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ON YANG MEANS III
Edward Neuman

ABSTRACT. Optimal inequalities involving the p-Yang means are established.
Bounding quantities are either the arithmetic or geometric or the harmonic
combinations of the p-geometric and the p-quadratic means.

1. Introduction

Recently Z. -H Yang [24] introduced two bivariate means denoted in the sequel
by V and U. For the sake of presentation we include below explicit formulas for
these means.

Throughout the sequel the letters ¢ and b will stand for two positive and un-
equal numbers. The Yang means of a and b are defined as follows:

(1.1) V(a,b) = — a__l ba >
v/2sinh (m)

and

(1.2) Ula,b) = a- ba —

Vatan™! (\/TW)'

These means have been studied extensively in [24, 25] and recently in [16, 17].

This paper is a continuation of a research initiated in [16, 17] and is orga-
nized as follows. Definitions of other bivariate means utilized in this work are given
in Section 2. List of those means include two Seiffert means, logarithmic mean,
Neuman-Sandor mean and the Schwab-Borchardt mean SB. The latter plays a
crucial role in our presentation. Concept of the p-mean is recalled in Section 3.
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114 E. NEUMAN

Therein we include some facts about the p-means. Optimal inequalities involving
the p-means U, and V,, which are derived, respectively, from the Yang means V'
and U established in Section 4. The lower and upper bounds are either the convex
arithmetic combination or the convex geometric combination or the convex har-
monic combination of the p-means derived from the geometric and the quadratic
means of ¢ and b.

2. Definitions and preliminaries
Recall that the unweighted arithmetic mean of a and b is defined as

A:aer'
2

Other unweighted bivariate means used in this paper are the harmonic mean H,
geometric mean G, root-square mean (quadratic mean) ) and the contra-harmonic
mean C which are defined as follows (cf. [2])

2ab a? 4+ b? a® 4+ b?
(2.1) H_a+b7 G=vVab, Q= 5 C= P
Let
a—2>b
2.2 = .
(2:2) v a+b

Clearly 0 < |v| < 1. One can easily verify that the means defined in (2.1) all can
be expressed in terms of A and v. We have

H=A(1-v%, G=AV1-12
Q=AV1+v2, C=A1+v%).

Other bivariate means utilized in this paper include the first and the second Seiffert
means, denoted by P and T, respectively, the Neuman-Sdndor mean M, and the
logarithmic mean L. Recall that

(2.3)

P=A N l_}l , T'= At Ilil s
(2.4) sn; v anv v
sinh™ " v tanh™ v

(see [21], [22], [19]). All the means mentioned above are comparable. It is known
that

(2.5) H<G<L<P<A<M<T<@<C

(see, e.g., [19]).
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The four means listed in (2.4) are special cases of the Schwab-Borchardt mean
SB which is defined as follows

02 _ 2
VO
cos~1(a/b) if a<b,
SB(a,b) =SB =
212
-0 i h<a

cosh™(a/b)

(see, e.g., [1], [3]). This mean has been studied extensively in [11], [19], and [20].
It is well known that the mean SB is strict, nonsymmetric and homogeneous of
degree one in its variables.
It has been proven in [19] that
P=S$B(G,4), T=SB(A,Q),

(2.6) M =SB(Q,A), L=SB(A,G).

Yang means can also be represented in terms of the Schwab-Borchardt mean. We
have

(2.7) V =5B(Q,G) and U=SB(G,Q)

(see [16]).
The following chain of inequalities

(2.8) L<V<P<U<M<T

is known (see [16]).
For the sake of presentation we include new formulas for means SB. We have
18]

sinr tanr

=z if 0<x <y,
r r
(2.9) SB(x,y) =SB =
sinh s tanhs .
Y =z if y<ua,
s s
where

(2.10) cosr=ux/y it <y and coshs =z/y it x>
Clearly
0<r<ro, where ro = max{cos ' (z/y) : 0 <z < y}

and

0 < s < so, where so = max{cosh™*(z/y) : © > y > 0}.
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3. Definition and basic properties of the p - means

We begin this section with a simple construction of a family of bivariate means
which depend on the parameter p which satisfies |[p| < 1. This idea has been
introduced in author’s paper [13].

First two nonnegative numbers w; and wsy are defined as follows:

_1+p _1-p

T2 T2

Clearly w; + we = 1. We associate with the pair (a,b) a pair of positive numbers
(z,y), where

(3.1) w1 W2

(3.2) T = wia+ wsb, y=wib+ wea.

Thus = and y are the convex combinations of a and b. One can easily verify that
a<zr<y<bifa<borb<y<z<aifb<a.

For the sake of presentation let N stand for a bivariate symmetric mean. We
define a mean N,(a,b) = N, as follows

(3.3) Ny(a,b) = N(z,y).

We call the mean N, the p-mean or the p-mean generated by V.
For the reader’s convenience we present now some elementary properties of the
p-means. It follows (3.3), (3.1), and (3.2) we see that

N_p(a,b) = N(y,x) = N(z,y) = Np(a,b).
Thus the function p —+ N, is an even function. To this end we will assume that
0 < p < 1. It follows from (3.1) and (3.2) that
(3.4) Nog=A, N;=N.
Moreover, the function p — N, is strictly decreasing if N < 4, i.e.,
(3.5) Ni <N, < Ny
or is strictly increasing if N > A, i.e.,
(3.6) No < N, < Ni.

We now present formulas for the p-means. Let us begin with the case when N = A.
We have
A, = A,(a,b) = A(z,y) = A.

Thus we shall always write A instead of A, when no confusion would arise. To
obtain the p-versions of the four means listed in (2.3) let us introduce a quantity
u, where

T —y

T+ y'

(3.7) u =

Using (3.2) and (2.2) we obtain
(3.8) u = pv.
Since 0 < |v|<1,0< Jul<p<1
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Formulas for the p-means derived from means listed in (2.3) read as follows

H,=A(l-4%), G,=AV1—u?
Qp=AV1+u2, C,=A(1+u?).

Similarly, using (2.4) we obtain

(3.9)

Pp = A%v Tp = At 111 )
sin” " u an” " u
(3.10) u U
M,=A———, L,=A——.
P sinh™ u P tanh™ ! u

It is worth mentioning that the means P,, T},, M,,, and L, can be represented
as the Schwab-Borchardt means. Making use of (2.6) and (2.7) we obtain

P, =SB(Gp, A), T, =5B(A Qp),
(3.11) M, = SB(Q,,A), L,=SB(AG,),
Vo = S5B(Qy,Gp), Up =SB(Gp,Qp)

For this reason we call (G, A4), (4,Qp), (@p,A4), (4,G,), (Qp,G,) and (Gp, Qp)

the pairs of generating means.

We close this section with the following remarks. The idea of using the p-
means was motivated by a recent development in theory of means. Let R and S be
bivariate symmetric means and let 0 < A < 1. Many researchers (see, e.g., [4], [5],
[6], [7], [8], [9], [10], [23]) have studied problems of finding all values of A for which
inequality R(Aa + (1 — A)b) < S(r, s) is satisfied for all positive numbers r and s.
Let us note that with A = (1 +p)/2 = w; we have 1 — A = (1 — p)/2 = wo. Thus
the inequality in question can be written as R, (r,s) < S(r,s). With the parameter
A used instead of p formula (3.8) should be changed u = (2A — 1)v, which is a little
bit more cumbersome in analytic computations than (3.8) is.

4. Main results

The goal of this section is to determine coeflicients of six optimal convex com-
binations which form both lower and upper bounds for the p-means U,(a,b) = U,
and Vp(a,b) = V,. Convex combinations employed here involve the p-means @,
and G, of positive and unequal numbers @ and b. Our first result reads as follows:

THEOREM 4.1. The two-sided inequality
(4.1) OélQp + (1 — Oq)Gp < Up < ﬂlQp + (1 — ,Bl)Gp
holds true provided

2 2
(4.2) a; < — and B> —.
T 3

ProOF. Taking into account that G, < @, one can rewrite (4.1) as

UP/QP — GP/QP

(43) a < 1_ Gp/Qp

< By.
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Since U, = SB(G), Qp) (see (3.11)) we get using (2.9) and (2.10)

U sinr G
-2 — and —2 — cosr,
Qp r QP

where 0 < r < 7/2. This in conjunction with (4.3) yields

ay < ®1(r) < By,

where
sinr — rcosr

1(r) = r(1—cosr)

It follows from Theorem 3 in [14] that the function ®4(r) is strictly decreasing
on its domain. Moreover,

2
<I>1(0+) = g and @1(7 )
Hence the assertion follows. O

A counterpart of the last theorem for the mean V, reads as follows:

THEOREM 4.2. The two-sided inequality

(4.4) MQp+ 1 —m)Gp <V, <01Qp+ (1—-061)G,
holds true provided

1
(4.5) 7 <0 and 6 = =

3
PRrROOF. We follow the lines used in the proof of the last theorem. Firstly, we
rewrite (4.4) as follows

V,/Qp —1
4.6 < PLEP— .
(4.6) N e, 1%
Since V,, = SB(Qp, Gp) (see (3.11)) we get using (2.9) and (2.10)
Vo = sinh 5 and & = cosh s,
G, s Gp

where 0 < s < co. This in conjunction with (4.6) yields
71 < Wi(s) < du,

where
sinhs — s

as) = s(coshs — 1)’

It follows from [12] that the function ¥, (s) is strictly decreasing on its domain.
Moreover,

1
T, (07) = 3 and Uy(c0™) =0.

Hence the assertion follows. O
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In the next two theorems we will deal with optimal bounds for U, and V,, where
now bounding quantities are the geometric convex combinations of @, and G,,.

THEOREM 4.3. The following inequality

21l—a2 > 1—0F2
(4.7) GoQy < Uy <GRQy "
is valid if
1
(4.8) oo = 3 and B2 < 0.

PRrROOF. First we rewrite (4.7) as follows

(4.9) (Gp/Qp)™ < Up/Qp < (Gp/Qp)™.
Since U, = SB(G), Q) (2.9) and (2.10) yield

~—

Gp/Qp = cosr and Up/Qp = Slir,

where 0 < r < m/2. This in conjunction with (4.9) yields

sinr

(cosr)*? < < (cosT)2.

Taking logarithms we can write the last two-sided inequality as

(4.10) B2 < @a(r) < az,
where )
1n(smr
2(r) = ln(cors r)’

It follows from Lemma 2 in [15] that the function ®5(r) is strictly decreasing
on its domain. This in conjunction with
1 =

@Q(OJr) = g and (1)2(* ) =0

yields the asserted result. The proof is complete. U

A result for V,,, which is similar to that in Theorem 4.3, reads as follows:

THEOREM 4.4. The following inequality

(4.11) QPG " <V, < QPG
is valid if

1
(4.12) vo < 3 and g > 1.

ProoF. Dividing each member of (4.11) by G, and next taking logarithms
and using formulas (3.11), (2.9) and (2.10) we obtain, after a little algebra

(4.13) Yo < \112(8) < 62,
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where
sinh s

In( )
Us(s) = Tn{coshs)
(0 < s < 00). It is known (cf. [26] and [15]) that the function Wy(s) is strictly
increasing on its domain and also that
Uy(01) =1/3 and Py(co™) = 1.
This in conjunction with (4.13) gives the desired result. O
The remaining two results deal with the optimal bounds for the reciprocals of

two means U, and V},. Bounding expressions have a structure of the reciprocals of
the harmonic means of @, and G,. We shall establish now the following

THEOREM 4.5. The two-sided inequality
az l—az 1 B3 1—p3

4.14 % <L By
(4.14) ¢ e, 0 6 a

holds true provided

1
(4.15) a3 <0 and B3 > 3
PRrROOF. First we rewrite (4.14) as follows
G, 1-U,/Q
(4.16) az < (F2)—ZPLEL < By,
( Up ) 1- GP/QP
Making use of (3.11), (2.9) and (2.10) we obtain
Sp T , %:SHW and &:cosr.
U, tanr Qp r Qp
Applying these formulas to (4.16) we obtain
(4.17) ag < @3(r) < fs,
where )
r—sinr
P3(r)

~ tanr —sinr
(0 < r < m/2). It follows from Lemma 2 in [15] that the function ®3(r) is strictly
decreasing on its domain and also that

1 —
30 =3 and @S(g )= 0.
This in conjunction with (4.17) gives the desired result. O

We close this section with the following

THEOREM 4.6. The following double inequality
Y3 1= 1 03  1—143
4.18 — + < =< =+
(41%) ¢ e ve e
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holds true provided
(4.19) v3 <0 and 03 > —.

PROOF. Its easy to see that the two-sided inequality (4.19) is equivalent to the
following one

Gp 1- Vp/Qp

(4.20) 3 < (W)m < 83.
Making use of (3.11), (2.9) and (2.10) we obtain

%: s ﬁztanhs and ﬂ: 1 .

V, sinhs’ Qp s Qp coshs
Applying these formulas to (4.20) we obtain
(4.21) 73 < W3(s) < ds,
where

Wy (s) = s —tanhs

sinh s — tanh s
(0 < s < o0). It follows from Lemma 3 in [15] that the function W3(s) is strictly
decreasing on its domain and also that

2

\113(0+) = g and @3(007) =0.
This in conjunction with (4.21) yields the asserted result. O
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