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Abstract

In this paper a method is proposed by which any number not equal to zero can have an
infinite number of algebraic factorizations. A factorization method of radical solution of polynomial
equations is then presented. The method provides radical solution of polynomial equations of
degree than 4. As a demonstration the Bring-Jerrard quintic equation formula is derived by
factorization.
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1. Introduction

In number theory integer factorization is the decomposition of a composite number into a
product of smaller integers. In this research factorization will be broadened to decomposition to
algebraic numbers. The numbers that will be involved in factorization will include all categories of
numbers with the exception of zero.

The factorization method has been used with some measure of success to solve some
quadratic equations. This research examines the possibility of using the factorization method as a
complete method of solving algebraic equations. This requires some re-examination at the process
of factorizing numbers in general, symmetric equations in general and Galois Theory.

In this research a method of factorization will be presented in which a number can be
factorized into n algebraic factors. The major aim of doing this is to first to make some contribution
to algebraic number theory. As is quoted in Gauss sum Gedachtiniss (1856) by Sartorius von
Waltershausen Variants: Mathematics is the queen of the sciences and number theory is the queen
of mathematics.

In this research it will be shown that a number can be have infinite number of algebraic
factors.

An identity will be proposed by which this can be achieved. This knowledge will be used to
solve algebraic equations. It will also be used to demonstrate how we can easily obtain radical
solution of the Bring-Jerrard quintic equation.

2. Methodology
Consider the number a, not equal to zero. The following identity can be used to factorize it:
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a=b’— (b’ —a) = (b++/(b>—a))(b—/(b’—a))iabel

1

b+(b?—a) =c>—(c>— (b+/(b*—a))) = (<:+\/(c2 — (b+/®’ —a)))(c—\/(cz —(b+/(b*—a)))

(2)

Take the case a = 1.

1=(2° - (2 - = 2 +(2 -0)2- (2 -D)

1= (3 - (3 -1) = (3+ /(8 -D) 3 /(3°-1))

1= (101? — (1012 1) = (101++/(1012 ~1))(101— \/(102* 1))}

(101+ /(1022 —1)) =52 — (5 — (101+/(101° 1))

= (545 — (101+/{102° ~1) )(5 - |/5” — 101+ \/(101° ~1))

= (747 — (1014102 1) )(7 - /7% - 101+ | A01* ~ 1) )....

In the above example 1 is divisible to(2+4/(2°—1));(2—\(2*—1); B+ -1);

(101+4/(102* —1)) and so on. The number 1 is divisible to infinite number of algebraic numbers.
From equation 1 the a number a is divisible to some infinite set of algebraic

numbers, b+ «f(bz —a)

The above identity 1 has application in solving polynomial equations
Example 1

Solve the quadratic equation x* +2x+6 =0 by factorization
Solution

6=(2,)" ~(-5) = (%, +[(-5))(%%,—[-5))
2:%+%
X5 =_(%i\/@)

Example 2

Solve the cubic equation x®+2x+6=0 by factorization
Solution

6=(2,)" ~(-5) = (25 +J(-5)(%5~(-5))

(% +8) = ()"~ (%) ~ (% +J-5)

= (% + () - (% + B (% ()" - (%5 +[(5)

6= (2, + (B -2+ B (3~ ()"~ (%5 + D)~ (2" - (3 +[(5)
%o = %+ (3 - (24 + D)

L

Toxx

Example 4
Solve the Bring-Jerrard quintic equation x° +bx+c =0
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Solution

0= (04 - (05 -0) =% + (05" -} - [0 -c):
(B + 05 —0) = (B - () - (% + [(B5) <)
/A R VAN VAT YN (YA YA VAT
R T R A AR A AT D)
= (0 (O -0+ O~ O+ [ B4~ ~ (B4~ + |04~ + [ —c:

by + ()" —(/+J(/) —(/+W
= (O ~ ("~ (0% + () O+ |0 -+ B4 -
=(%6+\/«(%6)2—%+<%) —%+\/( b7 = (0 + (02 ~c))) x
(%6—\/(«%6)2—(%+(<%)2—(%+\/(%)2—<%+ b2 —c)):
x1=—(%6+\/(((%6)2—<%+<(%)2—(%+\/(%)2—(%+ B2 =)
xz=—(%6—\/(«%6)2—(%«%2—(%\/(%2—(% ARIIN)
=0 \/«/6) /) -+ O - + [ o)
k=0 J((/6> 47 -+~ (8 + b2 )

¢

X =—

X1X2 X3 X4

The above solution method can be extended to the general quintic equation and higher
degree polynomial equations.

3. Conclusion

A number can be decomposed into algebraic factors in an infinite number of ways.
The factorization method is a candidate method of solving algebraic equations.

Higher degree polynomial equations have radical solution.
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