
International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 11

Concepts for the Model-Driven Generation of Graphical Editors in

Eclipse by Using the Graphiti Framework
Markus Gerhart*, Marko Boger**

*(Applied computer science, University of Applied Sciences, Konstanz)
** (Applied computer science, University of Applied Sciences, Konstanz)

--************************----------------------------------
Abstract:

Domain-Specific modelling is increasingly adopted in the software development industry. While
textual domain specific languages (DSLs) already have a wide impact, graphical DSLs still need to live up
to their full potential. In this paper we describe an approach that reduces the time to create a graphical
DSL to hours instead of months. The paper describes a generative approach to the creation of graphical
editors for the Eclipse platform. A set of carefully designed textual DSLs together with an EMF meta-
model are the input for the generator. The output is an Eclipse plugin for a graphical editor for the
intended graphical language. The entire project is made available as open source under the name Spray
and is being developed by an active community. This paper focuses on the description of the workflow
and provides an introduction into the possibilities through this approach of a graphical modelling
environment.

Keywords — Domain-Specific-Language (DSL), Model-Driven-Development (MDD), Code
Generation, EMF, Xtext, Xtend, Graphiti, Spray, Eclipse IDE, Graphical Editors, Eclipse Plugin
--************************---------------------------------

I. INTRODUCTION
Eclipse is one of the focus points of tooling for

model driven approaches. Projects like EMF [5],
CDO [3] and Xtext [2] are very popular in the
domain specific modelling community. But the
success of the Eclipse modelling environment is
centred around the textual modelling. While the
focus of Eclipse or other development
environments can play out their textual nature very
nicely for this approach, it has long been a difficult
environment to build graphical modelling tools. The
basic APIs provided by the Eclipse ecosystem, GEF
[6] and Draw2D [4], are quite low level and provide
no connection to the semantic level of a model.
Besides they are quite heavy to use. EMF has often
been used for the semantic part, but offers no
specific support for graphical modelling. A project
that attempted to bridge the gap between GEF and
EMF is GMF [7]. It integrates a model driven
approach for the development of graphical

modelling tools on the basis of GEF and EMF. But
the models to describe the editor proved to be so
complex that projects evolved to generate these
models from yet higher level models. The generated
code of GMF was very complex, hard to understand
and extremely difficult to extend for special
enhancements. The provided development
environment was brittle and cumbersome.

In this paper we present a new generative
approach to graphical modelling tools in Eclipse.
Instead of using GEF and Draw2D directly, we
make use of the relatively new Java framework
called Graphiti [8]. Graphiti provides a powerful
API, with some lags which will hopefully bit fixed
in the near future, to build graphical editors in
Eclipse. Internally Graphiti uses GEF and Draw2D
but hides the complexity.

 However, while it is perfectly possible to
develop a graphical modelling tool using Graphiti,
we think that the API is very adapt to generate
against it from a higher level of abstraction. We

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 12

have developed a set of textual modelling languages
to use as input for a generator. The output is Java
code for the Graphiti API as well as all other text
files needed for the Eclipse plugin mechanism. The
result is a graphical modelling tool in Eclipse. With
this approach we can reduce the number of lines
needed to develop a graphical modelling tool by a
factor of about 20. That is, a modelling tool that is
developed using Graphiti might require 10.000 lines
of code, while our approach generates the needed
code from only about 500 lines of textual model
descriptions. Thus the cost to develop a graphical
modelling tool is reduced by an order of magnitude.

The paper first describes the used technologies in
chapter II. In chapter III we review related work in
the field, mostly other tools and techniques for the
generation of modelling tools. Chapter IV describes
our general approach for the model driven creation
of the modelling editors and the general architecture
of our framework. Furthermore, we explain the
definition of our own graphical elements with the
corresponding DSL and our approach for the
flexible styling of these in chapter IV. Chapter V
shows an example of a generated graphical editor.
Additional we describe in chapter VI the limitations
of the presented approach. Chapter VII shows a
short evaluation of the presented approach. Finally,
we draw conclusions in chapter VIII.
II. BACKGROUND

The used frameworks and libraries are shortly
explained in this section. Additionally, a short
introduction is given into the used terms.

Model-Driven Engineering (MDE) deals with the
automation of software production. This implies
that as much as possible artefacts of a software
system will be generated form a formal model.
(inspired by [9])

Model-Driven Architecture (MDA) is a specific
approach of the Object Management Group (OMG)
[10], and it describes a model-driven method using
their own specified standards (e.g. UML, MOF,
XMI).

A Domain Specific Language (DSL) is a formal
language, which is exactly tailored to a specific
domain, a specific task or problem area.

The Eclipse Modeling Framework (EMF) is a set
of plugins for the Eclipse platform. The primarily
use is for the model-based code generation.

The Graphical Editing Framework (GEF) is a
basic framework of the Eclipse platform with the
aim for the creation of graphical editors within
Eclipse.

Draw2d is a lightweight set of basic features for
the easy displaying of graphical elements.

Graphiti includes EMF and GEF and hides the
complication of GEF behind a lightweight and easy
to use API.

The Graphical Modeling Project (GMP) provides
a set of different plugins for the generative creation
of components and runtime infrastructures artefacts
for the development of graphical editors with EMF
and GEF.

Xtext is an Eclipse Plugin for the development of
textual domain-specific languages.
III. RELATED WORK

Projects that have identified a need for domain
specific graphical modelling as part of an Eclipse
based tool chain, today typically have the following
choices. Either they drop the integration of the
graphical modelling tool into Eclipse. Then a few
commercial offerings including MetaEdit+ [11] and
Poseidon for DSL [12] allow the creation of domain
specific modelling languages and an integration on
the basis of the resulting model in serialized form,
usually as XMI. Or they can drop the requirement
to base their modelling language on their own
metamodel and instead extend UML to mimic a
DSL. UML 2.0 has a mechanism to extend the
metamodel through stereotypes and profiles. Such
extensions have to be built on the basis of the
predefined UML metamodel elements. This makes
it difficult to generate code from it. Also, most
UML tools that offer good adaptation through
profiles are not based on Eclipse, so this case
combines with the previous. The tools most used
for this approach are Enterprise Architect [13] and
Magic Draw [14]. A third approach is to drop the
use of a graphical modelling environment and
instead use a textual language to express the DSL
models. This approach seems to be very successful
in practice. Most known tools are Xtext [15],
Spoofax [16] and EMFtext [5]. Finally, it is

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 13

possible to build a modelling tool in Eclipse. This
paper advocates this approach but it is our
observation from experience that this can lead to
high and hard to predict development costs.
Building such tools directly on GEF and Draw2D
provides very little infrastructure support and is
accordingly very work intensive. The afore
mentioned GMF improves this through a generative
approach. However, the DSLs, the generator and
the generated code of GMF have themselves high
complexities. Extending GMF beyond the default
generated behaviour can become particularly
painful. A very good alternative to build their own
modelling tool in Eclipse is the mentioned
framework Graphiti. But it is relatively young and
we have no indication on how intensively it is used
outside of SAP, who developed the framework.
From our experience in this project we can strongly
recommend it. The framework hides the complexity
of GEF and Draw2D and provides a clearly
structured API. However, while the API is well
structured and powerful, it naturally lends itself to a
generative approach.
During our development, a similar project called
IMES [17] is being developed, which pursues a
similar approach. The aim of the publicly funded
project is to build graphical editors based on
Graphiti for functional nets and other systems. The
project also uses DSLs and MDD for the generative
creation of the graphic editors. Currently the project
is not open source and wasn't presented to the
public, so it's difficult to compare our approach
with the IMES project.
IV. APPROACH

The Spray project includes three different DSLs
with the corresponding generators which ends in a
plugin for the eclipse platform. As the basic
development environment is the eclipse platform
used with a number of different plugins. All
required downloads are available or referenced on
the project home page, together with installation
instructions, the user manual and example Projects.
The generator is implemented with the Java-like
language Xtend [15]. This language specifically
developed for the purpose of generating program
code. The runtime includes the Graphiti plugin
itself and a few extensions of the Graphiti

Framework, which are hopefully integrated into
Graphiti over time. The motivation of this paper is
on the general approach which is needed to develop
a graphical editor. The focus is and not on the
generated code or the runtime libraries. The DSLs
are implemented using Xtext and based on the
approach of [18].

 Fig. 1 A Model-Driven approach for Graphical Editors
Spray [1] currently provides three special DSLs -

Spray Core, Shape, and Style as shown in Figure 1.
The fundamental Language is Spray Core. For
simple graphical editors, this isolated language is
sufficient. The Spray core language defines the
mapping of the metamodel elements to a graphical
representation (shapes), styles and their behaviour.
For shapes which are more complex than a
rectangle, the Shape DSL is used. The Shape DSL
allows the construction of complex shapes with
primitive figures like rectangles and ellipses,
configuration of their position, resizing policy and
nesting. The style of shapes, like colour and font,
can be defined inline in the Shape language or
separate with the style language. But in order to
reuse and centralize the definition of styles, the
Style DSL allows to define Style Classes
comparable to CSS Style definitions. The role of
the Styles DSL is similar to how CSS relates to
HTML. Styles can be referenced from all other
DSLs. Every time any of these models is saved, the
Model-Driven Generation is executed and generates
all necessary code and configurations - Java, XML
and Properties - for the Eclipse Plugin. The
generation mechanism will only re-generate files

International Journal of Computer Techniques

ISSN :2394-2231

that are affected by the latest changes in the DSLs
and is very efficient.
The Graphical Editor within Eclipse is ready to use
as plugin in Eclipse after the generation process
The following sections give a short introduction
into the three languages.
A. The Spray Core language

At the core provides a graphical editor the ability
to create and manipulate objects of a diagram. The
resulting object graph is sometimes called model
and the structure of the model is defined by a
metamodel. The elements of the model are
represented by graphical icons that are mentioned in
Graphiti as Pictograms.

Spray needs as a base a Ecore metamodel (a
requirement that is not part of Graphiti) and
describes the mapping of meta-classes on the
graphic symbols. Furthermore, it must also be
described, which elements can be created in the
editor and therefore must be present in the Tool
Palette of the Editor.

The basic model of a spray editor is defined
the spray main language. The file extension for
these models is *.spray and such a file is initially
generated by the project wizard. We
simple Entity / Relationship metamodel (Fig. 2) to
develop a small class diagram editor.

Fig. 2 Entity/Relationship Metamodel
 In the head of the spray model the diagram type
and the E-Class of the root element is initially
specified for the diagram (Lis. 1). Optionally, the
namespace for the meta-classes can be imported in

 1 import domain.* 2 diagram dmodel for Model

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

2231 http://www.ijctjournal.org

that are affected by the latest changes in the DSLs
is ready to use

after the generation process.
The following sections give a short introduction

At the core provides a graphical editor the ability
to create and manipulate objects of a diagram. The
resulting object graph is sometimes called model
and the structure of the model is defined by a

e elements of the model are
represented by graphical icons that are mentioned in

Spray needs as a base a Ecore metamodel (a
that is not part of Graphiti) and

classes on the
it must also be

described, which elements can be created in the
editor and therefore must be present in the Tool

The basic model of a spray editor is defined in
the spray main language. The file extension for

and such a file is initially
izard. We will use a

simple Entity / Relationship metamodel (Fig. 2) to

In the head of the spray model the diagram type
Class of the root element is initially

. Optionally, the
can be imported in

order to reduce the use of qualified names in the
model.
Lis. 1 Head of a Spray
 Afterwards the mapping of meta
representation in the editor must
context is a distinction needed
which are corresponding to the shapes and which
are corresponding to the connections
metamodel the entity is represented by a shape and

the relation between two entities
Listing 2 describes the mapping of an entity to a

typical class icon.

Lis. 2 Mapping class to Entity
 First, after the keyword class, the type of
mapped class (Lis. 2) is provided
path must be specified to an ico
the E-Class in the diagram palette.

The actual mapping is defined behind the
The spray DSL already enables the
basic shapes like rectangles or ellipse
icon. The next section describes how
shapes can be created by using a special DSL. A
container is a figure that includes other figures and
is shown in the standard case
content is established in this case vertically within
the container. It consists of a text
a separation line. Underneath is
defined for the attributes in the containment
relationship attributes. The graphic elements can
define basic styling features such as
filling information. More complex styles
defined by the style DSL, which is described in
detail later.

 1 class Entity icon "uml/Class.gif" : 2 container (fill=RGB(255,252,223)) 3 { 4 text (bold) “<<Entity>> “+name; 5 line (color=RGB(255,204,51 6 width = 2); 7 reference attributes; 8 }

Aug 2016

 Page 14

order to reduce the use of qualified names in the

mapping of meta-classes to their
must be defined. In this
needed between types,

corresponding to the shapes and which
connections. In the used

entity is represented by a shape and

between two entities by a connection.
Listing 2 describes the mapping of an entity to a

after the keyword class, the type of the
is provided. Optionally, a

path must be specified to an icon, which represents
alette.

The actual mapping is defined behind the colon.
pray DSL already enables the definition of

like rectangles or ellipse instead of an
section describes how more complex

using a special DSL. A
container is a figure that includes other figures and

n in the standard case as a rectangle. The
content is established in this case vertically within

text line, followed by
Underneath is a compartment

for the attributes in the containment-
. The graphic elements can

basic styling features such as colour and
. More complex styles must be

defined by the style DSL, which is described in

1 class Entity icon "uml/Class.gif" : (fill=RGB(255,252,223))
<<Entity>> “+name; 5 line (color=RGB(255,204,51) width = 2); reference attributes;

International Journal of Computer Techniques

ISSN :2394-2231

Important is the Determination
elements. Not only static strings or a simple
of attribute values of the mapped EClass
Arbitrarily complex expressions can be specified,
which provides a wide range of possibilities
possible by the integration of the Xtext
expression language Xbase [19]. The tailed Xbase
compiler translates the expression into valid Java
code, which is executed at the appropriate locations.

Only with this information Spray is able to derive
the necessary features for adding new
register them in the feature provider. The following
artefacts are created:

  Add, update and layout feature for the E
Class Entity  Create and add feature for the E
attributes for the compartment of t
reference entity attributes  Property Sheets for E-Class Entity
Attributes  plugin.xml

Important is the plugin.xml because spray
generates this file in the src-gen folder
project, which is misleading. The actual plugin.xml
is however in the root directory of the project and
must be adjusted manually. The reason for this is
that it is at any time allowed to make manual
changes to this file, but spray cannot know how this
should be merge against the generated state.

To create Entities within the editor a
behaviour must be indicated inside a behaviour
below the Shape Mapping definition (Lis. 3)

Lis. 3 The integrated askFor behaviour
 This behaviour definition creates a c
and registers this feature at the feature provider for
the Entity. The entity’s which should be generated
are thereby inserted into the containment
relationship entities of the model object.
functionality askFor name causes the opening of an

1 behavior { 2 create into entities "Entität" 3 palette "Neu" askFor name; 4 }

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

2231 http://www.ijctjournal.org

 of the text
simple access

mapped EClass is possible.
can be specified,

which provides a wide range of possibilities. This is
Xtext specific

]. The tailed Xbase
compiler translates the expression into valid Java

at the appropriate locations.
Spray is able to derive

new entities and
. The following

Add, update and layout feature for the E-
Create and add feature for the E-Class

for the compartment of the
Class Entity

plugin.xml because spray
folder of the

. The actual plugin.xml
is however in the root directory of the project and
must be adjusted manually. The reason for this is
that it is at any time allowed to make manual

spray cannot know how this
erated state.

the editor a create
behaviour area
(Lis. 3).

create feature
the feature provider for

entity’s which should be generated
are thereby inserted into the containment

s of the model object. The
opening of an

input dialogue and creates a new entity and sets the
property name of the new entity instance
addition, an entry with the label "entity" in the tool
palette in the area "new" applies

Lis. 4 User specific Behaviour In addition to the create behaviour
specific any own behaviours which are mapped to
custom features (Lis. 4).
 The identifier openModelElement
derive the class name for this custom feature. Since
the implementation of such custom features by the
generator cannot be guessed, the specific feature
class must be added manually (Lis. 6
custom features are sharable for different classes, so
it is also possible to define them as a group outside
the class-specific mappings and
reference the custom feature.

Lis. 5 Mapping class to connection definition
 To get a complete example it’s necessary to
mapping of the EClass relation. This is represented

create into entities "Entität" palette "Neu" askFor name;

1 behavior { 2 … 3 openModelElement "Open Element4 }

 1 class Relation icon 2 "uml/Extension.gif": 3 connection () { 4 from fromEntity; 5 to toEntity; 6 fromText text () 7 {fromCardinality}; 8 toText text () 9 {toCardinality}; 10 connectionText text () 11 {description}; 12 } 13 behavior { 14 create into relations "Beziehung" 15 palette "Neu"; 16 }

Fig. 3 Example usage of the behaviour

Aug 2016

 Page 15

a new entity and sets the
the new entity instance (Fig. 3). In

addition, an entry with the label "entity" in the tool
area "new" applies.

ehaviour the user can
which are mapped to

openModelElement is used to
custom feature. Since

the implementation of such custom features by the
be guessed, the specific feature

must be added manually (Lis. 6). Some
r different classes, so

it is also possible to define them as a group outside
specific mappings and each class only

it’s necessary to insert a
. This is represented

Open Element";

2 "uml/Extension.gif":

 7 {fromCardinality};

10 connectionText text ()

14 create into relations "Beziehung"

Example usage of the behaviour askFor

International Journal of Computer Techniques

ISSN :2394-2231

by a connection, which is given as a shape of the
type connection (Lis. 5).

The information from (source) and to
used to define the references of the EClass
In addition, the text outputs can be specified on
both ends and in the centre of the
wherein Xbase expressions can be used again

With this minimal information (the model
currently covers about 50 lines of code!)
possible to create a functional graphical editor with
the abilities to create entities, attributes and
relations. The properties can be edited via the
generated Property Sheets.

 The generated classes of the editor must be
adjusted with a high probability to the specific
needs of the user. Therefor it’s possible to
the generated editor from this abstract description.
Spray provides the enhancement
implementation of the Generation Gap
Virtually all generated parts of the editor
overwritten or replaced so that you do not depend
solely on the result of the code generator
the generator creates a good and uniform
for the graphical editor.
B. Definition of Shapes

The spray DSL already enables the
simple figures for model elements, consisting of the

 1 public class DmodelCustomOpenModelElementFeature extends 2 DmodelCustomOpenModelElementFeatureBase 3 @Inject IURIEditorOpener opener; 4 public DmodelCustomOpenModelElementFeature(IFeatureProvider fp) { 5 super(fp); 6 opener = Activator.get(IURIEditorOpener.class); 7 } 8 9 @Override 10 public boolean canExecute(ICustomContext11 return getBusinessObjectForPictogramElement(context.getInnerPictogramElement()) != null; 12 } 13 14 @Override 15 public String getName() { 16 return "Element öffnen"; 17 } 18 19 @Override 20 public void execute(ICustomContext conte21 opener.open(EcoreUtil.getURI(object), true);22 } 23 }
Lis. 6 Generated Java code for a custom behaviour

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

2231 http://www.ijctjournal.org

, which is given as a shape of the
to (target) are

the EClass relation.
can be specified on

ends and in the centre of the connection,
wherein Xbase expressions can be used again.

With this minimal information (the model
currently covers about 50 lines of code!) it’s
possible to create a functional graphical editor with

create entities, attributes and
relations. The properties can be edited via the

of the editor must be
obability to the specific

Therefor it’s possible to adapted
from this abstract description.

the enhancement through the
 Pattern [20].

of the editor can be
o that you do not depend

solely on the result of the code generator. However,
creates a good and uniform skeleton

The spray DSL already enables the definition of
simple figures for model elements, consisting of the

elements container (rectangle), text
line. This is sufficient for simple box
editors like class diagrams, but not for m
complex requirements regarding
spray model is also not intended to describe the
appearance of items in detail, but
mapping of EClass to pictograms.

In order to describe more complex graphic
elements the “Shapes” language
*.shape)

Fig. 4 Shape DSL BPMN EventMail example definition
 is therefore developed. A shape
number of shape definitions, which
represents a pictogram in Graphiti
of primitive forms like ellipse, rectangle and
polygon. Furthermore, these basic shapes can

public class DmodelCustomOpenModelElementFeature extends DmodelCustomOpenModelElementFeatureBase { @Inject IURIEditorOpener opener; public DmodelCustomOpenModelElementFeature(IFeatureProvider fp) {
opener = Activator.get(IURIEditorOpener.class);

public boolean canExecute(ICustomContext context) { return getBusinessObjectForPictogramElement(context.getInnerPictogramElement()) !=

public void execute(ICustomContext context, EObject object) { opener.open(EcoreUtil.getURI(object), true);

Aug 2016

 Page 16

container (rectangle), text (text field) and
for simple box-and-line

editors like class diagrams, but not for more
regarding the shapes. The

so not intended to describe the
appearance of items in detail, but merely the

pictograms.
In order to describe more complex graphical

language (file extension

BPMN EventMail example definition

shape file can contain any
which each of them

raphiti. A shape consists
ellipse, rectangle and

Furthermore, these basic shapes can be

return getBusinessObjectForPictogramElement(context.getInnerPictogramElement()) !=

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 17

nested in any order and depth. The position of the
nested element(s) is indicated by the position.
Figure 4 describes the definition of the Business
Processing and Modelling Notation (BPMN)
symbol “Event Mail” in spray shape definition
language and the resulting graphical symbol. Each
shape is represented by the code generator to a class
that implements the interface ISprayShape. Also
here the value of the code generation becomes
apparent. From the 15 lines of the shape definition
(4 lines closing brackets) will be Java code
(Graphiti) generated of almost 100 lines. In addition,
shape DSL is much more readable and
understandable than the Java code.
 Anchors are the points at which connections can
be attached to a shape. Without further specification,
this is the edge of the outermost element (for
ellipses there is an enclosing invisible rectangle).
With the keyword anchor it’s possible to define
anchor points of a shape. The position information
of anchors can be either fixed (x / y position
definition of a coordinate) or dynamic (xoffset /
yoffset percent with respect to the invisible
rectangle). Additionally, there are the pre-defined
anchor points centre (anchor center) and corners

(anchor corners).
Lis. 7 Anchor example definition
Thus even very complex shapes can be defined.
Their appearance can be customized by changing
colours, fonts, line thickness and other
characteristics. This “Styles” can be described by
an additional language, which is comparable in its
task to CSS.
C. Definition of Styles

Styles are defined in files with the extension
*.style. A style description offers for example the
possibility to describe the following features:

• Colours (background and foreground)
• Font (name, size, italic, bold)
• Lines (width, style, colour)

Styles can inherit from one another, so that a
hierarchical structure of properties can be
constructed. For each style definition Spray
produces a Java class that implements the interface
ISprayStyle. These can then be used in other spray
languages or directly in your code. Listing 8 shows
an example style definition.

Lis. 8 Style DSL example definition
D. Integration of the languages

The defined shapes in the shape DSL can be
referenced in the spray DSL when mapping of
elements by specifying the shape keyword (Lis. 9).

Lis. 9 Spray DSL shape reference
 The link between the shape and displayed
characteristics of the model is established by the
definition of parameter values in the shapes and the
surrender values in the spray model. Thus the
shapes remain independent of the specific
metamodel. This allows the creation of Shape
libraries which can be used in any Graphiti editor,
regardless of spray itself.

The styling of a shape is achieved by referencing
an existing style definition (Lis. 10). The children
of a composite shape inherit the style information,
which can be overridden if necessary.

Lis. 10 Spray DSL style reference

1 anchor corners { 2 position(x=5, y=10) 3 position(x=50, y=100) 4 }

 1 style BlackAndWhiteStyle { 2 description = "A style with white 3 background and black foreground." 4 transparency = 0.95 5 background-color = black 6 line-color = black 7 line-style = solid 8 line-width = 1 9 font-color = black 10 font-name = "Tahoma" 11 font-size = 10 12 font-bold = yes 13 }

 1 class mail: shape BPMN_EventMail

 1 shape Usecase style BlackAndWhiteStyle

International Journal of Computer Techniques

ISSN :2394-2231

Individual style properties can be overwritten
directly without the need for a style definition.
V. THE GENERATED EDITOR

The generated graphical editor is a fully
functional set of Eclipse Plugins. The generated
graphical editor is divided into four different areas.
The area on the left side displays the
explorer. The package explorer includes the
different created diagrams and offers the option to
create new diagrams. The right side contains the
user specific defined elements described with the
shape DSL. The lower area is used to view
different Properties of the elements according to the
specified properties in the main DSL. The
area is used to draw the actual specific
which is compliant to the defined Metamodel.
Figure 9 shows an example Graphical Editor
an example Diagram of a Piping and
Instrumentation Diagram.

Fig. 5 The generated Graphical Editor in Eclipse
VI. LIMITATIONS OF THE APPROACH

The described project is by no means finished
and still lacks a number of important features
before its use could be recommended in the context
of mission critical development. Bu
improve over time. Also, it is an open source
project and can be extended and improved by
anyone in need of extensions to it.

Examples of such features are improved support
for text, the inclusion of shadows and gradients,
support for context menu and the use of rapid
buttons. More important is the question of the
limitations of the approach. In terms of the

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

2231 http://www.ijctjournal.org

Individual style properties can be overwritten
directly without the need for a style definition.

The generated graphical editor is a fully
functional set of Eclipse Plugins. The generated
graphical editor is divided into four different areas.
The area on the left side displays the package
explorer. The package explorer includes the
different created diagrams and offers the option to
create new diagrams. The right side contains the

elements described with the
used to view the

elements according to the
DSL. The centre

actual specific diagram
to the defined Metamodel.

an example Graphical Editor with
Piping and

PPROACH
The described project is by no means finished

and still lacks a number of important features
in the context

of mission critical development. But this will
Also, it is an open source

project and can be extended and improved by
Examples of such features are improved support

sion of shadows and gradients,
support for context menu and the use of rapid
buttons. More important is the question of the
limitations of the approach. In terms of the

graphical editor itself, the API offered by Graphiti
as well as exploiting its capabili
model driven approach, we see no serous
constraints. In this regard, Graphiti provided a lot of
features we had expected. Nonetheless we
a few limitations while developing the editor. For
example, Graphiti currently does not support
underlining of text, a feature we would need i.e. for
static members in a UML class diagram. Another
limitation is the standard zooming function within
Graphiti diagrams. The framework zooms by
resizing all sizes of the elements, including the
border-size. This leads to unproportioned
Zooming currently only works well between 75 and
150%. Finally, the Graphiti API allows a few things
that surprisingly have no effect on the diagram.
This lead to the workaround that we use an invisible
rectangle at the root level of every shape.

The generative approach is somewhat limited to
cases that are needed often enough to justify the
development of a generator and the according input
models. Corner cases could be covered with
additional parameters in the input to the generator,
however, the generated code is well prepared for
manual extensions, so that this could turn out
simpler. The DSLs presented by us are targeted
towards graphical languages based on the notion of
nodes and edges. In UML most diagram ty
into that category, however it includes a few
exceptions. The sequence and the timing diagram
show time as one dimension and differ in that sense.
They cannot be described with the presented DSLs
without considerable extensions.

We see more limitations in the platform of
Eclipse itself. Eclipse was developed as a text
centric software development tool, and this heritage
remains visible to the day. An example for this is
that Eclipse ends a transaction of a file change upon
saving this file. However, models on a scale larger
than just one diagram need a different semantic for
changes. Model elements can be represented in
several diagram views. Modelling
to expect a change in one such representation to be
reflected in the others immedia
case in repository based modelling
this is hard to achieve in Eclipse.

Other topics, like multi
collaborative modelling environments, evolution of

Aug 2016

 Page 18

graphical editor itself, the API offered by Graphiti
as well as exploiting its capabilities through a
model driven approach, we see no serous
constraints. In this regard, Graphiti provided a lot of
features we had expected. Nonetheless we analysed
a few limitations while developing the editor. For
example, Graphiti currently does not support the
underlining of text, a feature we would need i.e. for
static members in a UML class diagram. Another
limitation is the standard zooming function within
Graphiti diagrams. The framework zooms by
resizing all sizes of the elements, including the

unproportioned borders.
works well between 75 and

the Graphiti API allows a few things
that surprisingly have no effect on the diagram.
This lead to the workaround that we use an invisible

at the root level of every shape.
The generative approach is somewhat limited to

cases that are needed often enough to justify the
development of a generator and the according input
models. Corner cases could be covered with

nput to the generator,
however, the generated code is well prepared for
manual extensions, so that this could turn out
simpler. The DSLs presented by us are targeted
towards graphical languages based on the notion of
nodes and edges. In UML most diagram types fit
into that category, however it includes a few
exceptions. The sequence and the timing diagram
show time as one dimension and differ in that sense.
They cannot be described with the presented DSLs

ithout considerable extensions.
ions in the platform of

Eclipse itself. Eclipse was developed as a text-
centric software development tool, and this heritage
remains visible to the day. An example for this is
that Eclipse ends a transaction of a file change upon

models on a scale larger
than just one diagram need a different semantic for
changes. Model elements can be represented in

Modelling users have come
to expect a change in one such representation to be
reflected in the others immediately, as this is the

modelling tools. However,
this is hard to achieve in Eclipse.

Other topics, like multi-user support in
environments, evolution of

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 19

metamodels, or diffing and merging changes in
versions of graphical models remain topics of
research and are independent of Eclipse or a model
driven approach.
VII. EVALUATION

The presented generative approach reduces the
effort of the development of a graphical editor for
Eclipse considerably compared to the manual
coding against the Graphiti API. The Graphiti
framework needs for every domain object a set of
so called features descriptions. The generator
creates for each domain object the needed feature
skeletons / implementations (Add-, a Create-, a
Layout- and an UpdateFeature), which altogether
consist of at least 400 lines of code per domain
object. These can be generated by Spray from about
10 lines of code. This allows to focus the
development on the actual important logic and is
not slowed down by the needed overhead of the
Graphiti framework.
VIII. CONCLUSIONS

In this paper we have shown that developing
graphical DSLs with the usage of the open source
framework Spray can be very efficient. We
presented concepts for the model driven
development of graphical modelling tools in the
context of Eclipse. The modelling tools can be
configured to the needs of a specific domain,
resulting in an Eclipse plugin that supports a
graphical domain specific language. It is not
necessary to be an IT expert to develop such
modelling tools, because the DSLs are quite easy to
learn, read and write. The meta model and the DSLs
can be tailored to the specific needs, thus the
models can be very concise. In this paper we
showed some elements of the BPMN, but the same
approach could be used for various domain specific
modelling languages.

The generative approach reduces the needed
effort to develop a graphical modelling tool for
Eclipse considerably compared to coding it
manually in Java against the Graphiti API. For the
underlying Graphiti framework, every domain
object needs to be described by a set of so called
features. For each domain object the generator
creates an Add-, a Create-, a Layout- and an

UpdateFeature (a lot more planned), which
altogether consist of about 400 lines of code per
domain object. These can be generated from Spray
from about 20 lines of code. The factor in terms of
code between the Spray DSLs (20 lines) and the
generated Graphiti Code (400 lines) is
approximately 20. For several implemented
examples we consistently observe this factor. A
small DSL developed in Spray with 20 domain
objects was described in about 400 lines of code.
This generates about 80 Java Classes with
altogether 8000 lines of code. Thus we argue that
our approach reduces the project cost for
developing a graphical DSL in Eclipse from weeks
and months (manually written) to hours and days
(generative approach). This should make the
development of graphical modelling tools in
Eclipse much more attractive than in the past.
REFERENCES
[1] Boger, M., Thoms, K., Warmer, J.: Spray - A quick way of creating

Graphiti, http://code.google.com/a/eclipselabs.org/p/spray
[2] itemis AG: Xtext 2.0, http://www.eclipse.org/Xtext
[3] The Eclipse Foundation: CDO Model Repository,

http://www.eclipse.org/cdo/
[4] The Eclipse Foundation: Draw2d. http://www.eclipse.org/gef/draw2d/ [5] The Eclipse Foundation: Eclipse Modeling Framework Project (EMF),

http://www.eclipse.org/modeling/emf/
[6] The Eclipse Foundation: GEF (Graphical Editing Framework),

http://www.eclipse.org/gef/
[7] The Eclipse Foundation: Graphical Modeling Project (GMP), http://www.eclipse.org/modeling/gmp/
[8] The Eclipse Foundation: Graphiti: A Graphical Tooling Infrastructure.

http://www.eclipse.org/graphiti/ [9] Trompeter, J., Beltran, J.C.F.: Modellgetriebene Softwareentwicklung:
MDA und MDSD in der Praxis. Entwickler.Press (2007).
https://books.google.de/books?id=iobrPQAACAAJ [10] Object Management Group. http://www.omg.org/

[11] MetaCase: MetaEdit+, http://www.metacase.com/mep/
[12] Gentleware AG, Poseidon for DSLs,

http://www.gentleware.com/fileadmin/media/pdfs/tutorials/Poseidon_f
or_DSLs_Documentation.pdf

[13] Sparx Systems: Enterprise Architect, http://www.sparxsystems.com/
Addison-Wesley Professional (2011)

[14] No Magic Inc.: MagicDraw, https://www.magicdraw.com/
[15] itemis AG: Xtext 2.0, http://www.eclipse.org/Xtext [16] Kalleberg, K. T., Visser, E.: Spoofax - An Interactive Development

Environment for Program Transformation with Stratego/XT. In T.
Sloane and A. Johnstone, editors, Seventh Workshop on Language Descriptions, Tools, and Applications (LDTA 2007), ENTCS, pages
47{50, Braga, Portugal, March 2007. Elsevier.

[17] Graf, A.: A DSL for Graphiti Editors (IMES), Research Project, http://5ise.quanxinquanyi.de/2011/08/18/a-dsl-for-graphiti-editors/
[18] Markus Gerhart, Marko Boger." Zeta - A Set of Textual DSLs to

Define Graphical DSLs ".International Journalof Computer Techniques
(IJCT) V3(3): Page(29-43) May - June 2016. ISSN: 2394-2231.
www.ijctjournal.org.Published by International Research Group- IRG.

[19] Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R.,
Hasselbring, W., & Hanus, M. (2012, September). Xbase:
implementing domain-specific languages for Java. In ACM SIGPLAN
Notices (Vol. 48, No. 3, pp. 112-121). ACM.

International Journal of Computer Techniques -– Volume 3 Issue 4, July - Aug 2016

ISSN :2394-2231 http://www.ijctjournal.org Page 20

[20] Behrens H. Generation Gap Pattern http://heikobehrens.net/2009/04/23/generation-gap-pattern

