Copyright © 2017 by Academic Publishing House Researcher s.r.o.

Published in the Slovak Republic Russian Journal of Mathematical Research. Series A Has been issued since 2015.

ISSN: 2410-9320 E-ISSN: 2413-7529 2017, 3(1): 29-33

DOI: 10.13187/rjmr.a.2017.1.29

www.ejournal30.com

A Mathematical Problem of Constructing a Model of a Stable Territorial Economic System

Aleksandr V. Volkov a, Tatyana A. Volkova-Goncharova a, Arsen R. Simonyan a, *

^a Sochi research center of the Russian Academy of Science, Russian Federation

Abstract

The sustainable development of territories today is the subject of numerous studies by russian and foreign researchers. But among the studies an insignificant part is devoted to constructing a mathematical model. In this paper, an attempt was made to construct a mathematical model of a stable territorial economic system, using the example of a tourist and recreational complex. To achieve the goal, the apparatus of the mathematical theory of inventory management was applied.

Keywords: stability, territorial economic system, tourism, recreation, the theory of inventory management.

1. Введение

В декабре 1983 г. Генеральный Секретарь ООН Хавьер Перес де Куэльяр инициировал создание Международная Комиссия по окружающей среде и развитию (МКОСР) во главе с Премьер-министром Норвегии Гро Харлем Брундтланд. Комиссия должна была анализировать состояние мировой окружающей среды и подготовить свои предложения по улучшению ситуации. В 1986 г. Комиссия на 42 Сессию Генеральной Ассамблеи ООН представила доклад «Наше общее будущее». В нем были сделаны основные выводы из 7 пунктов, которые в основном касаются экономической деятельности.

Экономический рост не признает границ, при нарушении которых может произойти мировая катастрофа. В экономической теории все границы задаются виде выраженных в денежной форме и не имеют прозрачной связи с состоянием и воспроизводством природной среды, не имеют связи с ее законами, что не дает возможности учесть угрозу разрушения резервуара с ресурсами. Следовательно, необходимы серьезные изменения в экономической теории, дающие возможность установить соизмеримые связи с окружающей человека средой.

Человеческая деятельность должна быть согласована с законами живой природы. Только в этом случае можно добиться всеобщего процветания – устойчивого развития. Таков общий лейтмотив выводов Комиссии. Что же такое устойчивое развитие в трактовке Международной Комиссии ООН?

E-mail addresses: aleksandr.v.volkov@ya.ru (A.V.Volkov),

benking@mail.ru (T. A. Volkova-Goncharova), oppm@mail.ru (A.R. Simonyan)

^{*} Corresponding author

2. Обсуждение

Устойчивое развитие включает две группы понятий:

- Понятия: потребность и возможность, необходимые для существования, то есть для сохранения и развития.
- Понятие: ограничения, обусловленные состоянием технологий и организацией общества, накладываемых на возможности удовлетворять потребности. В этом определении обращается внимание, на то, что должно сохраняться и, что должно изменяться (рис. 1):

Что сохраняется и что изменяется в условиях устойчивого развития?

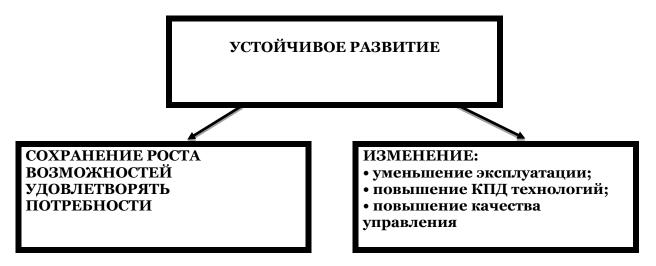


Рис .1. Устойчивое развитие

В 1987 году с стороны ООН был принят принцип устойчивого развития, который гласит: «Устойчивое развитие подразумевает удовлетворение потребностей современного поколения, не угрожая возможности будущих поколений удовлетворять собственные потребности.

Этот принцип должен стать центральным руководящим принципом ООН всех Правительств и министерств, частных компаний, организаций и предприятий». (Кузнецов и др., 2001)

Фактически речь идет не о немедленном прекращении экономического роста вообще, а о прекращении нерационального роста использования ресурсов окружающей среды.

Значимым элементом ресурсного потенциала территорий являются запасы, которые играют важную роль в деятельности любой территории, поскольку влияют на его конечные результаты, обеспечивают устойчивость функционирования в условиях конкурентной среды. Для достижения высоких результатов социально-экономической деятельности, необходима четко выстроенная, обоснованная и эффективная финансовая политика, а в частности налаженный механизм управления запасами.

Элементы механизма управления запасами позволяют, как конкретизировать и повышать адекватность процесса управления запасами территории, так и обосновать методический инструментарий оценки его эффективности.

В связи с вышеизложенным, была предпринята попытка разработки методики оптимизации уровня содержания на примере туристско-рекреационных территорий.

Модель. Для решения задач моделирования в туристско-рекреационной сфере можно использовать методы теории массового обслуживания (Симонян и др., 2013; Simonyan, 2011; Симонян, 2003; Simonyan, 2004), теории управления запасами (Прабху, 1984), кластерного анализа (Volkov, 2017) и др. В данной работе рассмотрим методы теории управления запасами.

Рассмотрим туристско-рекреационный комплекс с фондом $N=n_1+n_2+\cdots+n_k$, где n_i , $i=\overline{1,k}$ —фонд категории i. Пусть в отчётный период в данный комплекс направляется

запрос $X=x_1+x_2+\cdots+x_k$ клиентов, где $x_i,\ i=\overline{1,k}$ – количество запросов фондов категории

Предположим, что для фондов категории i:

- a_i прибыль, полученная от обслуживания клиентов;
- $-b_{i}$ -убыток от того, что фонд категории i простоял;
- $-c_i$ -недополученный доход при отказе обслуживания (все фондыданной категории

Очевидно, если $g_{n(x_i)}$ –функция прибыли для фондов категории i, то компоненты прибыли следующие:

По статье	Прибыль	
	$x_i \le n_i$	$x_i > n_i$
Обслуживание Простой Отказ	$ \begin{array}{c} a_i x_i \\ -b_i (n_i - x_i) \\ 0 \end{array} $	$a_i n_i$ O $-c_i(x_i - n_i)$

Следовательно,
$$g_n(x_i)$$
 имеет вид:
$$g_n(x_i) = \begin{cases} (a_i + b_i)x_i - b_i n_i & (x_i \leq n_i) \\ (a_i + c_i)n_i - c_i x_i & (x_i > n_i) \end{cases}$$
 Составим функцию суммарной прибыци нутём их

Составим функцию суммарной прибыли путём простого суммирования:

$$G_N(X) = \sum_{i=1}^{\kappa} g_{n_i}(x_i)$$

Если бы значение $X=(x_1,x_2,\cdots,x_k)$ было известно, то прибыль, конечно можно было бы максимизировать, выбирая $N = (n_1, n_2, \cdots, n_k) = X$. Однако спрос X изменчив и в действительности его можно рассматривать как случайную величину, так что вместо чистой прибыли придется иметь дело с ожидаемой прибылью

$$G_N = E[g_N(X)],$$

N нужно выбрать так, чтобы максимизировать G_N . Если считать, что прибыль фактически будет совпадать с долговстречающейся средней прибылью (а это интуитивное предположение составляет основу нашей теории), то максимизация G_N – разумная процедура.

Изменение ожидаемой прибыли при обслуживании еще одного клиента равно

$$G_{N+1}-G_N=\in [g_{N+1}(X)-g_N(X)]=\in [-b+(a+b+c)H(X-N)],$$
где \mathcal{H} —функция Хевисайда:

$$\mathcal{H}(X) = \begin{cases} 1 & (X > 0), \\ 0 & (X \le 0). \end{cases}$$

Таким образом, приращение ожидаемой прибыли равно

$$G_{N+1} - G_N = -b + (a + b + c) \in [\mathcal{H}(X - N)] =$$
 $= -b + (a + b + c)P(X > N),$
где $a = \sum_{i=1}^k a_i, \quad b = \sum_{i=1}^k b_i, \quad c = \sum_{i=1}^k c_i.$

$$-\frac{1}{2}h + (a + b + c)P(Y > N)$$

гле
$$a = \sum_{i=1}^{k} a_i$$
, $b = \sum_{i=1}^{k} b_i$, $c = \sum_{i=1}^{k} c_i$

Так как $\mathcal{H}\left(\mathbf{X}-N\right)$ –индикатор множества X>N. Для достаточно малых N эта величина положительна, но начиная c некоторого значения N, она становится отрицательной и первое значение N, для которого это имеет место, является оптимальным. Грубо говоря, оптимальное значение N -это корень уравнения $G_N \cong G_{N+1}$ или уравнение

$$P(X > N)^{\sim} \frac{b}{a+b+c}.$$

Для полного решения задач нужно знать P(X > N) как функцию N. Практически мы обычно используем информацию о прошлых обслуживаниях клиентов для получения оценки этой функции .Например,

P(X>N) можно было бы оценить непосредственно из наблюдаемой в течение длительного времени частоты тех случаев, когда потенциально возможное обслуживание клиентов превосходило N. Более тонкие методы оценки возможны, если из теоретических соображений получить ограничения на вид функции P(X>N).

3. Заключение

Таким образом, популярную в экономической теории задачу устойчивого развития территориальных экономических систем, можно превратить в математическую задачу оптимального управления запасами.

Литература

Кузнецов и др., 2001 — Кузнецов О.Л., Кузнецов П.Г., Большаков Б.Е. Устойчивое развитие: научные основы проектирования в системе природа — общество — человек. Дубна, 2001. 604 с.

Симонян и др., 2013 — Симонян А.Р., Симонян Р.А., Улитина Е.И., Ушаков В.Г. Стационарные времена ожидания в модели Клейнрока с нелинейной функцией приоритета // Известия Сочинского государственного университета. 2013. № 1-2. С. 26-42.

Simonyan, 2011 – Simonyan A.R., Simonyan R.A., Ulitina E.I. Waiting Time in the Elementary Multichannel Queue System with Different Intensity Service of Calls and with Expectation // European researcher. Series A. 2011. № 5-1 (7). pp. 533-536.

Симонян, 2003 — *Симонян А.Р., Симонян Э.А.* Оптимальное упорядочение параметров модели Клейнрока // Обозрение прикладной и промышленной математики. 2003. Т. 10. С. 23.

Simonyan, 2004 – Simonyan A.R., Ulitina E.I. A Theorem on the Convergence to a Stable Law in the M|G|1| ∞ Model // Russian Mathematical Surveys. 2004. T. 59. № 3. C. 589-590.

Прабху, 1984 – Прабху Н.У. Стохастические процессы теории запасов. М.: Мир, 1984. 184 с. Volkov, 2017 – Volkov A.V., Lopatina I.P., Simonyan A.R. System Model of Touristic Clusters (Architecture, Development, Interdependence) // Modeling of Artificial Intelligence, 2017, 4(1): 55-69.

References

Kuznetsov i dr., 2001 – Kuznetsov O.L., Kuznetsov P.G., Bol'shakov B.E. (2001). Ustoichivoe razvitie: nauchnye osnovy proektirovaniya v sisteme priroda – obshchestvo – chelovek [Sustainable development: the scientific basis of design in the system of nature – society – a person]. Dubna, 604 p.

Simonyan i dr., 2013 – Simonyan A.R., Simonyan R.A., Ulitina E.I., Ushakov V.G. (2013). Ctatsionarnye vremena ozhidaniya v modeli Kleinroka s nelineinoi funktsiei prioriteta [Stationary expectation times in the Kleinrock model with a nonlinear priority function]. *Izvestiya Sochinskogo gosudarstvennogo universiteta*. 2013. N^0 1-2. pp. 26-42.

Simonyan, 2011 – Simonyan A.R., Simonyan R.A., Ulitina E.I. (2011). Waiting Time in the Elementary Multichannel Queue System with Different Intensity Service of Calls and with Expectation. European researcher. Series A. № 5-1 (7). pp. 533-536.

Simonyan, 2003 – Simonyan A.R., Simonyan E.A. (2003). Optimal'noe uporyadochenie parametrov modeli Kleinroka [Optimal ordering of the parameters of the Kleinrock model]. Obozrenie prikladnoi i promyshlennoi matematiki. T. 10. pp. 23.

Simonyan, 2004 – Simonyan A.R., Ulitina E.I. (2004). A Theorem on the Convergence to a Stable Law in the M|G|1| ∞ Model. Russian Mathematical Surveys. T. 59. № 3. pp. 589-590.

Prabkhu, 1984 – *Prabkhu N.U.* (1984). Stokhasticheskie protsessy teorii zapasov [Stochastic processes of the theory of stocks]. M.: Mir, 184 p.

Volkov, 2017 – Volkov A.V., Lopatina I.P., Simonyan A.R. (2017). System Model of Touristic Clusters (Architecture, Development, Interdependence). Modeling of Artificial Intelligence, 4(1): 55-69.

Об одной математической задаче построения модели устойчивой территориальной экономической системы

Александр Владимирович Волков $^{\rm a}$, Татьяна Анатольевна Волкова-Гончарова $^{\rm a}$, Арсен Рафикович Симонян $^{\rm a}$, *

^а Федеральное государственное бюджетное учреждение науки Сочинский научноисследовательский центр Российской академии наук

Аннотация. Устойчивое развитие территорий сегодня является предметом многочисленных исследований российских и зарубежных исследователей. Но среди исследований незначительная часть посвящена построению математической модели. В данной работе была сделана попытка построения математической модели устойчивой территориальной экономической системы, на примере туристско-рекреационного комплекса. Для достижения цели был применен аппарат математической теории управления запасами.

Ключевые слова: устойчивость, территориальная экономическая система, туризм, рекреация, теория управления запасами.

33

^{*} Корреспондирующий автор Адреса электронной почты: aleksandr.v.volkov@ya.ru (А.В. Волков), benking@mail.ru (Т.А. Волкова-Гончарова), oppm@mail.ru (А.Р. Симонян)