
consuming, efforts are continuously being made to
automate the process. There exist many different
plagiarism detection techniques and numerous tools based
on these techniques.

There are two main categories of techniques for
source code plagiarism detection: attribute-counting-
based and structure-based comparison. Attribute-
counting-based techniques consider the number of
occurrences of different attributes in a file following certain
criteria and different similarity measures are used to obtain
the similarity between files. Structure-based techniques
derive information on program structure and obtain
similarity scores based on this information. Attribute-
counting algorithms are simple to implement and execute
faster. Structure-based methods, on the other hand, are
more reliable since they gather details of program structure
for comparison of programs. However, structure-based
methods are computationally expensive. Hence, the aim of

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 37

this research is to develop a new strategy which combines
the advantages of both the categories.

B. Objectives of this Research

 To provide new review of the existing technologies

for source code plagiarism detection.
 To combine the advantages of attribute-counting-

and structure-based code plagiarism detection
techniques and design a new strategy which can
effectively figure out plagiarized source code files.

 To derive a fast and efficient method to detect
plagiarisms in source code files written in all type
of programming languages.

II. PROBLEM STATEMENT

 Zhenzhou Tian, Qinghua Zheng, Ting
Liu and Ming Fan[7] proposed that DKISB (Dynamic Key
Instruction Sequence Birthmark) which generates
birthmarks for both the plaintiff and defendant program,
and then make the plagiarism decision according to the
similarity of their birthmarks but comments should safely
discard that take overhead.Wang Chunhui, Liu Zhiguo and
Liu Dongsheng[8]. Proposed JPLAG Tool which is
developed by java and this paper analyzes and expatiates
the reasons and the methods about the code’s plagiarism,
and thinks there are two phases in preventing this
plagiarism: one is preventing plagiarism from occur, the
other is to detect cases of plagiarism when the preventative
measures fail. Preventing plagiarism methods mainly
include the valid course assignment design and to forbid
the electronic copy. This paper describes a code’s editor
software which has been implemented use Java. When the
preventative measures fail, this method describes an
automatic tool to help instructor find the suspicious targets.
These phase’s aim is to cut down the plagiarism and
improve the ability of the student’s programming but this
method cannot find plagiarism behaviors such as replacing
procedure calls by the procedure body or replacing some
codes which the function is same. Snehal N. Nayakoji, S.
P. Sonavane.[9] proposed Subgraph Isomorphism
Technique and Software Birthmark.The software birthmark
results from the intrinsic characteristics of the program
which could be used to determine the similarity between
two programs. This Technique demonstrates the way to
extract code signature and to design software birthmark
along with the idea of using sub graph isomorphism to
detect the source code theft of JavaScript programs but
sometimes it creates more complexity in Birthmark

Generator and Birthmark Comparison. It consumes high
time to generate Subgraph Isomorphism. Yoon-Chan Jhi,
Xinran Wang, Xiaothat[11] proposed that the technique
Value Based Plagiarism Detection (VaPD) characterization
is a method based on runtime values. By exploiting runtime
values that can hardly be changed or replaced, the code
characterization technique is resilient to various control and
data obfuscation techniques. This approach directly
examines executable files and does not need to access the
source code of suspicious programs. It analyzed a number
of real world programs and the results effective in
identifying software plagiarism. According to Chanchal
Kumar Roy and James R. Cordy[4] Some of the reasons for
source code plagiarism may include.
1. Simple Reuse: codes can be reused simply because of

their logical structure
2. Limited Knowledge: when students have limited

knowledge of a programming language or proper
understanding of the programming task at hand.

3. Time Constraints: when projects cannot be completed
within the required time frame, plagiarism might be a
way out.

4. Coincidence: when two students come up with very
similar or same solutions for a task, using the same
programming structure but by sheer coincidence.

III. PROPOSED SOLUTION
Longest Common Sub Sequence (LCS) Method to

compare the semantic similarity of two codes, one from the
plaintiff and the other from the suspicious code,
constructed based on the LCS dynamic programming
algorithm, with basic blocks as the sequence elements by
trying more than one path, the code similarity scores from
LCS collectively to model program semantics similarity.
Note that LCS is different from the longest common
substring. Because LCS allows skipping non-matching
nodes, it naturally tolerates noises inserted by obfuscation
techniques.

IV. Proposed LCS Algorithm
The two ways of line-by-line comparison between the

source codes which is text based as well as string token
based. To compare lines from File A with all lines in File B
and then lines from File B with all lines from File A, this
creating a two way line comparison of two source codes.

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 38

Step1: Read file A
Step2: Convert the file into Text Format.
Step 3: Check the Data repository
Step 4: It’s Empty
 Then
 Stored file into Data repository.
Step 5: It’s not empty
 Stored file into Data repository.
 For each line in file A
 For each file I to N in Repository
 For each line in file I in Repository
Compare line from file A with line from file I
 If line from I is contained in line from A
 Count string as word score
 Increment number of similar lines
End if
If line from A is contained in line from I
Count string as word score
 Increment number of similar lines
 End if
 Increment I=I+1;
 End for
 End for
End for
Step 6: Display the Word Score (plagiarism of upload file).
 End.

The proposed algorithm based on recursive LCS
algorithm. In this recursive based LCS algorithm at each

step, compare two strings from the original uploaded file
and already upload file which is in repository. The running
time of the algorithm is very easy to compute. LCS only
has a single pair of nested loops, which require O (m) time.
This algorithm computes the length of the longest common
subsequence, not the subsequence itself.
 However, this algorithm can easily pull through
the succession by tracing it through the files. Start at
uploaded file1 string1 (0,0). Here that the value of LCS
[0][0] was the maximum of all string values of the
neighboring file string. So simply recomputed LCS [0][0]
and note which string gave the maximum value. Then
move to that string (it will be one of (1,1), (0,1) or (1,0))
and repeat this until hit the boundary of the all file in the
repository. Every time to pass through a string (i,j) where
S1[i]=S2[j], than the a matching pair and print S[i]. At the
end, printed the longest common subsequence in O (m+n)
time.

V. WORKING AND SIMULATION SCENARIO

 The LCS based plagiarism detection approach
leverages selected source code or documents to
characterize a code fragment, it can be evaluated by the
LCS algorithm that can search each of strings present in
the source code and find similarity between the source
codes. Here discuss about the impact of presenting
plagiarism detection method and potential results compare
with previous methods. It is string based similarity finding
algorithm this support all types of programming languages
because it’s considered only the string and identifiers and
find the optimal matches of the source codes. In the
implantation the algorithm in the use of the .NET frames
work.

The evaluated this algorithm on a set different
type of programs to measure its obfuscation resiliency and
scalability. These experiments conducted on small
programs as well as large real-world production software.
This evaluation results are compare with previous tools. In
all of these experiments, the functions in the plaintiff
program (or component) randomly, and test each of them
to find similar code in the suspicious program. For each
source codes are selected, to identify the starting blocks
both in the plaintiff function and the suspicious program.

A. Getting Word Score of the Source Code

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 39

Once computed the path similarity scores (the
lengths of the resulted LCS), then calculate the similarity
score between the two functions. To assign a weight to
each calculated LCS according to the plaintiff path length,
and the function similarity score is the weighted average
score. For each selected function in the plaintiff program,
then compare it to a set of function in the suspicious
program identified by the potential starting blocks and the
similarity score of this function is the highest one among
those. After calculate the similarity scores of the selected
plaintiff functions, then output their weighted average
score as the similarity score of the plaintiff and suspicious
programs.

Fig.2 Getting Word Score
B. Find the Plagiarism Level

After getting word score of the source and finalize
to the plagiarism level of the source code by using x
checker.

Fig 3 Plagiarism Level

C. Usability between the Algorithms

By comparing these tools the most efficient is this
LCS based approach.

 Many tools are sensitive to numerous small

changes.
 All tools do not well for the majority of single

refactoring, and many tools score rather badly.
 A striking result of the top-10 comparison is that

the top-10's for GPlag, JPlag, Marble and MOSS
are fairly similar, LCS is quite different to other
algorithms.

Fig. 4 Usability between the Algorithms.

The comparison of the approaches shown that still now
their no tools that can detect or to prove that the source
code has been plagiarize 100%, because each method and
tool has advantages and limitation, according to the
features and performance. This research is focused the
limitations of approaches and summarize the performance
of existing tools. Finally this proposed method gives good
solutions to find the source code plagiarism.

VI. CONCLUSION
Plagiarism is a complex topic, and the edge

between useful activities that can help a student’s
educational growth (such as association with other
students or “scrap writing” from trusted sources as a
stepping stone to developing independent skills) and
activities that will be punished as “dishonest” can cause
misinterpretation. There is certainly room for more
research into understanding motivations for plagiarism
and how best to support students from different
backgrounds. An identifying the source code is difficult
task for software companies and the students
assignments. The findings reported here identify a
number of issues related to source code plagiarism that
students find confusing and will therefore help teachers

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN : 2394-2231 http://www.ijctjournal.org Page 40

provide effective support for students to understand (and
avoid) this type of plagiarism. This approach provides
LCS based algorithm give new solutions of the software
source code plagiarism that produce good results
compare to all other technique it support all type of
languages and performance speedup also comparatively
good.
VII. FUTURE WORK

In future work, in this research will focused about
comment line of the source code and identified the
keywords of source code will find the exact source code
and flow of the source code and find the exact
plagiarism of the source code.

ACKNOWLEDGMENT
The authors would like to thank the anonymous referees for
their valuable comments, which greatly improved the
readability of this paper. S.Mahalakshmi would also like to
thank Ms. S.Kavitha ,HOD and Assistant Professor,
Department of Computer Science, who guided for my
work, and also express my whole hearted thanks to my
parents and friends for their encouragements to bring this
work to a successful completion.
REFERENCES
[1]. Chao Liu, Chen Chen, Jiawei Han, “GPLAG: Detection of Software
Plagiarism by Program Dependence Graph Analysis” U.S. National
Science Foundation NSF ITR-03-25603 and IIS-03-08215/05-
13678.2006.
[2]. Xinran Wang, Yoon-Chan Jhi, Peng Liu and Sencun Zhu.,” Behavior
Based Software Theft Detection”, November 9–13, 2009, Chicago,
Illinois, USA. Copyright 2009 ACM 978-1-60558-352-5/09/11.
[3]. Dr. Warren Toomey,” Code Similarity Detection in Multiple Large
Source Trees using Token Hashes”, PAN-09 3rd Workshop on
Uncovering Plagiarism, Authorship and Social Software Misuse and 1st
International Competition on Plagiarism Detection, 2010.
[4]. Chanchal Kumar Roy and James R. Cordy “A Survey on Software
Clone Detection Research” ,2007.
[5]. Asako Ohno and Hajime Murao,” A Two –Step in Class Source Code
Plagiarism Detection Method Utilizing Improved CM Algorithm and
SIM” International Journal of Innovative Computing, Information and
Control ICIC International c⃝ 2011 ISSN 1349-4198 Volume 7, Number 8,
August 2011.

[6]. Yoon – Chan jhi, Xinran Wang, Xiaoqi Jia and Peng liu,” Value-
based program characterization and its application to software

plagiarism detection”, ICSE ’11, May 21–28, 2011, Waikiki, Honolulu,
HI, USA.

[7]. Zhenzhou Tian, Qinghua Zheng, Ting Liu and Ming Fan,” DKISB:
Dynamic Key Instruction Sequence Birthmark for Software Plagiarism
Detection”, National Science Foundation of China the Ministry of
Education Innovation Research Team (IRT13035), Key Projects in the
National Science and Technology Pillar Program of China 2013.
[8]. Wang Chunhui, Liu Zhiguo and Liu Dongsheng,” Preventing and
Detecting Plagiarism in Programming Course”, International Journal of
Security and Its Applications Vol.7, No.5 (2013), pp.269-278
Http://dx.doi.org/10.14257/ijsia.2013.7.5.25.
[9]. Snehal N. Nayakoji, S. P. Sonavane.,” Code Birthmarks and Graph
Isomorphism for Theft Detection”, International Journal of Computer
Science and Mobile Computing, Vol.3 Issue.1, January- 2014, pg. 470-
476.
[10]. Lannan Luo Jiang Ming Dinghao Wu Peng Liu and Sencun Zhu,”
Semantics-Based Obfuscation-Resilient Binary Code Similarity
Comparison with Applications to Software Plagiarism Detection”,
FSE’14, November 16–22, 2014, Hong Kong, China Copyright 2014
ACM 978-1-4503-3056-5/14/11.
[11]. Yoon-Chan Jhi, Xinran Wang, Xiaoqi Jia, Sencun Zhu, Peng Liu and
Dinghao Wu,” Program Characterization Using Runtime Values and Its
Application to Software Plagiarism Detection”,
10.1109/TSE.2015.2418777, IEEE Transactions on Software
Engineering.2015.
[12]. Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu.” Value-based
program characterization and its application to software plagiarism
detection”. In 33rd International Conference on Software
Engineering(ICSE 2011), the SEIP track, 2011.
[13]. L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014), November 2014.

