
Time multiplexing CNN simulator using RK7(5)

Osama H. Abdelwahed1,2 and M. El-Sayed Wahed2

1Mathematics Department, Faculty of Science, Suez Canal University, Egypt
2Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Egypt

�������������-************************�����������-

Abstract

RK7(5) is a numerical method was used to minimize the local truncation error using selection step size algorithm.
Time multiplexing CNN simulator was modi�ed using RK7(5) to improve the performance of the simulator and the
quality of the output image for edge detection. The results showed better performance than those in the literature.

Keywords �Cellular neural network; Image processing; CNN simulator; RK7(5); Local truncation error

�������������-************************�����������-

1 Introduction

Edge detection is considered to be one of the essential
steps in identifying an object in image processing. Many
techniques have been proposed to detect edges in image
processing using cellular neural network(CNN) [8]. CNN
was introduced by Chua and Yang [3] in 1988. The main
properties of CNN are their local interactions among their
nearby cells in addition to their parallel processing which
is considered to be one of the most important aspects in
CNN. CNN has many applications in image processing
like medical image segmentation, image denoising, and
edge detection. Time multiplexing CNN simulator was
proposed by C.C. Lee and Jose Pineda de Gyvez [6] in
1994. They used the numerical integration algorithms
Euler, the improved Euler and Runge Kutta method to
solve the di�erential equations which represent CNN.
Their results for edge detection need to be improved and
also the computation time need to be decreased. Another
work presented by V. Murugesh and K. Murugesan[8].
They introduced the numerical methods, RK-Gill [10]
and RK-Butcher [1, 2, 7], but unfortunately, the obtained
results need to be improved. So we proposed RK7(5)
[12] as a numerical integration method used to minimize
the local truncation error using the selection step size
algorithm [11]. Our proposed method showed better
results than those in the literature. The obtained results
included both faster performance and better edge detec-
tion.

RK7(5) is proposed to achieve two targets: First, to
increase the e�ciency of the time multiplexing CNN
simulator by decreasing the needed simulation time;
Second, to improve the quality of the edge detection
results. The organization of the paper is as follows:

section (2) presented CNN in details. In Section (3)
time multiplexing CNN simulator was discussed.
Section (4) presented the proposed method. Results of
the performance of the simulator and edge detection
were discussed in section (5). Section 6 discussed the
Conclusion.

2 Overview of CNN

Cellular neural network is a method used both the con-
cepts of neural networks and cellular automata in which
its cells are connected locally through their neighbors and
processed in parallel through their interactions [3].
The r-neighborhood of CNN is de�ned as in the follow-

ing:

Nr(i, j) = {C(k, l)} | max
i=1,M ;j=1,N

{|k − i| , |l − j|} ≤ r,

(1)
Where r > 0.
The expression "1− neighborhood" is expressed for

r = 1, " 2− neighborhood" is expressed for r = 2, "3−
neighborhood" is expressed for r = 3, etc. as illustrated
in Fig. (1).

(a) 1− neighbor-
hood

(b) 2− neighbor-
hood

(c) 3− neighborhood

Figure 1: Examples of r− neighborhood

Page 171

A two dimensional CNN with size equal to 4 has shown
in Fig. (2), where each cell has interactions with its nearby
cells locally for the 1− neighborhood case.

Figure 2: CNN structure with size = 4

The most important operators in CNN are the tem-
plates A and B which represent the output feedback and
the input control respectively. They control the behavior
of CNN in addition to the bias value I.

According to [3], the CNN equation is represented as in
the following:

C
dxij
dt

(t) = − 1

Rx
xij(t) +

∑
C(k,l)

A(i; j; k, l)ykl(t)+

∑
C(k,l)

B(i; j; k, l)ukl(t) + Iij (2)

Iyx controls the behavior of the following output function
yij :

f (x) =
1

2
(|x+ 1| − |x− 1|) (3)

Where,

Iyx =
1

Ry
f (xij) (4)

The output function yij = IyxRy can represented as in
the following:

yij = f (xij (t)) =
1

2
(|xij (t) + 1| − |xij (t)− 1|) (5)

The general form of CNN dynamics is represented by
the following equation:

dxij
dt

(t) = −xij(t) +
∑

C(k,l)

A(i; j; k, l)ykl(t)+

∑
C(k,l)

B(i; j; k, l)ukl(t) + Iij (6)

The di�erent values of the templates A and B and the
bias value I determines the type of application used in
CNN. For example, edge detection, noise removal, or pat-
tern recognition has di�erent template values.
The templates of CNN are space invariant i.e. for exam-

ple the template B(i, j; i + 1, j) is the same for all values
at (i, j).

3 Time Multipexing CNN simula-

tor

The time multiplexing CNN simulator [6] was proposed
to solve the problem of hardware implementation. From
hardware point of view, may be there are thousands of
pixels need to be implemented using the single layer CNN
simulator [5]. It is very di�cult to manage this problem
because of the limitation of the hardware. Hence the time
multiplexing algorithm was proposed to �x this complex
problem by dividing the input image into a number of sub-
images whose size equal to to the size of the block of CNN
processors. In this case, each block will process a sub-
image using single layer CNN simulator till it converges.
The algorithm continues for the next sub-images using the
same procedure till the whole image will be processed [6].
Although the algorithm succeeded to solve the problem of
the hardware limitation, some side e�ects appeared. The
border pixels for each sub-image have incorrect results be-
cause there is no information for the neighbors which re-
sults in two erroneous values. The �rst error is occurred
because of the e�ect of the template B. This error is com-
puted using the following formula [9]:

EB
ij =

3∑
i=1

bi,j+1sign (ui,j+1) (7)

Where bi,j+1 represents the values missed by using the
template B due to the absence of the input signals ui,j+1.
And sign() is the sign function which is used to represent
the pixel status either black or white. This error depends
on the input image and the template value.
The second error appeared as a result of the e�ect of the

template A. This error is evaluated using the following
equation:

EA
ij =

3∑
i=1

ai,j+1yi,j+1 (t) (8)

Since ai,j+1 is the error obtained due to the template A

Page 172

because of the absence of the values of yi,j+1 (t).
To minimize the errors EB

ij and EA
ij , we exploit the

advantage of CNN in which there is a local interaction
among neighboring cells. First, to minimize the error, EB

ij

, we chose a belt of pixels from the input image equals
to the radius of the neighborhood of CNN around each
sub-image. Second to minimize the error, EA

ij , the pixels
between adjacent sub-images were overlapped and each
cell in the border can interact with its neighbors as in-
terior cells. The minimum overlap width is twice of the
neighborhood's radius of the CNN [9].
Although overlap property improved the interaction

among neighboring cells, the simulation time increased.
Fortunately, the big chance of having the pixels of each
sub-image all black or all white helped in reducing the
simulation time nearly to the time consumed in the case
of using single layer CNN simulator. Since all black-block
or all white-block will be simulated one time, after con-
vergence all �nal states were saved in the memory. Every
time all black-block or all white-block encountered again ,
their �nal states are just restored from the memory since
there is no need for simulation again. The structure of
time multiplexing CNN simulator is demonstrated in Fig.
(3).

Figure 3: The structure of time multiplexing CNN simu-
lator [9]

The steps of the time multiplexing CNN algorithm [9]
with RK7(5) are summarized as follows:

1. Read input image

2. Divide the input image into a number of m blocks

3. Construct for each block, a belt of cells around it with
size equal to the radius of the neighborhood from the
input image

4. Between each two blocks construct an overlapped cells
with size equal to the twice of the radius of the neigh-
borhood

5. For each block, apply single layer CNN simulator [6]:

(a) Read block C

(b) Process all black-blocks or all white-blocks once
and after convergence, store their state values in
the memory

(c) for each black or white block encountered again,
just restore its state values from the memory

(d) If the block didn't converge yet, compute its new
state values using the equation (6) by applying
RK7(5)

(e) If the new state values are not the �nal states(
didn't converge), go to (a)

(f) Compute the error tolerance EA
ij and E

B
ij for the

templates A and B respectively for block C.

6. End

The most important point of the above steps will be the
proposed numerical integration algorithm RK7(5) that
will be presented in section (4.1). The main purpose of
this algorithm is to reduce the CPU time or simulation
time and to improve the edge detection results.

4 The numerical integration meth-

ods

Euler, RK-Gill [10] and RK-Butcher [1, 2] are three
numerical integration methods used in the literature to
solve the non linear di�erential equations which represent
CNN dynamics. Section (4.1) discussed the proposed
numerical integration algorithm RK7(5).

4.1 The numerical integration method
RK7(5)

RK7(5) [12] was proposed as a new technique used in
the time multiplexing CNN simulator[9] to improve the
performance of the time multiplexing CNN simulator
and edge detection results. The algorithm is based
on minimizing the local truncation error and choosing
an adaptive step size value using the selection step size
algorithm. The equations of RK7(5) [12] are shown below:

Page 173

kij1 = τf
′
(xij (nτ))

kij2 = τf
′
(xij (nτ)) +

1

18
kij1

kij3 = τf
′
(xij (nτ)) +

1

9
kij1

kij4 = τf
′
(xij (nτ)) +

1

24
kij1 +

1

8
kij2

kij5 = τf
′
(xij (nτ)) +

2183971

4000000
kij1

− 8340813

4000000
kij3 +

3968421

2000000
kij4

kij6 = τf
′
(xij (nτ))−

695768212

746374411
kij1

− 1803549175

7007942496
kij3 +

3474507053

6790877290
kij4

+
2188198899

15264927763
kij5

kij7 = τf
′
(xij (nτ))−

118949348557

8390623634
kij1

+
53094780276

9800512003
kij3 −

8415376229

2277049503
kij4

− 18647567697

10138317907
kij5 +

275514944893

11905950217
kij6

kij8 = τf
′
(xij (nτ))−

30828057951

7654644085
kij1

− 4511704

324729
kij3 +

16217851618

1651177175
kij4

+
282768186839

40694064384
kij5 −

104400780537

15869257619
kij6

+
5409241639

9600177208
kij7

kij9 = τf
′
(xij (nτ))−

133775720546

26753383835
kij1

+
49608695511

4066590848
kij3 −

5989647201

7901259813
kij4

− 48035527651

5727379426
kij5 +

86266718551

10188951048
kij6

− 7751618114

23575802495
kij7 +

2289274942

8464405725
kij8

The solution of RK7(5) is given below:

xij ((n+ 1) τ) = xij (nτ) +
597988726

12374436915
kij1 +

3138312158

11968408119
kij4 +

480882843

7850665645
kij5 +

988558885

3512253271
kij6 +

5302636961

26425940286
kij7 +

1259489433

12163586030
kij8 +

1016647712

23899101975
kij9

(9)

Our method is based on applying adaptive step size
selection method [4] in time multiplexing CNN simulator
using RK7(5).

The algorithm divides the input image into blocks
and single layer CNN simulator is applied for each
block. According to [4], The step size,h of p(q)−order
RK methods is computed using the error per unit step
(EPUS) [11] by using the following equation:

hn+1 = f1hn

(
tolerance

errn

) 1
q+1

, (10)

Where f1 is the factor of safety and hn+1 = xn+1 − xn
is evaluated according to the estimation of errn which is
approximated using the equation[4]:

errn '
yn − ŷn
hn

(11)

Since ynand ŷn are the estimated solutions of order pth
and qth respectively.

And tolerance represents the required tolerance.

If errn+1 ≤ tolerance, then yn+1 is applied otherwise,
Eq. (10) is recalculated by errn → errn+1.

So we propose Rk7(5) to get better results than those
in the literature by reducing the computation time and
improving the edge detection.

5 Simulation Results

The input image which is used for testing is the Mona Lisa
image. The edge detection results are shown in Fig. (4).
The input image and the edge detection results are shown
in Fig. (4a) and Fig. (4b) respectively.

(a) Input image (b) Output image

Figure 4: Edge detection results

The performane results are shown in Fig. (5) since
the simulation results are shown in Fig. (5a) and the
maximum step size for all techniques are shown in Fig.
(5b). The results obtained by simulating a small image of
Mona Lisa for edge detection.

Page 174

(a) Simulation time for 4 di�erent techniques

(b) Maximum h for 4 di�erent techniques:
1-Edge detection 2:Averaging template 3:Connected component

Figure 5: Performance results of the proposed method

From these results we notice that the value of the step
size h using our method is higher than those in the related
work. Hence the simulation time for the proposed method
is decreased. . We notice that the value of h is considered
to have a value to be increased to some range in order to
avoid the divergence status. On the other hand, the value
of h should be not very small because this implies more
computation time as in the case of using Euler method.

Method EA EB Local Truncation Error
Euler 0.785 0.885 0.7365

RK-Gill 0.676 0.764 0.6542
RK-Butcher 0.543 0.551 0.5754
RK 6(4) 0.329 0.428 0.457

Table 1: Results of the error tolerances EA, EB and Local
Truncation Error

Table (1) demonstrates that the results of the error
tolerances EA and EB and the local minimum truncation
error using RK7(5) are less than those in the literature.
The error tolerance represent the average of the error
tolerances of the blocks of the input image. Also the simu-
lation time is better than using RK-Gill and RK-Butcher
methods found in the literature. So these results prove
that our proposed method is promising when compared
with those in the literature.

So the proposed method improved the results found
in the literature by minimizing the error tolerances EA

and EB and the local truncation error for each step
which means that the obtained results using our proposed
method has a good impact in decreasing the CPU time
which is taken by the proposed simulator. In addition,
the edge detection results were better if they were com-
pared by the results found in the literature.

6 Conclusion

Our method used the selection step size algorithm to
get better results using RK7(5). The time multiplexing
CNN simulator using RK7(5) has shown better results for
both the simulation time and edge detection results. This
means that the performance of our method is better than
those in the literature. Also, the obtained results of the
error tolerances for the proposed method of time multi-
plexing CNN simulator is less than those found in the
literature. For future work, we are planning to present
more e�cient numerical integration algorithms which can
improve the performance of the simulator in addition to
the quality of the output image for edge detection.

References

[1] M. Bader. A comparative study of new trunca-
tion error estimates and intrinsic accuracies of some
higher order runge-kutta algorithms. Computers and
Biomedical Research Chemistry, pages 121�124, 1987.

[2] M. Bader. A new technique for the early detection of
sti�ness in coupled di�erential equations and applica-
tion to standard runge-kutta algorithms. Theoretical
Chemistry Accounts, pages 215�219, 1988.

[3] L. O. Chua and L. Yang. Cellular neural networks:
Theory and applications. IEEE Trans. Circuits and
Systems, 1988.

[4] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E.
Sedgwick. Comparing numerical methods for ordi-
nary di�erential equations. Comparing numerical
methods for ordinary di�erential equations, 9:603�
637, 1972.

[5] C.C. Lee and JP. de. Gyvez. Single-layer cnn simu-
lator. In IEEE International Symposium on Circuits
and Systems, 1994.

Page 175

[6] C.C. Lee and JP. de. Gyvez. Time-multiplexing cnn
simulator. In Proc. IEEE Int. Symposium on Circuits
and Syst., pages 407�410, Dec. 1994.

[7] K. Murugesan, S. Sekar, V. Murugesh, and J.Y. Park.
Numerical solution of an industrial robot arm con-
trol problem using the rk-butcher algorithm. Inter-
national Journal of Computer Applications in Tech-
nology, pages 132�138, 2004.

[8] V. Murugesh and K. Murugesan. Comparison of Nu-
merical Integration in Raster CNN Simulation, vol-
ume 3285. LNCS, Springer, 2004. 115-122.

[9] V. Murugesh and K. Murugesan. Simulation of time-
multiplexing cellular neural networks with numerical
integration algorithms. In Lecture Notes in Computer
Science, volume 3991, pages 457�464, 2006.

[10] S.C. Oliveira. Evaluation of e�ectiveness factor of
immobilized enzymes using rungekutta-gill method:
how to solve mathematical undetermination at parti-
cle center point? Bio Process Engineering, 20, 1999.

[11] L. F. Shampine. Some practical runge-kutta formulas.
Math. Comp., 46:135�150, 1986.

[12] CH. Tsitouras and S. N. Papakostas. Cheap error
estimation for runge�kutta methods. SIAM J. Sci.
Comput., 20(6):2067�2088, 1999.

Page 176

