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ON YANG MEANS III

Edward Neuman

Abstract. Optimal inequalities involving the p-Yang means are established.
Bounding quantities are either the arithmetic or geometric or the harmonic
combinations of the p-geometric and the p-quadratic means.

1. Introduction

Recently Z. -H Yang [24] introduced two bivariate means denoted in the sequel
by V and U . For the sake of presentation we include below explicit formulas for
these means.

Throughout the sequel the letters a and b will stand for two positive and un-
equal numbers. The Yang means of a and b are defined as follows:

(1.1) V (a, b) =
a− b

√
2 sinh−1

( a− b√
2ab

)
and

(1.2) U(a, b) =
a− b

√
2 tan−1

( a− b√
2ab

) .
These means have been studied extensively in [24, 25] and recently in [16, 17].

This paper is a continuation of a research initiated in [16, 17] and is orga-
nized as follows. Definitions of other bivariate means utilized in this work are given
in Section 2. List of those means include two Seiffert means, logarithmic mean,
Neuman-Sándor mean and the Schwab-Borchardt mean SB. The latter plays a
crucial role in our presentation. Concept of the p-mean is recalled in Section 3.
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Therein we include some facts about the p-means. Optimal inequalities involving
the p-means Up and Vp which are derived, respectively, from the Yang means V
and U established in Section 4. The lower and upper bounds are either the convex
arithmetic combination or the convex geometric combination or the convex har-
monic combination of the p-means derived from the geometric and the quadratic
means of a and b.

2. Definitions and preliminaries

Recall that the unweighted arithmetic mean of a and b is defined as

A =
a+ b

2
.

Other unweighted bivariate means used in this paper are the harmonic mean H,
geometric mean G, root-square mean (quadratic mean) Q and the contra-harmonic
mean C which are defined as follows (cf. [2])

(2.1) H =
2ab

a+ b
, G =

√
ab, Q =

√
a2 + b2

2
, C =

a2 + b2

a+ b
.

Let

(2.2) v =
a− b

a+ b
.

Clearly 0 < |v| < 1. One can easily verify that the means defined in (2.1) all can
be expressed in terms of A and v. We have

(2.3)
H = A(1− v2), G = A

√
1− v2,

Q = A
√
1 + v2, C = A(1 + v2).

Other bivariate means utilized in this paper include the first and the second Seiffert
means, denoted by P and T , respectively, the Neuman-Sándor mean M , and the
logarithmic mean L. Recall that

(2.4)

P = A
v

sin−1 v
, T = A

v

tan−1 v
,

M = A
v

sinh−1 v
, L = A

v

tanh−1 v

(see [21], [22], [19]). All the means mentioned above are comparable. It is known
that

(2.5) H < G < L < P < A < M < T < Q < C

(see, e.g., [19]).
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The four means listed in (2.4) are special cases of the Schwab-Borchardt mean
SB which is defined as follows

SB(a, b) ≡ SB =



√
b2 − a2

cos−1(a/b)
if a < b,

√
a2 − b2

cosh−1(a/b)
if b < a.

(see, e.g., [1], [3]). This mean has been studied extensively in [11], [19], and [20].
It is well known that the mean SB is strict, nonsymmetric and homogeneous of
degree one in its variables.

It has been proven in [19] that

(2.6)
P = SB(G,A), T = SB(A,Q),

M = SB(Q,A), L = SB(A,G).

Yang means can also be represented in terms of the Schwab-Borchardt mean. We
have

(2.7) V = SB(Q,G) and U = SB(G,Q)

(see [16]).
The following chain of inequalities

(2.8) L < V < P < U < M < T

is known (see [16]).
For the sake of presentation we include new formulas for means SB. We have

[18]

(2.9) SB(x, y) ≡ SB =


y
sin r

r
= x

tan r

r
if 0 6 x < y,

y
sinh s

s
= x

tanh s

s
if y < x,

where

(2.10) cos r = x/y if x < y and cosh s = x/y if x > y.

Clearly

0 < r 6 r0, where r0 = max{cos−1(x/y) : 0 6 x < y}

and

0 < s 6 s0, where s0 = max{cosh−1(x/y) : x > y > 0}.
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3. Definition and basic properties of the p - means

We begin this section with a simple construction of a family of bivariate means
which depend on the parameter p which satisfies |p| 6 1. This idea has been
introduced in author’s paper [13].

First two nonnegative numbers w1 and w2 are defined as follows:

(3.1) w1 =
1 + p

2
, w2 =

1− p

2
.

Clearly w1 + w2 = 1. We associate with the pair (a, b) a pair of positive numbers
(x, y), where

(3.2) x = w1a+ w2b, y = w1b+ w2a.

Thus x and y are the convex combinations of a and b. One can easily verify that
a < x < y < b if a < b or b < y < x < a if b < a.

For the sake of presentation let N stand for a bivariate symmetric mean. We
define a mean Np(a, b) ≡ Np as follows

(3.3) Np(a, b) = N(x, y).

We call the mean Np the p-mean or the p-mean generated by N .
For the reader’s convenience we present now some elementary properties of the

p-means. It follows (3.3), (3.1), and (3.2) we see that

N−p(a, b) = N(y, x) = N(x, y) = Np(a, b).

Thus the function p → Np is an even function. To this end we will assume that
0 6 p 6 1. It follows from (3.1) and (3.2) that

(3.4) N0 = A, N1 = N.

Moreover, the function p → Np is strictly decreasing if N < A, i.e.,

(3.5) N1 6 Np 6 N0

or is strictly increasing if N > A, i.e.,

(3.6) N0 6 Np 6 N1.

We now present formulas for the p-means. Let us begin with the case when N = A.
We have

Ap = Ap(a, b) = A(x, y) = A.

Thus we shall always write A instead of Ap when no confusion would arise. To
obtain the p-versions of the four means listed in (2.3) let us introduce a quantity
u, where

(3.7) u =
x− y

x+ y
.

Using (3.2) and (2.2) we obtain

(3.8) u = pv.

Since 0 < |v| < 1, 0 < |u| < p 6 1
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Formulas for the p-means derived from means listed in (2.3) read as follows

(3.9)
Hp = A(1− u2), Gp = A

√
1− u2,

Qp = A
√

1 + u2, Cp = A(1 + u2).

Similarly, using (2.4) we obtain

(3.10)

Pp = A
u

sin−1 u
, Tp = A

u

tan−1 u
,

Mp = A
u

sinh−1 u
, Lp = A

u

tanh−1 u
.

It is worth mentioning that the means Pp, Tp, Mp, and Lp can be represented
as the Schwab-Borchardt means. Making use of (2.6) and (2.7) we obtain

(3.11)

Pp = SB(Gp, A), Tp = SB(A,Qp),

Mp = SB(Qp, A), Lp = SB(A,Gp),

Vp = SB(Qp, Gp), Up = SB(Gp, Qp).

For this reason we call (Gp, A), (A,Qp), (Qp, A), (A,Gp), (Qp, Gp) and (Gp, Qp)
the pairs of generating means.

We close this section with the following remarks. The idea of using the p-
means was motivated by a recent development in theory of means. Let R and S be
bivariate symmetric means and let 0 6 λ 6 1. Many researchers (see, e.g., [4], [5],
[6], [7], [8], [9], [10], [23]) have studied problems of finding all values of λ for which
inequality R(λa + (1 − λ)b) < S(r, s) is satisfied for all positive numbers r and s.
Let us note that with λ = (1 + p)/2 = w1 we have 1 − λ = (1 − p)/2 = w2. Thus
the inequality in question can be written as Rp(r, s) < S(r, s). With the parameter
λ used instead of p formula (3.8) should be changed u = (2λ− 1)v, which is a little
bit more cumbersome in analytic computations than (3.8) is.

4. Main results

The goal of this section is to determine coefficients of six optimal convex com-
binations which form both lower and upper bounds for the p-means Up(a, b) ≡ Up

and Vp(a, b) ≡ Vp. Convex combinations employed here involve the p-means Qp

and Gp of positive and unequal numbers a and b. Our first result reads as follows:

Theorem 4.1. The two-sided inequality

(4.1) α1Qp + (1− α1)Gp < Up < β1Qp + (1− β1)Gp

holds true provided

(4.2) α1 6 2

π
and β1 > 2

3
.

Proof. Taking into account that Gp < Qp one can rewrite (4.1) as

(4.3) α1 <
Up/Qp −Gp/Qp

1−Gp/Qp
< β1.
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Since Up = SB(Gp, Qp) (see (3.11)) we get using (2.9) and (2.10)

Up

Qp
=

sin r

r
and

Gp

Qp
= cos r,

where 0 6 r 6 π/2. This in conjunction with (4.3) yields

α1 < Φ1(r) < β1,

where

Φ1(r) =
sin r − r cos r

r(1− cos r)
.

It follows from Theorem 3 in [14] that the function Φ1(r) is strictly decreasing
on its domain. Moreover,

Φ1(0
+) =

2

3
and Φ1(

π

2

−
).

Hence the assertion follows. �

A counterpart of the last theorem for the mean Vp reads as follows:

Theorem 4.2. The two-sided inequality

(4.4) γ1Qp + (1− γ1)Gp < Vp < δ1Qp + (1− δ1)Gp

holds true provided

(4.5) γ1 6 0 and δ1 > 1

3
.

Proof. We follow the lines used in the proof of the last theorem. Firstly, we
rewrite (4.4) as follows

(4.6) γ1 <
Vp/Qp − 1

Qp/Gp − 1
< δ1.

Since Vp = SB(Qp, Gp) (see (3.11)) we get using (2.9) and (2.10)

Vp

Gp
=

sinh s

s
and

Qp

Gp
= cosh s,

where 0 6 s < ∞. This in conjunction with (4.6) yields

γ1 < Ψ1(s) < δ1,

where

Ψ1(s) =
sinh s− s

s(cosh s− 1)
.

It follows from [12] that the function Ψ1(s) is strictly decreasing on its domain.
Moreover,

Ψ1(0
+) =

1

3
and Ψ1(∞−) = 0.

Hence the assertion follows. �
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In the next two theorems we will deal with optimal bounds for Up and Vp where
now bounding quantities are the geometric convex combinations of Qp and Gp.

Theorem 4.3. The following inequality

(4.7) Gα2
p Q1−α2

p < Up < Gβ2
p Q1−β2

p

is valid if

(4.8) α2 > 1

3
and β2 6 0.

Proof. First we rewrite (4.7) as follows

(4.9) (Gp/Qp)
α2 < Up/Qp < (Gp/Qp)

β2 .

Since Up = SB(Gp, Qp) (2.9) and (2.10) yield

Gp/Qp = cos r and Up/Qp =
sin r

r
,

where 0 6 r 6 π/2. This in conjunction with (4.9) yields

(cos r)α2 <
sin r

r
< (cos r)α2 .

Taking logarithms we can write the last two-sided inequality as

(4.10) β2 < Φ2(r) < α2,

where

Φ2(r) =
ln(

sin r

r
)

ln(cos r)
.

It follows from Lemma 2 in [15] that the function Φ2(r) is strictly decreasing
on its domain. This in conjunction with

Φ2(0
+) =

1

3
and Φ2(

π

2

−
) = 0

yields the asserted result. The proof is complete. �

A result for Vp, which is similar to that in Theorem 4.3, reads as follows:

Theorem 4.4. The following inequality

(4.11) Qγ2
p G1−γ2

p < Vp < Qδ2
p G1−δ2

p

is valid if

(4.12) γ2 6 1

3
and δ2 > 1.

Proof. Dividing each member of (4.11) by Gp and next taking logarithms
and using formulas (3.11), (2.9) and (2.10) we obtain, after a little algebra

(4.13) γ2 < Ψ2(s) < δ2,
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where

Ψ2(s) =
ln(

sinh s

s
)

ln(cosh s)

(0 < s < ∞). It is known (cf. [26] and [15]) that the function Ψ2(s) is strictly
increasing on its domain and also that

Ψ2(0
+) = 1/3 and Ψ2(∞−) = 1.

This in conjunction with (4.13) gives the desired result. �

The remaining two results deal with the optimal bounds for the reciprocals of
two means Up and Vp. Bounding expressions have a structure of the reciprocals of
the harmonic means of Qp and Gp. We shall establish now the following

Theorem 4.5. The two-sided inequality

(4.14)
α3

Gp
+

1− α3

Qp
<

1

Up
<

β3

Gp
+

1− β3

Qp

holds true provided

(4.15) α3 6 0 and β3 > 1

3
.

Proof. First we rewrite (4.14) as follows

(4.16) α3 <
(Gp

Up

) 1− Up/Qp

1−Gp/Qp
< β3.

Making use of (3.11), (2.9) and (2.10) we obtain

Gp

Up
=

r

tan r
,

Up

Qp
=

sin r

r
and

Gp

Qp
= cos r.

Applying these formulas to (4.16) we obtain

(4.17) α3 < Φ3(r) < β3,

where

Φ3(r) =
r − sin r

tan r − sin r

(0 < r < π/2). It follows from Lemma 2 in [15] that the function Φ3(r) is strictly
decreasing on its domain and also that

Φ3(0
+) =

1

3
and Φ3(

π

2

−
) = 0.

This in conjunction with (4.17) gives the desired result. �

We close this section with the following

Theorem 4.6. The following double inequality

(4.18)
γ3
Gp

+
1− γ3
Qp

<
1

Vp
<

δ3
Gp

+
1− δ3
Qp
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holds true provided

(4.19) γ3 6 0 and δ3 > 2

3
.

Proof. Its easy to see that the two-sided inequality (4.19) is equivalent to the
following one

(4.20) γ3 <
(Gp

Vp

) 1− Vp/Qp

1−Gp/Qp
< δ3.

Making use of (3.11), (2.9) and (2.10) we obtain

Gp

Vp
=

s

sinh s
,

Vp

Qp
=

tanh s

s
and

Gp

Qp
=

1

cosh s
.

Applying these formulas to (4.20) we obtain

(4.21) γ3 < Ψ3(s) < δ3,

where

Ψ3(s) =
s− tanh s

sinh s− tanh s

(0 < s < ∞). It follows from Lemma 3 in [15] that the function Ψ3(s) is strictly
decreasing on its domain and also that

Ψ3(0
+) =

2

3
and Φ3(∞−) = 0.

This in conjunction with (4.21) yields the asserted result. �
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