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A NOTE ON DEGREE DISTANCE INDEX

Rakshith B. R.

Abstract. In this note, we give an upper bound for degree distance index of
a graph in terms of vertex Padmakar-Ivan index, first Zagreb index, diameter

and number of triangles. Also, we give a lower bound for degree distance index
of a graph in terms of vertex Padmakar-Ivan index and number of triangles.

1. Introduction

All graphs considered in this paper are simple, connected and finite. Let G be
a graph with vertex set V (G) and edge set E(G). The length of a shortest path
between two vertices u and v in G is known as the distance between the vertices
u and v. It is denoted by d(u, v). The maximum of all distances between any
pair of vertices of G is known as the diameter of G and we denote the diameter of
a graph G by D. The neighborhood set of a vertex u, denoted by N(u) is a set
consisting of all vertices of G that are adjacent with u in G. The cardinality of the
neighborhood set of a vertex u is known as the degree of u in G and is denoted by
d(u). In 1972, Gutman and Trinajstić [8] introduced a graph invariant called the
first Zagreb index M1, which is defined as follows:

M1 =
∑

uv∈E(G)

[d(u) + d(v)].

The papers [7] and [12] marked the 30th anniversary of the first Zagreb index.
Summarized mathematical and chemical properties of the first Zagreb index can
be found in these papers. The status of a vertex or the total distance of a vertex

u ∈ G is denoted by σ(u), i.e., σ(u) =
∑

v∈V (G)

d(u, v). For e = uv ∈ E(G), ne(u)

denotes the number of vertices in G, whose distance from u is smaller than the
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distance from v. The vertex Padmakar-Ivan index [10] of a graph G is denoted by
PI and is defined as

PI =
∑

e=uv∈E(G)

[ne(u) + ne(v)].

The degree distance index of a graph G, denoted by DD(G), is defined as

DD(G) =
∑

{u,v}⊂V (G)

[d(u) + d(v)]d(u, v).

The degree distance index of a graph G was introduced independently by Dobrynin,
Kochetova [5] and Gutman [6]. In [5], it was conjectured that for a graph G on n

vertices, DD(G) 6 n4

32
+O(n3). Later in [13], Tomescu disproved this conjecture,

in fact he showed the existence of graphs on n vertices having
n4

27
+O(n3) as its

degree distance and also conjectured that DD(G) 6 n4

27
+O(n3). In the same

paper he confirmed the conjecture on a lower bound for the degree distance made
by Dobrynin and Kochetova in [5]. Ten years later, Tomescu’s conjecture was
settled, see [4, 11]. In literature, several bounds for degree distance in terms of
various graph theoretical parameters like order, minimum degree, diameter, edge-
connectivity, Zagreb indices were obtained, see [1, 2, 3, 9, 14]. Motivated by
these, in this note, we give an upper bound for degree distance index of a graph
in terms of vertex Padmakar-Ivan index, first Zagreb index, diameter and number
of triangles. Also, we give a lower bound for degree distance index of a graph in
terms of vertex Padmakar-Ivan index and number of triangles.

2. Main Results

In the following theorem, we give a new upper bound for degree distance index.
We denote by t, the number of triangles in G.

Theorem 2.1. Let G be a graph with n vertices and m edges. If D > 2, then

DD(G) 6 PI − 2(D − 1)[M1 − 3t]−m(D2 − (2n+ 5)D + 10).

Equality holds if and only if D = 2.

Proof. From the definition of degree distance index, we have

DD(G) =
∑

{u,v}⊂V (G)

[d(u) + d(v)]d(u, v)

=
∑

u∈V (G)

d(u)σ(u)

=
∑

uv∈E(G)

[σ(u) + σ(v)].(2.1)
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For e = uv ∈ E(G), we have

σ(u) + σ(v) = 2σ(u) + σ(v)− σ(u)

= 2σ(u) + ne(u)− ne(v)

6 2σ(u)− 2d(v) + ne(u) + ne(v) + 2|N(u) ∩N(v)|,(2.2)

since ne(v) > d(v)− |N(u) ∩N(v)|.

Also

σ(u) 6 d(u) + 2 [d(v)− |N(u) ∩N(v)| − 1] + 3 + 4 + . . .+D − 1

+D [n−D − d(u)− d(v) + |N(u) ∩N(v)|+ 3]

= |N(u) ∩N(v)|(D − 2)− d(u)(D − 1)− d(v)(D − 2)

− 1

2
(D2 − (2n+ 5)D + 10).(2.3)

Using (2.2) and (2.3) in (2.1), we get

DD(G) 6
∑

e=uv∈E(G)

{2(D − 1)[|N(u) ∩N(v)| − d(u)− d(v)]

− (D2 − (2n+ 5)D + 10) + ne(u) + ne(v)}

= 2(D − 1)

 ∑
e=uv∈E(G)

|N(u) ∩N(v)| −
∑

e=uv∈E(G)

[d(u) + d(v)]


+

∑
e=uv∈E(G)

[ne(u) + ne(v)]−m(D2 − (2n+ 5)D + 10).

Therefore,

DD(G) 6 PI − 2(D − 1)[M1 − 3t]−m(D2 − (2n+ 5)D + 10).

Moreover, equality holds if and only if the equalities in (2.2) and (2.3) holds. Thus,
for equality it is necessary that if uv ∈ E(G) and w /∈ N(v), then either d(u,w) =
d(v, w) or d(v, w) = d(u,w) + 1. If D > 3, for equality it is also necessary that
d(u,w) > 3 whenever w /∈ N(v) and w /∈ N(u). Now, if D > 3 and w1w2 . . . , wD+1

is a diametrical path in G, then for u = w1 and v = w2, we have d(v, wD+1) = D−1
and for u = w2 and v = w1, we have w4 /∈ N(v), N(u) and d(u,w4) = 2. Thus, for
equality one should have D 6 2. Suppose D = 2, then it is easy to see that the
equality in (2.3) holds and for uv ∈ E(G) and w /∈ N(v), we have either d(u,w) = 1
or d(u,w) = d(v, w) = 2. This completes the proof. �

The following corollary follows immediately from the above theorem and the
fact that PI index of a bipartite graph with n vertices and m edges is nm.
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Corollary 2.1. Let G be a bipartite graph with n vertices and m edges. Sup-
pose D > 2, then

DD(G) 6 nm− 2(D − 1)M1(G)−m(D2 − (2n+ 5)D + 10).

Equality holds if and only if D = 2.

Now, we give a lower bound for degree distance index of a graph.

Theorem 2.2. Let G be a graph. Then

DD(G) > 4m(n− 1)− PI − 6t.

Equality holds if and only if D 6 2.

Proof. For uv ∈ E(G), we have

d(u,w)− 1 6 d(v, w) for all w ∈ V (G).

Thus, for uv ∈ E(G),

σ(u) + σ(v) > 2σ(u) + 2(d(u)− |N(u) ∩N(v)|)− (ne(u) + ne(v))(2.4)

and

σ(u) > 2(n− 1)− d(u).(2.5)

Using (2.4) and (2.5) in (2.1), we obtain

DD(G) >
∑

uv∈E(G)

{4(n− 1)− 2|N(u) ∩N(v)| − (ne(u) + ne(v))}

= −
∑

uv∈E(G)

[ne(u) + ne(v)]− 2
∑

uv∈E(G)

|N(u) ∩N(v)|+ 4m(n− 1)

= −PI − 6t+ 4m(n− 1).

Moreover, the equality holds if and only if D 6 2 and equality in (2.4) holds. For
D 6 2, it is easy to check that the equality in (2.4) holds. This completes the
proof. �

The following corollary follows immediately from the above theorem.

Corollary 2.2. Let G be a bipartite graph with n vertices and m edges. Then

DD(G) > m(3n− 4).

Equality holds if and only if D 6 2.
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