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EXTENDED IDEALS

OF ALMOST DISTRIBUTIVE LATTICES

Noorbhasha Rafi and Ravi Kumar Bandaru

Abstract. The concept of extended ideals in an Almost distributive Lattice
is introduced and studied their properties.

1. Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean
algebra, a number of generalizations both ring theoretically and lattice theoreti-
cally have come into being. The concept of an Almost Distributive Lattice (ADL)
was introduced by Swamy and Rao [6] as a common abstraction of many existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other. In that paper, the concept of an ideal in an ADL
was introduced analogous to that in a distributive lattice and it was observed that
the set PI(L) of all principal ideals of L forms a distributive lattice. In [3], the
notion of extended filter of a filter associated to a subset of Rl−monoids is defined
and derived some properties. In this paper, we introduced the concept of extended
ideals in Almost distributive Lattices and studied their properties.

2. Preliminaries

First, we recall certain definitions and properties of ADLs that are required in
the paper.

We begin with ADL definition as follows.

Definition 2.1. ([5]) An Almost Distributive Lattice with zero or simply ADL
is an algebra (L,∨,∧, 0) of type (2, 2, 0) satisfying:

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),
2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

2010 Mathematics Subject Classification. 06D99,06D15 .
Key words and phrases. Almost Distributive Lattice(ADL), extended ideal, stable relative,

endomorphism.

357



358 RAFI AND RAVI KUMAR

3. (x ∨ y) ∧ y = y,
4. (x ∨ y) ∧ x = x,
5. x ∨ (x ∧ y) = x,
6. 0 ∧ x = 0 and
7. x ∨ 0 = x

for all x, y, z ∈ L.

Example 2.1. Every non-empty set X can be regarded as an ADL as follows.
Let x0 ∈ X. Define the binary operations ∨,∧ on X by

x ∨ y =

{
x if x ̸= x0

y if x = x0

x ∧ y =

{
y if x ̸= x0

x0 if x = x0.

Then (X,∨,∧, x0) is an ADL (where x0 is the zero) and is called a discrete ADL.

If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a 6 b if and only if a = a ∧ b
(or equivalently, a ∨ b = b), then 6 is a partial ordering on L.

Theorem 2.1 ([5]). If (L,∨,∧, 0) is an ADL, for any a, b, c ∈ L, we have the
following:

(1). a ∨ b = a ⇔ a ∧ b = b
(2). a ∨ b = b ⇔ a ∧ b = a
(3). ∧ is associative in L
(4). a ∧ b ∧ c = b ∧ a ∧ c
(5). (a ∨ b) ∧ c = (b ∨ a) ∧ c
(6). a ∧ b = 0 ⇔ b ∧ a = 0
(7). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(8). a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
(9). a 6 a ∨ b and a ∧ b 6 b
(10). a ∧ a = a and a ∨ a = a
(11). 0 ∨ a = a and a ∧ 0 = 0
(12). If a 6 c, b 6 c then a ∧ b = b ∧ a and a ∨ b = b ∨ a
(13). a ∨ b = (a ∨ b) ∨ a.

It can be observed that an ADL L satisfies almost all the properties of a dis-
tributive lattice except the right distributivity of ∨ over ∧, commutativity of ∨,
commutativity of ∧. Any one of these properties make an ADL L a distributive
lattice. That is

Theorem 2.2 ([5]). Let (L,∨,∧, 0) be an ADL with 0. Then the following are
equivalent:

1). (L,∨,∧, 0) is a distributive lattice
2). a ∨ b = b ∨ a, for all a, b ∈ L
3). a ∧ b = b ∧ a, for all a, b ∈ L
4). (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ L.

As usual, an element m ∈ L is called maximal if it is a maximal element in the
partially ordered set (L,6). That is, for any a ∈ L, m 6 a ⇒ m = a.
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Theorem 2.3 ([5]). Let L be an ADL and m ∈ L. Then the following are
equivalent:

1). m is maximal with respect to 6
2). m ∨ a = m, for all a ∈ L
3). m ∧ a = a, for all a ∈ L
4). a ∨m is maximal, for all a ∈ L.

As in distributive lattices [1, 2], a non-empty subset I of an ADL L is called
an ideal of L if a∨b ∈ I and a∧x ∈ I for any a, b ∈ I and x ∈ L. Also, a non-empty
subset F of L is said to be a filter of L if a ∧ b ∈ F and x ∨ a ∈ F for a, b ∈ F and
x ∈ L.

The set I(L) of all ideals of L is a bounded distributive lattice with least element
{0} and greatest element L under set inclusion in which, for any I, J ∈ I(L), I∩J is
the infimum of I and J while the supremum is given by I∨J := {a∨b | a ∈ I, b ∈ J}.
A proper ideal P of L is called a prime ideal if, for any x, y ∈ L, x ∧ y ∈ P ⇒
x ∈ P or y ∈ P . A proper ideal M of L is said to be maximal if it is not
properly contained in any proper ideal of L. It can be observed that every maximal
ideal of L is a prime ideal. Every proper ideal of L is contained in a maximal
ideal. For any subset S of L the smallest ideal containing S is given by (S] :=

{(
n∨

i=1

si) ∧ x | si ∈ S, x ∈ L and n ∈ N}. If S = {s}, we write (s] instead of (S].

Similarly, for any S ⊆ L, [S) := {x∨(
n∧

i=1

si) | si ∈ S, x ∈ L and n ∈ N}. If S = {s},

we write [s) instead of [S).

Theorem 2.4 ([5]). For any x, y in L the following are equivalent:
1). (x] ⊆ (y]
2). y ∧ x = x
3). y ∨ x = y
4). [y) ⊆ [x).

For any x, y ∈ L, it can be verified that (x]∨(y] = (x∨y] and (x]∧(y] = (x∧y].
Hence the set PI(L) of all principal ideals of L is a sublattice of the distributive
lattice I(L) of ideals of L.

Theorem 2.5 ([4]). Let I be an ideal and F a filter of L such that I ∩ F = ∅.
Then there exists a prime ideal P such that I ⊆ P and P ∩ F = ∅.

3. Extended ideals of ADLs

The concept of extended ideals of an ideal associated to a subset of an ADL is
defined and related properties are investigated.

Now, we begin with the following.

Definition 3.1. Let I be an ideal of an ADL L and A ⊆ L. We define the
extended ideal of I associated with B as follows

EI(A) = {x ∈ L | x ∧ a ∈ I, for all a ∈ A}.
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We denote EI(a) instead of EI({a}).

Theorem 3.1. Let I be an ADL L and A ⊆ L. Then EI(A) is an ideal of L
and I ⊆ EI(A).

Proof. Clearly, 0 ∈ EI(A). Then EI(A) is a non-empty set. Let x, y ∈ EI(A).
Then x ∧ a ∈ I and y ∧ a ∈ I, for all a ∈ A. Since I is an ideal of L, we get
(x ∧ a) ∨ (y ∧ a) ∈ I and hence (x ∨ y) ∧ a ∈ I. Therefore x ∨ y ∈ EI(A). Let
x ∈ EI(A) and r ∈ L. Then x ∧ a ∈ I, for all a ∈ A. Since I is an ideal of L, we
have x ∧ a ∧ r ∈ I and hence x ∧ r ∧ a ∈ I. Hence x ∧ r ∈ EI(A). Therefore EI(A)
is an ideal of L. Let x ∈ I. Since I is an ideal of L, we have x∧x ∈ I, for all a ∈ A.
Therefore x ∈ EI(A). Hence I ⊆ EI(A). �

Definition 3.2. An ideal I of an ADL L is said to be a stable relative to a
subset B of L if EI(B) = I.

Theorem 3.2. Let I, J be two ideals of L, and B, C ⊆ L. Then

1. If B ⊆ C then EI(C) ⊆ EI(B)
2. If I ⊆ J then EI(B) ⊆ EJ(B)
3. EI(B) = L if and only if B ⊆ I
4. B ⊆ EI(EI(B))
5. If I ⊆ J then EI(J) ∩ J = I
6. EI(EI(B)) ∩ EI(B) = I
7. If m is any maximal element of L with m ∈ B then I is stable relative to

B
8. EI(B) = EI((B]), where (B] is the ideal generated by B.

Proof. 1. Assume that B ⊆ C. Let x ∈ EI(C). Then x ∧ c ∈ I, for all c ∈ C.
That implies x ∧ b ∈ I, since B ⊆ C. Therefore EI(C) ⊆ EI(B).

2. Assume that I ⊆ J. Let x ∈ EI(B). Then x ∧ b ∈ I, for all b ∈ B. That
implies x ∧ b ∈ J and hence x ∈ EJ(B). Therefore EI(B) ⊆ EJ(B).

3. Assume that EI(B) = L. Let b ∈ B. Then b ∈ EI(B). That implies b∧ b ∈ I
and hence b ∈ I. Therefore B ⊆ I. Assume that B ⊆ I. Let x ∈ L and b ∈ B. Then
x ∧ b ∈ I. That implies x ∈ EI(B) and hence L ⊆ EI(B). Therefore EI(B) = L.

4.Let x ∈ B and y ∈ EI(B). Then y ∧ x ∈ I. That implies x ∧ y ∈ I. Since
y ∈ EI(B), we have x ∈ EI(EI(B)). Therefore B ⊆ EI(EI(B)).

5. Assume that I ⊆ J. Let x ∈ EI(J) ∩ J. Then x ∈ EI(J) and x ∈ J. That
implies x ∈ I. Therefore EI(J) ∩ J = I.

6. Let x ∈ EI(EI(B)) ∩ EI(B). Then x ∈ EI(EI(B)) and x ∈ EI(B). that
implies x ∈ I. conversely, assume that x ∈ I. Then x∧y ∈ I, for all y ∈ EI(B). Since
I ⊆ EI(B), we get that x ∈ EI(EI(B))∩EI(B). Therefore I = EI(EI(B))∩EI(B).

7. Let m be any maximal element of an ADL L with m ∈ B. we prove that
I = EI(B). Clearly, we have that I ⊆ EI(B). Let x ∈ EI(B) then x ∧ b ∈ I, for
all b ∈ I. That implies x ∧ m ∈ I and hence m ∧ x ∈ I. Therefore x ∈ I. Thus
I = EI(B).
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8. Since B ⊆ (B], we have that EI((B]) ⊆ EI(B). conversely, let x ∈ EI(B).

Then x ∧ b ∈ I, for all b ∈ B. Let z ∈ (B]. Then we can write (
n∨

i=1

ci) ∧ z = z, for

some ci ∈ B, and n ∈ N. Now

x ∧ z = x ∧ (c1 ∨ c2 ∨ · · · ∨ cn) ∧ z

= (x ∧ z ∧ c1) ∨ (x ∧ z ∧ c2) ∨ (x ∧ z ∧ c3) ∨ · · · ∨ (x ∧ z ∧ cn) ∈ I,

since x ∧ z ∧ ci ∈ I, for 1 6 i 6 n. Therefore x ∈ EI((B]) and hence EI(B) ⊆
EI((B]). Thus EI(B) = EI((B]). �

Corollary 3.1. Let I, J be ideals of an ADL L and B,C ⊆ L. Then

1. EI(I) = EI(0) = EI(EI(B)) ∩B = L;

2. EI(B) = EI(EI(EI(B)));

3. I is stable relative to the ∅;
4. EEI(B)(C) = EEI(C)(B);

5. If I ⊆ B then (B] ∩ EI((B]) = (B].

Corollary 3.2. Let I be an ideal of an ADL L and B ⊆ L. Then the following
conditions are equivalent:

1. I is stable relative to B;

2. I is stable relative to (B];

3. EI(EI(B)) = L.

Theorem 3.3. Let P be a prime ideal and EP (B), a proper ideal of an ADL
L. Then P is stable relative to B.

Proof. Let x ∈ EP (B). Then x ∧ b ∈ P for all b ∈ B. Since P is prime, we
get x ∈ P or b ∈ P. If b ∈ P, Then B ⊆ P and hence EP (B) = L, which is a
contradiction. Therefore b /∈ P. So that x ∈ P. Thus EP (B) = P. �

Theorem 3.4. Let M be a maximal ideal and EM (B) be a proper ideal of an
ADL L. Then M is a stable relative to B

Theorem 3.5. Let B ⊆ C ⊆ L and I be an ideal of an ADL L. If I is stable
relative to B, then I is a stable relative to C.

Proof. Assume that I is a stable relative to B. That is I = EI(B). By theorem
3.2, we get that I ⊆ EI(C) ⊆ EI(B) = I. Therefore EI(C) = I. �

Proposition 3.1. 1. If {Ii}i∈∆ is a family of ideals of an ADL L and B ⊆ L
then ∩

i∈∆

EIi(B) = E ∩
i∈∆

Ii(B).

2. If {Ii}i∈∆ is a chain of ideals of an ADL L and B ⊆ L then∪
i∈∆

EIi(B) = E ∪
i∈∆

Ii(B).
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Proof. Let {Ii}i∈∆ be a family of ideals of an ADL L and B ⊆ L. Now,
x ∈

∩
i∈∆

EIi(B) ⇔ x ∈ EIi(B), for all i ∈ ∆ ⇔ x∧ b ∈ Ii, for all b ∈ B and i ∈ ∆ ⇔

x ∧ b ∈
∩
i∈∆

Ii, for all b ∈ B ⇔ x ∈ E ∩
i∈∆

(Ii)(B). Therefore
∩
i∈∆

EIi(B) = E ∩
i∈∆

Ii(B).

Similarly, we get that
∪
i∈∆

EIi(B) = E ∪
i∈∆

Ii(B), when {Ii}i∈∆ is a chain of

ideals of an ADL L. �

Theorem 3.6. Let I, J be ideals of L and B ⊆ L. Then

L/θEI∩J (B) = L/θEI(B) ∩ L/θEJ (B),

where

L/θEI(B) ∩ L/θEJ (B) = {x/θEI(B) ∩ y/θEJ (B) | x/θEI(B) ∩ y/θEJ (B) ̸= ∅}.

Proof. Let x/θEI∩J (B) ∈ L/θEI∩J (B). Then

x/θEI∩J (B) = {y ∈ L | (x, y) ∈ θEI∩J (B)}
= {y ∈ L | a ∨ x = a ∨ y, for some a ∈ EI∩J (B)}
= {y ∈ L | a ∨ x = a ∨ y, for some a ∈ EI(B) ∩ EJ (B)}
= x/θEI(B) ∩ x/θEJ (B) �

Theorem 3.7. Let I be ideal of ADL L1 and J be an ideal of ADL L2 and
B1 ⊆ L1, B2 ⊆ L2. Then EI×J(B1 ×B2) = EI(B1)× EJ(B2).

Proof. Now,

EI×J(B1 ×B2) = {(x, y) ∈ L1 × L2 | (x, y) ∧ (b, c) ∈ I × J,

for all

(b, c) ∈ B1 ×B2} = {(x, y) ∈ L1 × L2 | (x ∧ b, y ∧ c) ∈ I × J

for all

b ∈ B1 and c ∈ B2} = {(x, y) ∈ L1 × L2 | x ∧ b ∈ I and y ∧ c ∈ J

for all

b ∈ B1, c ∈ B2} = {(x, y) ∈ L1 × L2 | x ∈ EI(B1)

and

y ∈ EJ(B2)} = EI(B1)× EJ (B2).

�

Definition 3.3. A non-empty subset A of an ADL L, I, an ideal of L and
f an endomorphism. We define the f−extended ideal of I with respect to A as

follows Ef
I (A) = {x ∈ L | f(x) ∧ a ∈ I, for all a ∈ A}.

Lemma 3.1. Ef
I (A) is an ideal of an ADL L.
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Proof. Since f(0) = 0, we have f(0) ∧ a = 0 ∧ a = 0 ∈ I, for all a ∈ A.

Therefore Ef
I (A) is a non-empty set. Let x, y ∈ Ef

I (A). Then f(x) ∧ a ∈ I and
f(y)∧a ∈ I, for all a ∈ A. Now f(x∨y)∧ = (f(x)∨f(y))∧a = (f(x)∧a)∨(f(y)∧a) ∈
I, since I is an ideal of L. Therefore x ∨ y ∈ Ef

I (A). Let x ∈ Ef
I (A) and r ∈ L.

Then f(x)∧a ∈ I, for all a ∈ A. Now, f(x∧x)∧a = f(x)∧ f(r)∧a ∈ I. Therefore

x ∧ r ∈ Ef
I (A) and hence Ef

I (A) is an ideal of an ADL L. �

Theorem 3.8. Let I, J be ideals of an ADL L, f be an endomorphism and
non-empty subsets A,A′ of L. Then we have the following:

1. if I ⊆ J then Ef
I (A) ⊆ Ef

J (A);

2. if A ⊆ A′ then Ef
I (A

′) ⊆ Ef
I (A);

3. Ef
I (

∪
i∈∆

Ai) =
∩
i∈∆

Ef
I (Ai);

4. Ef
I (A) =

∩
a∈A

Ef
I (a);

5. Ef∩
i∈∆

Ii
(A) =

∩
i∈∆

Ef
Ii
(A);

6. Ef
I ((A]) = Ef

I (A);

7. Ker f ⊆ Ef
{0}(A) and Ef

{0}(L) = Ker f.

Proof. 1. Assume that I ⊆ J. Let x ∈ Ef
I (A). Then f(x) ∧ a ∈ I, for all

a ∈ A. That implies f(x) ∧ a ∈ J, for all a ∈ A. Therefore x ∈ Ef
J (A) and hence

Ef
I (A) ⊆ Ef

J (A). 2. Assume that A ⊆ A′. let x ∈ Ef
I (A

′). Then f(x)∧ a ∈ I for all

a ∈ A′. That implies f(x) ∧ a ∈ I, for all a ∈ A and hence x ∈ Ef
I (A). Therefore

Ef
I (A

′) ⊆ Ef
I (A).

3. Clearly, we have that Ai ⊆
∪
i∈∆

Ai, for all i ∈ ∆. By (2), we have

Ef
I (

∪
i∈∆

Ai) ⊆
∩
i∈∆

Ef
I (Ai). Let x ∈

∩
i∈∆

Ef
I (Ai). Then x ∈ Ef

I (Ai), for all i ∈ ∆.

That implies f(x) ∧ a ∈ I, for all a ∈ Ai. That implies f(x) ∧ a ∈ I, for all

a ∈
∪
i∈∆

Ai and hence x ∈ Ef
I (

∪
i∈∆

Ai). Therefore
∩
i∈∆

Ef
I (Ai) ⊆ Ef

I (
∪
i∈∆

Ai). Thus

Ef
I (

∪
i∈∆

Ai) =
∩
i∈∆

Ef
I (Ai).

4. Let x ∈ Ef
I (A). Then f(x) ∧ a ∈ I, for all a ∈ A. That implies x ∈

Ef
I ({a}), since {a} ⊆ A. Therefore x ∈

∩
a∈A

Ef
I ({a}). Hence Ef

I (A) ⊆
∩

a∈A

Ef
I ({a}).

Conversely, let x ∈
∩

a∈A

Ef
I ({a}). Then x ∈ Ef

I ({a}), for all a ∈ A. That implies

f(x) ∧ a ∈ I, for all a ∈ A. Therefore x ∈ Ef
I (A) and hence

∩
∈A

Ef
I ({a}) ⊆ Ef

I (A).

Thus Ef
I (A) =

∩
a∈A

Ef
I ({a}).
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5. Now x ∈ Ef∩
i∈∆

Ii
(A) ⇔ f(x) ∧ a ∈

∩
i∈∆

Ii, for all a ∈ A ⇔ f(x) ∧ a ∈ Ii, for

all i ∈ ∆ ⇔ x ∈ Ef
Ii
(A), for all i ∈ ∆ ⇔ x ∈

∩
i∈∆

Ef
Ii
(A). Therefore Ef∩

i∈∆

Ii
(A) =∩

i∈∆

Ef
Ii
(A).

6. Clearly, we have A ⊆ (A]. Then Ef
I ((A]) ⊆ Ef

I (A). let x ∈ Ef
I (A). Then

f(x) ∧ a ∈ I, for all a ∈ A. Since A ⊆ (A], we get that a ∈ Ef
I ((A]). Therefore

Ef
I (A) ⊆ Ef

I ((A]).
7. Let x ∈ Ker f. Then f(x) = 0. That implies f(x) ∧ a = 0 ∈ {0}, for all

a ∈ A. Therefore x ∈ Ef
{0}(A). Hence Ker f ⊆ Ef

{0}(A). Let x ∈ Ef
{0}(L). Then

f(x) ∧ a ∈ {0}, for all a ∈ L. That implies f(x) ∧ a = 0. In particular, taking

a = f(x), we get that f(x) = 0 and hence x ∈ Ker f. therefore Ef
{0}(L) ⊆ Ker f.

Conversely, let x ∈ Ker f. Then f(x) = 0. That implies f(x) ∧ a = 0 ∈ {0}, for
all a ∈ A. Therefore x ∈ Ef

{0}(L) and hence Ker f ⊆ Ef
{0}(L). Thus Ker f =

Ef
{0}(L). �

Theorem 3.9. Let I be an ideal of an ADL L, f be an endomorphism of L.
Then for any a, b ∈ L, we have the following:

1. If a 6 b then Ef
I (b) ⊆ Ef

I (a)

2. Ef
I (a ∨ b) = Ef

I (a) ∩ Ef
I (b).

Proof. 1. Assume that a 6 b. Let x ∈ Ef
I (b). Then f(x) ∧ b ∈ I. That

impliesf(x)∧a = f(x)∧a∧ b ∈ I and hence x ∈ Ef
I (a). Therefore E

f
I (b) ⊆ Ef

I (a).

2. We prove that Ef
I (a∨b) ⊆ Ef

I (a)∩Ef
I (b). Conversely, let x ∈ Ef

I (a)∩Ef
I (b).

Then f(x)∧a ∈ I and f(x)∧b ∈ I. That implies (f(x)∧a)∨(f(x)∧b) ∈ I and hence

f(x) ∧ (a ∨ b) ∈ I. Therefore x ∈ Ef
I (a ∨ b). Thus Ef

I (a ∨ b) = Ef
I (a) ∩ Ef

I (b). �
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